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Abstract—In real applications, design patterns are almost always to be found composed with each other. It is crucial that these

compositions be validated. This paper examines the notion of validity, and develops a formal method for proving or disproving it, in

a context where composition is performed with formally defined operators on formally specified patterns. In particular, for validity, we

require that pattern compositions preserve the features, semantics and soundness of the composed patterns. The application of

the theory is demonstrated by a formal analysis of overlap-based pattern compositions and a case study of a real pattern-oriented

software design.

Index Terms—Design patterns, pattern composition, composibility, feature preservation, semantics preservation, soundness preservation,

formal methods
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1 MOTIVATION

DESIGN patterns encapsulate knowledge of reusable
solutions to recurring design problems [1]. Since

Gamma et al. published a catalogue of 23 basic OO design
patterns [2], a large number of patterns in various specific
design areas have been identified and documented [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15].
Many software tools have been developed, often as IDE
plug-ins, to apply design patterns, or to recognise the
correct uses of patterns at code level [16], [17], [18], [19],
[20], [21] and at model level [22], [23], [24], [25], [26].
They are widely used in practice in almost all software
development [27]. A pattern-oriented software design
methodology is emerging [28], [29].

Empirical studies show that design patterns are often
used wrongly, with a negative impact on software quality
[27], [30], [31], though the exact meaning of appropriate
application is still an open question. For example, Fig. 1
shows in diagrams c) to f), four different compositions of
the Gamma et al.’s patterns [2] Composite and Adapter,
with the latter indicated by shading. Are these valid and is
there a way to prove that they are?

In this paper, we take a formal approach to the problem
by proposing a mathematical definition of the notion of
valid composition and instantiation of design patterns, and
developing a formal theory that allows us to formally prove
or disprove that a use of a design pattern is sound and valid.
The applicability of the theory is demonstrated by applying
it to the analysis of overlap-based pattern compositions as
well as a case study with a real example of pattern-oriented
design. It is based on our previous work on an algebra of
design patterns [32] as well as on the work of many others
on formalisation of design patterns [33], [34], [35], [36], [37],
[38], [39], [40], [41].

The remainder of the paper is organised as follows.
Section 2 outlines our proposed approach and summarises
the main contributions of this paper. Section 3 sets the foun-
dation of the work by defining the mathematical notations
and recalls the formal theory that the paper is based on.
Section 4 examines the notion of valid pattern composi-
tion and instantiation. The notions of feature preservation,
semantics preservation and soundness preservation are intro-
duced and formally defined as conditions of valid pattern
compositions and instantiations. Their interrelationships are
studied. Section 5 is devoted to the verification of the validity
of pattern compositions and instantiations expressed in terms
of pattern operations. Section 6 applies the theory to overlap-
based pattern composition operators. Section 7 reports a case
study with a real example of pattern-oriented software
design: a general request handling framework [42]. Finally,
Section 8 concludes the paper with a comparisonwith related
work and a discussion of futurework.

2 THE PROPOSED APPROACH

This section outlines our approach to the open problem of
verifying that a composition and instantiation of design
patterns is valid. We refine the problem to that of proving
that a pattern composition and instantiation preserves three
important qualities of the pattern:

� soundness, the existence of valid instances for the
pattern, i.e., at least one design conforms to the
pattern;

� semantics, the meaning of the pattern, which is
the set of designs conforming to the pattern;

� features, the structural and behavioural properties of
the pattern.

Another important quality of pattern specifications we
will discuss is completeness, which means that it covers all
the characteristic features of the pattern, no more no less.

In common with other researchers, we regard a design
pattern as a predicate that asserts the existence of elements
(e.g. classes) in the design, states structural properties in
terms of how these elements are statically interconnected,
and behavioural properties in terms of their dynamic interac-
tion. Pattern compositions and instantiations are expressions

� The authors are with the Oxford Brookes University, Oxford OX33 1HX,
United Kingdom. E-mail: {hzhu, ibayley}@brookes.ac.uk.

Manuscript received 30 Sept. 2013; revised 10 Mar. 2015; accepted 31 May
2015. Date of publication 14 June 2015; date of current version 13 Nov. 2015.
Recommended for acceptance by B.H.C. Cheng.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2445341

1138 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 11, NOVEMBER 2015

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



formed from the application of six pattern operators [32],
[43], [44] to existing patterns. To determine validity, we
investigate under what conditions the operators preserve
soundness, semantics and features.

The main contributions of the paper are as follows.

� We formally define the notions of feature preservation,
semantics preservation and soundness preservation,
and thereby formalise the notion of valid composition.
We also study the relationships between them.

� We present a formal method to enable software
designers to prove or disprove the validity of pattern
composition, by considering soundness preserva-
tion, semantics preservation and feature preserva-
tion. In particular, we prove that
– all six operators are feature preserving,
– operators that change the structural require-

ments are semantics preserving, and
– operators that introduce new constraints fail to

be soundness preserving only when the newly
introduced constraints are in conflict with the
semantics of the original pattern.

� We demonstrate the validity and applicability of the
theory developed in this paper by two means:
– a theoretical analysis of the validity conditions

for pattern compositions based on overlaps [45],
– a case study of a real pattern-oriented design.

3 PRELIMINARIES

In this section, we first recall the logic underlying the formal
specification of design patterns, then the pattern composi-
tion and instantiation operators [32].

3.1 Logics Underlying Pattern Specification and
Reasoning

In the past few years, researchers have advanced several
approaches to the formalisation of design patterns. In spite
of the differences in their formalisms, the basic underlying
ideas are quite similar. In particular, a pattern is usually
specified using statements that constrain the structural
features, and sometimes also the behavioural features, of its
valid instances. The structural constraints are typically asser-
tions that certain types of components exist and have a
certain configuration. The behavioural constraints, on the
other hand, detail the temporal order of messages exchanged
between the components during the executions of an

instance of the pattern. Note that negative information can
also be included in pattern specifications, for example, to
state the so-called forbidden conditions, such as that no associa-
tions are allowed between two particular components. Such
negative conditions could be useful to validate the correct
uses of patterns.

The various approaches to pattern formalisation differ in
how they represent software systems and in how they for-
malise the predicate. For example, Eden’s predicates are on
the source code of object-oriented programs [40], [46], [47],
[48] but they are limited to structural features. Taibi et al.’s
approach in [38] is similar but he takes the further step of
adding temporal logic for behavioural features. In contrast,
our predicates are built up from primitive predicates on
UML class and sequence diagrams [41]. These primitives
are induced from the abstract syntax definition of UML dia-
grams in GEBNF, which is an extension of BNF for graphi-
cal modelling languages [49], [50]. Therefore, without loss
of generality, a pattern specification is defined as follows.

Definition 1 (Formal specifications of design patterns).
A formal specification of a design pattern is an ordered pair
P ¼ hVars; Predi, where Pred is a predicate on the domain of
software systems, and Vars ¼ fv1 : T1; . . . ; vn : Tng is a set of
declarations for the variables that are free in the predicate Pred.
Each vi is a variable that represents a component in the pattern
andTi is that variable’s corresponding type. A type can be a basic
type Z of elements, such as class, method, attribute, message,
lifeline, etc. in the design model, or PðZÞ (i.e., a power set of Z),
or PðPðZÞÞ to represent a set of sets of elements of the typeZ, etc.
Note that, for the sake of convenience, we do not allow the empty
set ; to be an instance of a power set type PðT Þ.

The semantics of a specification is a ground predicate in the
following form.

9v1 : T1 � � � 9vn : Tn � ðPredÞ (1)

In the sequel, we write SpecðP Þ to denote the predicate (1)
above, VarsðP Þ for the set of variables declared in Vars, and
PredðP Þ for the predicate Pred.
Often predicate Pred is split into static and dynamic con-

ditions as in [38] and [41]. It can also be specialised to particu-
lar representations of software systems such as program
code, UML diagrams etc, though in this paper, for simplicity,
we will just consider the latter for our concrete examples.
The operators we use from [32], [43], [51] are also indepen-
dent of the particular formalism, although the examples
come from the previouswork [41] and [52]. The theory devel-
oped in this paper is valid as far as the following notion of
conformance is valid and the logic is consistent.

Give a specification of a design pattern, one can decide
whether a concrete design conforms to the design pattern
by demonstrating that the predicate is satisfied by the
design. To prove such a conformance we just need to give
an assignment a of variables in Vars to elements in the
design model m and evaluate PredðP Þ in the context of a.
The evaluation of a predicate p in the context of an assign-
ment a of variables in p to elements in a model m, denoted
by ½½p��ma , is defined as usual in predicate logic. Thus, the defi-
nition is omitted for the sake of space. If the result of the
evaluation ½½PredðP Þ��ma is true, we say that the model m sat-
isfies the specification P , and writem � SpecðP Þ.

Fig. 1. Motivative examples of pattern compositions.
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Definition 2 (Conformance of a Design to a Pattern). Let m
be a model and P ¼ hVars; Predi be a formal specification of a
design pattern. The model m conforms to the design pattern
as specified by P if and only if m � SpecðP Þ. For the sake of
simplicity, in the sequel we will also write m � P for
m � SpecðP Þ.
Given a formal specification of a pattern P , we can also

infer the properties of any system that conforms to it by
deducing that SpecðP Þ ) q where q is a formula denoting a
property of the model. In other words, every logical conse-
quence of a formal specification is a property of every
model that conforms to the pattern specified. This statement
is true only if the logic interpretation of predicates is consis-
tent with logic inference rules. Formally, we have the fol-
lowing proposition about the logic system underlying the
formalism used for pattern specification.

Proposition 1 (Consistency of Specification Logic). For all
models m and predicates p and q on models, we have that
‘ ðp ) qÞ andm � p imply thatm � q.

Note that the logic system also has axioms about the
atomic predicates of software systems. One such predicate
is ��", where X ��" Y means that X is a subclass of Y .
Two of its axioms are the transitivity and asymmetry prop-
erties below. 8X; Y; Z 2 Class,

ðX ��" Y Þ ^ ðY ��" ZÞ ) X ��" Z: (2)

:ðX ��" Y ^ Y ��" XÞ: (3)

These well-formedness conditions are true for all valid
UML models. For that reason, they can be used as axioms in
reasoning about design patterns [26].

3.2 Relations and Operators on Design Patterns

Based on the formal logic underlying pattern specifications,
we can define various relationships between patterns, one
of which is the following specialisation relationship, which
has been studied by a number of researchers in various
contexts, such as [39], [53].

Definition 3 (Specialisation Relation between Patterns).
Let P and Q be design patterns. Pattern P is a specialisation
of Q, written P ^ Q, if for all models m, whenever m con-
forms to P , m also conforms to Q. Formally, P ^ Q , 8m�
ðm � P ) m � QÞ.

Two patterns P and Q are equivalent, written P � Q, if
P ^ Q and Q ^ P .

To establish that P ^ Q, one can use logic inference in
predicate logic to prove that SpecðP Þ ) SpecðQÞ.

Specialisation is a partial order with FALSE as bottom
and TRUE as top, where TRUE and FALSE are special pat-
terns defined as follows.

Definition 4 (TRUE and FALSE patterns). Pattern TRUE is
the pattern that satisfies the condition that for all models m,
m � TRUE. Pattern FALSE is the pattern that satisfies the
condition that for all modelsm,m � FALSE.

The operators on patterns introduced in [32] are as
defined below; see the original for explanations, examples
and case studies.

Definition 5 (Pattern Operators). LetP andQ be any given pat-
terns, V ¼ VarsðP Þ ¼ fx0 : T0; . . . ; xn : Tng and PredðP Þ ¼
pðx0; . . . ; xnÞ.
1) Restriction. Let c be a predicate on V . P c½ � is the

pattern such that VarsðP ½c�Þ ¼ V and PredðP ½c�Þ ¼
p ^ c.

2) Superposition. Assume that V \ VarsðQÞ ¼ ;. P� Q,
is the pattern that VarsðP �QÞ ¼ V [ VarsðQÞ and
PredðP �QÞ ¼ p ^ PredðQÞ.

3) Extension. Let V \ U ¼ ;, and c be a predicate on V[
U . P#ðU � cÞ is the pattern such that VarsðP#ðU�
cÞÞ ¼ V [ U and PredðP#ðU � cÞÞ ¼ p ^ c,

4) Flattening. Assume T0 ¼ PðT Þ and x0
0 62 V . P +

x0nx0
0 is the pattern such that

VarsðP + x0nx00Þ ¼ fx0
0 : T; x1 : T1; . . . ; xn : Tng;

PredðP + x0nx0
0Þ ¼ pðfx0

0g; x1; . . . ; xnÞ:
5) Generalisation. P * x0nx0

0 is the pattern such that

VarsðP * x0nx0
0Þ ¼ fx0

0 : PðT0Þ; x1 : T1; . . . ; xn : Tng;
PredðP * x0nx0

0Þ ¼ 8x0 2 x0
0 � PredðP Þ:

6) Lifting. Let X ¼ fx0 . . . ; xkg, n > k > 0, and xsi 62
V for i ¼ 1; . . . ; n. P " X is the pattern such that

VarsðP " XÞ ¼ fxs0 : PðT0Þ; . . . ; xsn : PðTnÞg;
PredðP " XÞ ¼ 8x0 2 xs0 � � � 8xk 2 xsk�
9xkþ1 2 xskþ1 � � � 9xn 2 xsn � pðx1; . . . ; xnÞ:

Informal explanations of the operators are as follows:
Restriction operator P ½c� imposes an additional condition

c on an existing pattern P . A common use of restriction, as
shown in our case studies [43], is in the form P ½u ¼ v�,
where u and v are variables of the same type. An alternative
form P ½u ¼ a� where a is a constant element is also useful
for instantiating a pattern.

Superposition P �Q is a pattern containing both pattern
P and pattern Q. Naming clashes in component variables
can always be resolved by systematic renaming. Let
x 2 VarsðP Þ and x0 =2 VarsðP Þ. The systematic renaming of x
to x0, written as P ½xnx0�, does not change the meaning of the
pattern. That is, for all models m that m � P , m �
P ½xnx0�. Another approach, which we prefer, is to write P:x
to denote the variable x in pattern P . Thus, the variable P:x
can be easily distinguished from Q:x.

Extension P#ðU � cÞ introduces a set U of new compo-
nents into the pattern P and links these components with
the existing ones according to the predicate c.

Flattening P + xnx0 forces the component x in P always
to be a singleton fx0g. When there is no risk of confusion,
the name x0 can be omitted.

Generalisation P * xnx0 is the opposite of flattening.
It allows an element x in pattern P to be repeated one or
many times. Both the generalisation and flattening opera-
tors can be overloaded to be applied to a set X of compo-
nent variables.

Lifting P " X results in a pattern P 0 that contains a vary-
ing number of instances of pattern P . For example,
Adapter " Target is the pattern that contains a number of
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Targets of adapted classes. Each of these has a dependent
Adapter and Adaptee class configured as in the original
Adapter pattern. In other words, the component Target in
the lifted pattern plays a role similar to the primary key in
a relational database. The difference between lifting and
generalisation is illustrated in Example 1.

Note that pattern specifications are closed formulae,
containing no free variables. Although the names given to
component variables improve readability significantly, they
have no effect on semantics. So, in the sequel, we will often
omit new variable names and write simply P + x to repre-
sent P + xnx0, and P + X to represent P + XnX0. For the lift-
ing operator, when the key setX is singleton, we omit the set
brackets for simplicity, so wewrite P " x instead of P " fxg.

The following are some simple examples that illustrate
the meanings of pattern operators. They are also used in the
next section to illustrate the notions of validity of pattern
compositions.

Example 1.
Consider patterns P and Q defined as below:

P ¼ hfA : Classg; A:isAbstracti
Q ¼ hfB : Class; C : Classg; B��"Ci

where X:isAbstract means that class X is an abstract
class, X ��" Y means that class X is a subclass of Y . We
have that

SpecðP Þ ¼ 9A : Class � ðA:isAbstractÞ
SpecðQÞ ¼ 9B;C : Class � ðB��" CÞ

Consider the pattern compositions R1 to R4 defined as
follows:

R1 ¼ P#ðD : Class �D 	�!AÞ
R2 ¼ Q * BnBs
R3 ¼ Q " BnBs
R4 ¼ ðP �QÞ½A ¼ C�

where X 	�!Y means class X contains class Y as a part,
i.e., there is composite/aggregate relation fromX to Y .

Informally, R1 adds an additional component D to P
and connects it to class Awith an aggregation relation.R2

generalises Q by allowing a number of classes Bs ¼
fB1; . . . ; Bn; . . .g to be C’s subclasses instead of just one
classB, whereasR3 is the lifting ofQ on the componentB.

Note that, flattening is the inverse of generalization. Thus,
Q is a flattening of R2. R4 is the composition of P and Q
by unifying component A of pattern P with component C
of patternQ. These compositions are illustrated in Fig. 2.

From the definitions of the operators we immediately
have:

SpecðR1Þ ¼ 9A;D : Class � ðA:isAbstract ^D 	�! AÞ
SpecðR2Þ ¼ 9Bs : PðClassÞ; 9C : Class�

ð8B 2 Bs � ðB��" CÞÞ
SpecðR3Þ ¼ 9Bs;Cs : PðClassÞ�

ð8B 2 Bs � 9C 2 Cs � ðB��" CÞÞ
SpecðR4Þ ¼ 9A;B : Class � ðA:isAbstract ^B��" AÞ

In [32], we proved a complete set of equational laws that
the operators obey. Some of them are used in this paper
to prove the theorems and in the case study. Thus, they
are listed in the online Appendix1.

4 THE NOTION OF VALIDITY

Our process to determine validity of compositions considers
each of feature preservation, semantic preservation and
soundness preservation in turn. We formally define these
notions now and study the relationships between them.

4.1 Feature Preservation

If a pattern P has a certain feature, one would expect
that a valid use of the pattern should also have the fea-
ture. The notion of feature preservation can be formally
defined as follows.

Definition 6 (Feature Preservation). A unary operator 
 on
patterns is feature preserving, if, for any pattern P and any
predicate p, pattern P has property p implies that 
P also has
property p. Formally,

SpecðP Þ ‘ p ) Specð
P Þ ‘ p:

A binary operator 
 on patterns is feature preserving, if for
any patterns P and Q and any predicate p, pattern P has the
property p or pattern Q has the property p imply that P 
Q
also has property p. Formally,

ðSpecðP Þ ‘ pÞ _ ðSpecðQÞ ‘ pÞ ) ðSpecðP 
QÞ ‘ pÞ:

The following lemma proves an important property of
feature preservation operators.

Lemma 1 (Feature Preservation Lemma). (a) An unary
pattern operator 
 is feature preserving, if for all patterns P ,
Specð
P Þ ) SpecðP Þ.

(b) A binary pattern operator 
 is feature preserving,
if for all patterns P and Q, SpecðP 
QÞ ) SpecðP Þ and
SpecðP 
QÞ ) SpecðQÞ.

Proof. (a) Assume that for all patterns P , we have that
Specð
P Þ ) SpecðP Þ. Then, for any predicate p, SpecðpÞ
‘ p implies that Specð
P Þ ‘ p by the consistency of the
logic. Thus, 
 preserves features.

Fig. 2. Illustration of the patterns in Examples 1 to 4.

1. The Appendix can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109//
TSE.2015.2445341.
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(b) Let p be any given property. If we have that
SpecðP Þ ‘ p, by proposition 1, we have that SpecðP Þ ) p.
Because SpecðP 
QÞ ) SpecðP Þ, we have that SpecðP

QÞ ) p. If we have that SpecðQÞ ‘ p, then, by Proposi-
tion 1 we have that SpecðQÞ ) p. Because SpecðP

QÞ ) SpecðQÞ, we have that SpecðP 
QÞ ) p. Thus, we
have that

ðSpecðP Þ ‘ pÞ _ ðSpecðQÞ ‘ pÞ ) ðSpecðP 
QÞ ‘ pÞ:
That is, 
 preserves features. tu
An important property of pattern specifications is com-

pleteness, which means that it should capture all aspects of
the design. If the specification is incomplete, a design may
wrongly be regarded as an instance of the pattern, leading
to a false positive. The formal definition of completeness is
as follows.

Definition 7 (Completeness of Pattern Specification). Let
P ¼ hVars; Predi be a formal specification of a given pattern,
Thm be a set of statements on the properties that all instances
of the pattern should possess. The specification P is complete
with respect to Thm, if for all p 2 Thm, we have that
SpecðP Þ ‘ p.

Because design patterns are documented informally and
represent empirical knowledge, the completeness of a for-
mal specification can only be judged manually, perhaps
with the aid of examples. However, we would want a com-
position to preserve completeness when its components do.
More formally,

Definition 8 (Completeness Preservation). A unary operator

 on patterns is completeness preserving, if, for any pattern
P and set Thm of statements, P is complete with respect to
Thm implies that 
P is also complete with respect to Thm.

A binary operator 
 on patterns is completeness pre-
serving, if for any patterns P and Q and any sets ThmP

and ThmQ of statements, P is complete w.r.t. ThmP and Q

is complete w.r.t. ThmQ imply that P 
Q is complete w.r.t.
ThmP [ ThmQ.

Fortunately, completeness preservation is guaranteed by
feature preservation, as the following lemma states

Lemma 2 (Completeness Preservation Lemma). (a) An
unary pattern operator 
 is completeness preserving, if it is
feature preserving.

(b) A binary pattern operator 
 is completeness preserving,
if it is feature preserving.

Proof. (a) Let P be any pattern specification that is complete
w.r.t. a given set of statements Thm. By Definition 7, we
have that for all p 2 Thm, SpecðP Þ ) p. Because 
 is fea-
ture preserving, we have that Specð
ðP ÞÞ ) p. Therefore,
statement (a) of the lemma is true.

(b) Similarly, let P and Q be any pattern specifications
complete w.r.t. sets of statements ThmP and ThmQ,
respectively. By Definition 7, we have that

8p 2 ThmP � ðSpecðP Þ ) pÞ; (4)

8q 2 ThmQ � ðSpecðQÞ ) qÞ: (5)

Now, let s 2 ThmP [ ThmQ. So s 2 ThmP or s 2 ThmQ. If
s 2 ThmP , by (4) and statement (b) of Lemma 1, we have
that SpecðP 
QÞ ) s. Similarly, if s 2 ThmQ then by (5)
and statement (b) again, SpecðP 
QÞ ) s. So for all
statements s 2 ThmP [ ThmQ implies that SpecðP 
QÞ
) s. This means that 
 preserves completeness. tu

Example 2. Consider the patterns in Example 1. It is easy to
see that SpecðR1Þ ) SpecðP Þ. Thus, we can prove that
for all p, SpecðP Þ ) p implies that SpecðR1Þ ) p by tran-
sitivity of ). This means that for all properties p that
pattern P has, pattern R1 also has property p. In other
words, pattern R1 preserves the features of pattern P .
Similarly, we also have

SpecðR2Þ ) SpecðQÞ
SpecðR3Þ ) SpecðQÞ
SpecðR4Þ ) SpecðP Þ and SpecðR4Þ ) SpecðQÞ:

This means that patterns R2 and R3 preserve the fea-
tures of pattern Q, and pattern R4 preserves the features
of both patterns P and Q.

Note we do not allow the empty set ; to be an instance
of power set type PðT Þ, since if Bs ¼ ; then SpecðR2Þ and
SpecðR3Þ are vacuously true, even if SpecðQÞ is false. So
this requirement is necessary for R2 and R3 to be feature
preserving.

4.2 Preservation of Semantics

The semantics of a pattern is the set of designs that conform
to it. More formally, we have

Definition 9 (Denotational Semantics of Patterns). Let P be
a pattern specification. The denotational semantics (or sim-
ply semantics) of P , denoted by ½½P ��, is the set of models m
that satisfy the specification. Formally,

½½P �� , fmjm � SpecðP Þg:

By the above definition, it is easy to see that, for all pat-
terns P and Q, we have

P � Q , ½½P �� ¼ ½½Q��; (6)

P ^ Q , ½½P �� � ½½Q��: (7)

Some operators preserve the denotational semantics
while changing the structural requirements, while others
introduce new restrictions, and thereby change the seman-
tics. Semantics preservation is formally defined as follows.

Definition 10 (Semantics Preservation Property). A unary
operator 
 on patterns is semantics preserving if for all pat-
terns P we have that ½½P �� ¼ ½½
P ��.

A binary operator 
 on patterns is semantics preserving
if, for all patterns P and Q, we have ½½P 
Q�� ¼ ½½P �� \ ½½Q��.
Obviously, a unary operator 
 preserves semantics,

if and only if for all models m, ðm � P Þ , ðm � 
P Þ. For
a binary operator 
, the operator 
 preserves semantics if
and only if for any patterns P and Q, we have for all models
m, ðm � P 
QÞ , ððm � P Þ ^ ðm � QÞÞ.
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Example 3. Consider patterns P , Q and R4 defined in Exam-
ple 1. We have that

m � SpecðR4Þ
, m � 9A;B : Class � ðA:isAbstract ^B��" AÞ
) m � 9A : Class � ðA:isAbstractÞ
^ 9A;B : Class � ðB��" AÞ

, m � 9A : Class � ðA:isAbstractÞ
^m � 9A;B : Class � ðB��" AÞ

, m � SpecðP Þ ^m � SpecðQÞ
Therefore, ½½R4�� � ½½P �� \ ½½Q��.

On the other hand, ½½R4�� 6¼ ½½P �� \ ½½Q��, because

9A : Class � ðA:isAbstractÞ ^ 9A;B : Class � ðB��" AÞ
6) 9A;B : Class � ðA:isAbstract ^B��" AÞ:

Therefore, pattern R4 does not preserve the semantics of
patterns P and Q, even though, as we saw in Example 2,
it preserves their features.

4.3 Preservation of Soundness

A design pattern is sound if it has at least one instance. For
example, the FALSE pattern is not sound because it cannot
be satisfied. Any operation
 is soundness preserving if when
applied to a sound patternP it gives a sound pattern
P .

Definition 11 (Soundness Preservation Property). A unary
operator 
 on patterns is soundness preserving if for any
pattern P we have

9m � ðm � P Þ ) 9m � ðm � 
P Þ:
A binary operator 
 on patterns is soundness preserving

if for any patterns P and Q we have

ð9m �m � P Þ ^ ð9m �m � QÞ ) 9m �m � ðP 
QÞ:

The following lemma is useful.

Lemma 3. If a pattern operator preserves semantics, it also pre-
serves soundness.

Proof. Here, we only give the proof for unary pattern oper-
ators. The proof for binary operators is very similar.

Let 
 be a unary operator that preserves semantics.
By definition of semantics preservation, for all patterns P
and models m, we have that m � P , m � 
P . If P is
sound, i.e. there is a model m such that m � P , then, we
have that m � 
P . That is, 
P is also sound. Thus, 

preserves soundness. tu

Example 4. Let pattern P be as defined in Example 1. Let
pattern Q0 be the following.

hfB;C : Classg; ðB��" C ^ :B:isAbstractÞi
Then, we have that

SpecðQ0Þ ¼ 9B;C : Class � ðB��" C ^ :B:isAbstractÞ
Although P and Q0 are sound, their composition

might not be. For example, pattern R5 is not sound,

R5 ¼ P �Q0½A ¼ B�
because the following is not satisfiable.

SpecðR5Þ ¼ 9A;C : Class � ððA��" CÞ^
:A:isAbstract ^A:isAbstractÞ;

From Examples 2 to 4, we can see that not all pattern com-
positions preserve semantics nor even soundness. The next
section analyseswhich operators preserves these properties.

Knowledge of this will make validity much easier to
determinewithout recourse again to logic as required above.

5 ANALYSIS OF PATTERN OPERATORS

Now we analyse the preservation properties of the opera-
tors, proving a set of general theorems. The lengthier proofs
are given in online Appendix 2, available in the online sup-
plemental material.

5.1 Feature Preservation Properties

Theorem 1 (Feature Preservation of Pattern Operators). The
restriction, extension, flattening, generalisation, superposition
and lifting operators all preserve features.

Note that, for all patterns P and Q, if SpecðP Þ ) SpecðQÞ,
we have that P ^ Q. Therefore, the feature preservation
theorem means that applying any of the six pattern opera-
tors will not increase the set of instances of the pattern. This
is because each of these operators either introduces addi-
tional constraints on the instances, or modifies the structure
of the pattern without changing its semantics.

As shown in the case studies and examples given in [43],
pattern compositions are expressions formed from patterns
and the six operators. Using Theorem 1, by induction on the
structure of expressions, we can prove all such pattern
expressions are feature preserving. Thus, we have the fol-
lowing theorem.

Theorem 2 (Feature Preservation of Expressions). For any
expression E made up by applying the six operators to patterns
Pi, for each i we have that SpecðEÞ ) SpecðPiÞ. This means
that E preserves the features of Pi.

Informally, Theorem 2 guarantees that any expression
made up from the operators preserves features. We regard
this as essential for the correctness of using patterns.

5.2 Semantics Preservation Properties

Theorem 3 (Semantics Preservation Properties). Superposi-
tion, lifting and generation operators preserve semantics. That
is, for all patterns P and Q, all sets X � VarsðP Þ, we have
that for all modelsm,

ðm � P �QÞ , ððm � P Þ ^ ðm � QÞÞ; (8)

ðm � ðP " XÞÞ , ðm � P Þ; (9)

ðm � ðP * XÞÞ , ðm � P Þ: (10)

An immediate corollary is the following.

Corollary 1. For all patterns P and Q, we have that
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1) ½½P �Q�� ¼ ½½P �� \ ½½Q��;
2) ½½P * x�� ¼ ½½P ��, for all x 2 VarsðP Þ;
3) ½½P " x�� ¼ ½½P ��, for all x 2 VarsðP Þ.

These operators change the structure of the pattern
without affecting conformance. They are usually applied, as
seen in [43], in preparation for restriction and extension,
which do affect conformance since they add constraints.

Theorem 4. (Semantics of Restriction, Extension and Flattening)
Let P be any given pattern, V a set of variables disjoint to
VarsðP Þ, and c a given predicate. We have that

½½P ½c��� ¼ fmjm 2 ½½P �� ^m � cg; (11)

½½P#ðV � cÞ�� ¼ fmjm 2 ½½P �� ^m � 9V � cg; (12)

½½P + x�� ¼ fmjm 2 ½½P �� ^m � ðjjxjj ¼ 1Þ:g (13)

Note that Theorem 4 implies that ½½P ½c��� � ½½P ��, ½½P#
ðV � cÞ�� � ½½P ��, and ½½P + x�� � ½½P ��. Using Theorem 3 as well,
and induction on the structure of pattern expressions, we
obtain:

Corollary 2. For any expression E made up by applying the six
operators to patternsPi, for each i, we have that ½½E�� � ½½Pi��.

5.3 Soundness Preservation Properties

While each of the six operators preserve features, some do
not preserve soundness. For example, restriction does not
because P ½false� cannot be sound even if P is sound. How-
ever, Lemma 3 tells us that semantics preserving operators
also are soundness preserving so we conclude:

Corollary 3. The superposition, lifting and generalisation opera-
tors preserve soundness.

Restriction, extension and flattening do not, however, as
the following counterexamples show.

Example 5 (Counterexamples of Soundness Preservation).
(1) Restriction. Suppose ½½P �� 6¼ ;. But ½½P ½false��� ¼ ;

because P ½false� � FALSE.
(2) Extension. Suppose ½½P �� 6¼ ; again. But ½½P# ðV �

falseÞ�� ¼ ; because P#ðV � falseÞ � FALSE.
(3) Flattening. Suppose P ¼ hfv : PðClassÞg; jjvjj � 2i.

Then designs exist that satisfy P so ½½P �� 6¼ ;. However,
from the definition of the flatten operator, P + v ¼
hfv0 : Classg; ðjjfv0gjj � 2Þi. But jjfv0gjj � 2 is not satisfi-
able so ½½P + v�� ¼ ;.
From Theorem 4, we obtain the following conditions for

these operators to lose soundness.

Corollary 4 (Conditions of losing soundness).
Let P be any given pattern. We have that

1) P ½c� is not sound, if PredðP Þ ) :c.
2) P#ðV � cÞ is not sound if PredðP Þ ) :9V � c.
3) P + x is not sound if PredðP Þ ) ðjjxjj 6¼ 1Þ.

Informally, semantics is lost if a conflicting condition
is introduced. These conditions are necessary as well as
sufficient if the logic system is complete in the sense that
c 6¼ false implies that there is a model m such that m � c, so
these conditions are the strongest that one can get.

5.4 An Example

We now conclude the section by applying these theorems to
our original motivating example of Fig. 1.

� Feature Preservation.
The compositions (c), (d) and (f) in Fig. 1 can be formally

expressed using the operators as follows.

ðcÞ ¼ Composite �Adapter½Leaves ¼ Target�
ðdÞ ¼ Composite �Adapter½Composite ¼ Target�
ðfÞ ¼ Composite �Adapter½Leaves ¼ Target

^ Component ¼ Adapter�

So by Theorem 2, all the features of Composite and Adapter
are present in these compositions. This is not true of (e),
however, because the structural feature Composite 	 �!
Component is missing. So, (e) is not valid, and thus, cannot
even be written as an expression.

� Semantics Preservation.
By Theorem 4, we have the semantics of (c)

½½ðcÞ�� ¼ fmjm 2 ½½Composite �Adapter�� ^m

� ðLeaves ¼ TargetÞg � ½½Composite �Adapter��
¼ ½½Composite�� \ ½½Adapter��

As ½½Composite�� 6¼ ½½Adapter��, we have ½½ðcÞ�� 
 ½½Adapter�� and
½½ðcÞ�� 
 ½½Composite��. So (c) does not preserve semantics but
instead restricts the semantics with a further condition.
Compositions (d) and (f) are similar.

Informally, this means that the composition does not
completely preserve the semantics of the composted pat-
terns, but restricts the semantics with an additional condi-
tion. This is what one would expect.

In the same way, we can also prove a similar property for
compositions (d) and (f).

� Soundness Preservation.
By Corollary 4we have that composition (c) is not sound, if

PredðComposite �AdapterÞ ) :ðLeaves ¼ TargetÞ:
However, this is not provable. Since the logic system is com-
plete, and Composite and Adapter are sound, we have that
composition (c) is sound. Compositions (d) and (e) are also
sound for similar reasons, but (f) is not. By Theorem 4, the
semantics of (f) is

fmjm 2 ½½Composite �Adapter��
^m � Leaves ¼ Target ^ Component ¼ Adapterg:

Assume that a software system m satisfies the specifications
of Composite and Adapter patterns as well as the conditions
Leaves ¼ Target and Component ¼ Adapter. Because

PredðCompositeÞ ) Leaves��" Component;

PredðAdapterÞ ) Adapter��" Target;

we have that Leaves��"Adapter and Adapter��" Leaves.
This contradicts the axioms about inheritance relation
between classes, i.e., Equ. (3). So we have
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PredðComposite �AdapterÞ )
:ðLeaves ¼ Target ^ Component ¼ AdapterÞ:

In summary, compositions (c) and (d) are valid. How-
ever, (e) and (f) are not, because (e) is not feature-preserving
though it is implementable, and (f) is not sound and thus
not implementable.

Note that proving the conditions of lost soundness can be
performed by employing a theorem prover such as SPASS.2

The details of using SPASS in the proof of the example
above is given in online Appendix 3, available in the online
supplemental material.

In conclusion, the validity of a pattern composition can be
determined as follows. First, represent it using the six pattern
operators. If this can be done then the composition is feature-
preserving. Then, determine whether semantics and sound-
ness are preserved. This is best done by applying the
theorems we proved in this section rather than using the for-
mal definitions directly. This is demonstrated in the next sec-
tion in the analysis of overlap-based pattern compositions.

6 ANALYSIS OF OVERLAP-BASED COMPOSITIONS

In our previous work [45], pattern compositions are for-
mally defined in terms of overlaps between components in
the patterns composed. Three types of overlaps were identi-
fied. In this section, we re-express them using the pattern
operators. By doing so, we can deduce their validity proper-
ties from the theorems proved above.

6.1 Expression of Overlaps in Pattern Operators

To define the notion of overlap, suppose that patterns P and
Q are composed together in the form P �Q. Then, if a
model m conforms to this composition then m also con-
forms both to P and to Q, provided that the composition is
sound. By the definition of conformance, we must have
assignments a1 and a2 such that ½½PredðP Þ��ma1 ¼ true and

½½PredðQÞ��ma2 ¼ true. There is an overlap between two assign-

ments if there is an element of the model m assigned to two
variables, one in VarsðP Þ and the other in VarsðQÞ. There
are three types of overlaps, distinguished by whether the
variables are elements (one-to-one), sets of elements (many-
to-many) or one of each (many-to-one or one-to-many). The
following defines composition with various types of over-
laps using the pattern operators.

Definition 12 (Composition with One-to-One Overlap). Let
P and Q be design patterns. Let v 2 VarsðP Þ and u 2
VarsðQÞ be variables of the same type T , i.e., v; u : T . Then,
the composition of P and Q with one-to-one overlap
v��u, written P hv��uiQ, is defined as follows:

P hv��uiQ , ðP �QÞ½v ¼ u�:

Definition 13 (Composition with Many-to-Many Overlap).
Let P and Q be design patterns. Let vs 2 VarsðP Þ and
us 2 VarsðQÞ be variables assigned to sets of model elements of
the same type PðT Þ, i.e., vs; us : PðT Þ. Then, the composition
of P and Q with many-to-many overlap vs >�< us,

written P hvs >�< usiQ, is defined as follows:

P hvs >�< usiQ , ðP �QÞ½vs \ us 6¼ ;�:

For example, in Definition 12, T could be the type Class,
and then v and u would be classes. In Definition 13, vs and
uswould be sets of classes.

Alternative formulations of many-to-many overlaps
are possible, by instantiating the general form below for R
bound to �, 
 and ¼.

P hvs >�<R usiQ , ðP �QÞ½vs R us�:
Theorem 5 (Ordering among Many-to-Many Composi-

tions). For all patterns P and Q, we have that

ðP hvs >�< 
 usiQÞ ^ ðP hvs >�< � usiQÞ (14)

ðP hvs >�< ¼ usiQÞ ^ ðP hvs >�< � usiQÞ (15)

ðP hvs >�< � usiQÞ ^ ðP hvs >�< usiQÞ (16)

Proof. The ordering relations follow the algebraic laws of
the pattern operators (See [32] for details) and the fact
that ðvs 
 usÞ ) ðvs � usÞ, ðvs ¼ usÞ ) ðvs � usÞ and
ðvs � usÞ ) ðvs \ us 6¼ ;Þ. tu

The third sort of composition is defined as follows.

Definition 14 (Composition with One-to-Many Overlap).
Let P and Q be design patterns. Let v 2 VarsðP Þ be a variable
assigned to a model element and let us 2 VarsðQÞ be a variable
assigned to sets of model elements of the type of v; i.e., v : T
and us : PðT Þ. Then, the composition of P and Q with
one-to-many overlap v��< us, written P hv��< usiQ, is
defined as follows:

P hv��< usiQ , ðP �QÞ½v 2 us�

Naturally, a composition with many-to-one overlap can
also be defined by symmetry. The version in [45] however is
slightly more complex in that P is first lifted to duplicate its
class components. It is defined as follows.

Definition 15 (Composition with Lifted One-to-Many
Overlap). Let P and Q be design patterns. Let v 2 VarsðP Þ
be a variable assigned to a model element and let us 2
VarsðQÞ be a variable assigned to sets of model elements of the
type of v; i.e., v : T and us : PðT Þ. Then, the lifted composi-
tion of P and Q with one-to-many overlap v��< us is
defined as follows:

P hv" ��< � usiQ , ðP " ðvnvsÞ �QÞ½vs � us�
Many alternatives to this are possible. Lifting could be

replaced by generalisation, for example, duplicating only
the generalised component. Also, the constraints vs � us
could be specialised to vs ¼ us, vs 
 us, etc.

P hv" ��< 
 usiQ , ðP " ðvnvsÞ �QÞ½vs 
 us�
P hv" ��< ¼ usiQ , ðP " ðvnvsÞ �QÞ½vs ¼ us�
P hv* ��< � usiQ , ðP * ðvnvsÞ �QÞ½vs � us�
P hv* ��< 
 usiQ , ðP * ðvnvsÞ �QÞ½vs 
 us�
P hv* ��< ¼ usiQ , ðP * ðvnvsÞ �QÞ½vs ¼ us�

2. http://www.spass-prover.org
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By applying the algebraic laws we can easily prove that
these compositions have the following relationships.

Theorem 6. For all patterns P and Q, we have that

P hv" ��<R usiQ ^ P hv* ��<R usiQ;

P hv" ��< � usiQ ^ P hv��< usiQ:

where R is one of the relations �, 
 and ¼.

Note that, by definition of many-to-many overlaps
and one-to-many overlaps, the ordering relations given in
Theorem 5 also hold among P hv" ��<R usiQ for R to be �,

 and ¼, and among P hv* ��<R usiQ.

The above ^ relationships between these composition
operators are summarised in Fig. 3, where nodes represent
various composition operators and an arrow from node A
to node B means A ^ B. On the right-hand side of Fig. 3
are the ordering relations given in Theorem 5. On the left-
hand side are the ^ relationships between the one-to-
many overlap composition operators.

6.2 Validity of Overlap-Based Compositions

By the theorems of feature preservation, semantics pres-
ervation and soundness preservation of the operators
used to define the composition with overlaps, we know
at once that the validity of overlap-based composition
follows from their definitions.

Theorem 7 (Validity of Overlap Compositions).
(I)One-to-One Overlaps. For a one-to-one overlap compo-

sition P hv��uiQ, we have that

1) it preserves features;
2) its semantics ½½P hv��uiQ�� is:

fm jm 2 ½½P �� \ ½½Q�� ^m � ðv ¼ uÞg;

3) it loses soundness, ifPredðP Þ ^ PredðQÞ ) : ðv ¼ uÞ.
(II) Many-to-Many Overlaps. For a many-to-many over-

lap composition P hvs >�<R usiQ, we have that

1) it always preserves features;
2) its semantics is:

fm jm 2 ½½P �� \ ½½Q�� ^m � ðvs R usÞg;

3) it loses soundness, if

PredðP Þ ^ PredðQÞ ) :ðvs R usÞ;

where ðvsRusÞ is ðvs � usÞ, ðvs 
 usÞ, ðvs ¼ usÞ, or
ðvs \ us 6¼ ;Þ.

(III) One-to-Many overlaps. For a one-to-many overlap
composition P hv{ ��<R usiQ, where { is either " or * and R
is the same as in (II), we have that

1) it always preserves features;
2) its semantics is

fm jm 2 ½½P �� \ ½½Q�� ^m � ðvs R usÞg;

3) it loses soundness, if

ðPredðP{v=vsÞ ^ PredðQÞ ) :ðvs R usÞÞ:
Proof. Here, we only give the proof of (I). The proofs for (II)

and (III) are very similar.
For 1), as shown in the previous section, a one-to-one

overlap composition P hv��uiQ can be expressed with
the pattern operators as follows:

P hv��uiQ ¼ ðP �QÞ½v ¼ u� ðDef:12Þ
Therefore, by Theorem 2, such a one-to-one overlap com-
position preserves features.

For 2), we have that

½½P hv��uiQ��
¼ ½½ðP �QÞ½v ¼ u���ðDef:12Þ
¼ fmjm 2 ½½P �Q�� ^m ‘ v ¼ ug ðThm:4Þ
¼ fmjm 2 ½½P �� \ ½½Q�� ^m ‘ v ¼ ug ðThm:3Þ

For 3), by Corollary 4 and Definition 12, a one-to-one
overlap composition P hv��uiQ loses its soundness, if
PredðP �QÞ ) :ðv ¼ uÞ. By Definition 5, we have that
PredðP �QÞ ¼ PredðP Þ ^ PredðQÞ. Thus, statement 3) is
true. tu

7 A CASE STUDY

In this section we report a case study in which a pattern-
oriented design approach is used to develop a general
request handling framework RHF [42].

Pattern-oriented design is a process of repeatedly rec-
ognising a design problem, identifying a design pattern
to solve it and then applying the pattern by instantiating
it and composing it to the design. Table 1 summarises
the five design decisions that result in the design depicted
in Fig. 4.3 In [32], it is demonstrated that these design
decisions can be formally expressed using pattern opera-
tors. When the formal design is compared manually
with the original design depicted in Fig. 5, mismatches
between them were detected.

Now, as a further contribution, we demonstrate that the
theory developed in this paper will not only enable us to
identify the differences between the original design and the
formal design as detected in our previous case study [32],
but will also enable us to formally prove that the differences
are indeed errors in the manual design and that the formal
design is valid. Moreover, the validity proofs can be auto-
mated by employing a theorem prover.

Fig. 3. Relationships between compositions with overlaps.

3. Note that, there are two different versions of Command Processor
pattern in the literature by the same group of authors [9], [54]. The one
used in [42] is the one given in [9].
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7.1 Feature Preservation

Aspointed out in [32], there is amistake in the original design.
That mistake is that, in the definition of the Memento pattern,

the originator creates a state and passes it to the caretaker com-
ponent, which then holds the state and passes it back to the
originatorwhen needed [2].However, in the design presented

TABLE 1
Design Decisions Made in the Design of Request Handling Framework

Design problem Solution

The requests to the system are issued by the clients, who
may be human users or other computer systems. Such
requests must be objectified.

Apply the Command pattern that consists of an abstract class
Commandwhich declares a set of abstract methods to execute
client requests. A set of ConcreteCommand subclasses implement
these methods.

Multiple clients issue requests independently. A central
component should coordinate the handling of these
requests.

Use the CommandProcessor pattern to provide such coordination.
The clients pass concrete commands to a CommandProcessor
component for further handling and execution. It is inserted in
between client and the Command class.

The system need to support undoing the actions performed
in response to requests.

UseMemento pattern. TheMemento component maintains copies
of the states of the Originator, which is the Application class. The
Caretaker component creates a memento, holds it over time, and if
needed, passes it back to the Originator.

Requests from client must be logged. Requests from
different users may be logged differently.

Apply Strategy pattern. The CommandProcessor passes the
requests it received to a logging context, i.e. the context role in
Strategy, which implements the invariant parts of the logging
service and delegates the customer-specific logging aspects to the
ConcreteStrategy component in Strategy.

The system should support compound commands, which
are aggregates of other commands executed in a particular
order.

Use the Composite pattern with atomic commands as the Leaves
and compound commands as the Composite. Thus, add a new
class CompoundCommand and an whole-part relation from this
new class to the Command class.

Fig. 4. Design of request handling framework as derived from the formal definition of RHF.

Fig. 5. Original design of request handling framework as in [42].
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in [42], the caretaker creates the states. Therefore, this feature
in theMemento pattern is not preserved in the design.

7.2 Semantics Preservation

Another problem with the original design is that it has a
structural feature that Client�!Command. By Theorem 3,
we have that

m 2 ½½RHFO�� ) m � ðClient�!CommandÞ:
where RHFO denotes the original design presented in [42].
Informally, this means the design allows the client to send
requests directly to the command, bypassing command pro-
cessor, and therefore not logging. We believe this is not
what the designer intended to do, so it is a semantics error
and is removed from the revised version of the design.

Fixing the above two problems led to the revised design
depicted in Fig. 4.

On the other hand, the design decisions given in Table 1
can be formally expressed using pattern operators as fol-
lows, where RHF is the final result.

RHF1 , Command½Invoker ¼ Client;

ReceivernApplication�
RHF2 , RHF1 � CommandProcessor

½Command ¼ Component

^ Client ¼ CommandProcessor�
RHF3 , RHF2 �Memento

½Originator ¼ Application;

Command�!Caretaker�
RHF4 , RHF3 � Strategy

½ContextnLoggingContext; StrategynLogging;
ConcreteStrategiesnConcreteLoggingStrategies�
½CommandProcessor�!LoggingContext�

RHF5 , RHF4 � Composite

½Leaves ¼ ConcreteCommands

^ Component ¼ Command�
½CompositenCompositeCommand�

RHF , RHF5½Caretaker ¼ Command�
½CommandProcessor ¼ LoggingContext�

By applying algebraic laws, we can rewrite this to the fol-
lowing, which exactly matches the diagram in Fig 4.

RHF � TRUE

#ðfClient; Application; CommandProcessor; Logging;

Command;CompositeCommand;Memento : Class;

ConcreteLoggingStrategies;

ConcreteCommands : PðClassÞg
� ððClient�!CommandProcessorÞ
^ 8CC 2 ConcreteCommands � ðCC�!Application

^ CC ��" Command ^ : isAbstractðCCÞÞ
^ ðCommandProcessor�!CommandÞ
^ ðCommand 	�! MementoÞ
^ ðApplication�!mementoÞ
^ ðCommandProcessor 	�! LoggingÞ
^ 8CL 2 ConcreteLoggingStrategies � ðCL��" LoggingÞ
^ isInterfaceðCommandÞ
^ isInterfaceðLoggingÞ
^ ðCompositeCommand��"�CommandÞ
^ ðCompositeCommand 	�! þCommandÞÞÞ

Therefore, by Theorem 2, we can conclude that the
revised design is feature preserving.

7.3 Soundness Preservation

By applying the algebraic laws of pattern operators [32], we
can also prove that

RHF � ðCommand � CommandProcessor �Memento�
Strategy � CompositeÞ½Connection�

where Connection is the conjunction of the following
predicates.

Command ¼ Caretaker;

Command ¼ Component;

Originator ¼ Application;

Command:Client ¼ CommandProcessor;

Originator ¼ Application;

Leaves ¼ ConcreteCommands;

Component ¼ Command;

CommandProcessor ¼ Context;

Caretaker ¼ Command

By Corollary 4, the revised design loses its soundness if
the following is true.

PredðCommand � CommandProcessor �Memento�
Strategy � CompositeÞ ) :Connection:

Using the theorem prover SPASS, we can show this is not
true; see online Appendix 3, available in the online supple-
mental material, for details. So, soundness isn’t lost.

In conclusion, we have demonstrated again how to ana-
lyse the validity of a pattern composition. In our previous
case study [32], we found two differences between the origi-
nal manual design and our formal design. In this paper, we
can confirm that the differences are errors in the manual
design; one is feature preservation error and the other is a
semantics error.We have also proved that our revised design
is valid in terms of its preservation of feature and soundness.

8 CONCLUSION

Although each pattern is specified separately, they are usu-
ally to be found composedwith each other [55]. Thus, pattern
composition plays a crucial role in the effective use of design
knowledge, whereas wrongly used patterns may impose a
negative impact on software quality. In this paper, we for-
malised the notion of the validity of pattern compositions
and instantiations by defining feature preservation, seman-
tics preservation and soundness preservation. We studied
these properties for the operators proposed in [32], [43]. The
theory is applied to the theoretical analysis of pattern compo-
sitions represented as overlaps between patterns and a case
study of a real pattern-oriented design, thereby demonstrat-
ing their utility in formally proving the validity of designs.
Where there is an error, we can distinguish feature preserva-
tion problems from semantic errors and soundness lost.
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8.1 Comparison with Related Works

Existing related work can be classified into two categories:
(a) the representation of pattern composition and instantia-
tion, and (b) the validation of pattern applications when
they are composed and instantiated.

8.1.1 Representation of Pattern Compositions and

Instantiations

Compositions can be represented either visually or formally.

� Visual representation
This is usually informal [42], [56]. Visual notations such

as the Venn diagram with Pattern:Role annotation proposed
by Vlissides [57] have been widely used in practice to show
the component parts of the composition. Dong et al. [58]
developed both static and dynamic techniques for visualiz-
ing the applications of design patterns. They defined UML
profiles and implemented a tool, deployed as a web service,
that represents the application of patterns in UML dia-
grams. This is done by UML profiles to attach information
to designs through stereotypes, tagged values, and con-
straints. Such information is delivered dynamically with the
movement of the user’s mouse cursor on the screen. Their
experiments show that this dynamic delivery helps to
reduce the apparent complexity of the design. More
recently, Smith [59] proposed the PIN notation (Pattern
Instance Notation) to represent the same information in a
hierarchical manner.

� Formal representation of pattern compositions
Very few authors have studied pattern compositions for-

mally despite the large number of works on formalisation of
design patterns. Dong et al. and Taibi do so in [60] and [61],
respectively.

In Dong et al.’s approach, a composition of two patterns
is a pair of mappings each of which link components from a
pattern to the result pattern. Formally, for a composition P
of P1; . . . ; Pn, Dong et al. define a composition mapping C :
VarsðP1Þ � � � � � VarsðPnÞ ! VarsðP Þ that associates names
of component pattern Pi to those of P , which is mathemati-
cally equivalent to a set of name mappings Ci : VarsðPiÞ !
VarsðP Þ, i ¼ 1; . . . ; n.

Dong et al. demonstrated how the structural and behav-
ioural properties of the composite pattern can be derived
from the original patterns and applied this to the study of
security design patterns [62]. Let each Pi have a set ui of
properties and the composition have the set u of properties.
The derivation of the properties of a composed pattern is
actually a mapping M that extends C. It translates the sen-
tences in each ui to u, preserving the types of variables.

In [63], Dong et al. define instantiation again as amapping,
but from components in the pattern (e.g. classes, attributes,
methods) to corresponding instances in the actual system.

Taibi [61], [64] took a very similar approach to Dong
et al., but instead of defining mappings between the compo-
nents of composed patterns, he directly renames the com-
ponents and combines the predicates from the pattern
specification. The variables in the predicates of the patterns
to be composed are substituted with new variables of the
result pattern or with constants to represent instantiation.
Formally, for patterns P1 and P2 with properties ’1 and ’2

their composition is given by

Substfv1nt1; . . . ; vnntngð’1 ^ ’2Þ

where the terms ti are either variables or constants.
Mathematically speaking, these substitutions are equiva-

lent to the name mappings of Dong et al. Both must pre-
serve types of variables for the resulting formulae to be
well-typed and for that reason both approaches can only
express one-to-one and many-to-many overlaps, but not
one-to-many overlaps.

Both of these approaches effectively specify how compo-
nents from the composed patterns overlap in the composite
pattern. In our previous work [45], a pattern composition
operator was formally defined based on the notion of over-
laps between the elements of composed patterns. There are
three types of overlap: one-to-one, many-to-many and one-
to-many. Dong and Taibi’s approaches can handle the first
two but cannot easily be extended to one-to-many overlaps
because the latter requires linking component names of dif-
ferent types and therefore cannot be defined as mappings
between component names (Dong’s approach), nor as
renaming of component identifiers (Taibi’s approach).

In [32], [43], [51], we developed a formal calculus of
design patterns, consisting of:

� A set of operators on design patterns in which pattern
compositions and instantiations can be expressed.

� A set of algebraic laws that these operators obey so that
two different compositions can be proven equal.

� A normalisation process that transforms pattern
expressions into a normal form. The process always
terminates with a unique normal form up to logic
equivalence.

As shown in [43], these operators are expressive enough
to capture all pattern compositions suggested by Gamma
et al. [2], and the normalisation process with algebraic laws
can be used in a pattern oriented design processes, as dem-
onstrated in [32] with a case study based on a real software
design example. In this paper, we further proved the
expressiveness of the set of six operators by using them to
express the overlap-based operator.

8.1.2 Validation of Pattern Compositions and

Instantiations

The impact on software quality, both positive and negative,
of using design patterns has been studied empirically, for
example, by Huston [65], Prechelt et al. [66], Khomh and
Gu�eh�eneuc [27] and Mouratidou et al. [31], etc.

Wendorff [30] observed that there are two different ways
in which patterns can be misused.

1) the pattern’s intent might not fit the project’s require-
ments. Research efforts to address this include
Hsueh et al.’s quantitative approach [67], which uses
quality metrics to measure the improvement effec-
tiveness, and Ampatzoglou et al.’s methodology [68]
of impact assessment.

2) the pattern may be misapplied by software develop-
ers who misunderstand the rationale. This is the sub-
ject of this paper and few have addressed it.
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Dong et al. [60] were perhaps the first who studied the
‘correctness’ of compositions of design patterns. Given their
definition of a pattern composition as a set C ¼ <C1; . . . ;
Cn > of mappings from patterns P1; . . . ; Pn to be composed
to the result pattern P , they proposed the following faithful-
ness conditions to ensure that pattern composition makes
sense.

1) the mappings must agree on shared objects and
parts,

2) it must not be possible to infer new facts about the
patterns being composed from the result of their
composition, and

3) all the properties of the composed patterns must also
be true in the resultant composite pattern.

Their faithfulness conditions were formally defined as
follows. Let ui be the properties of pattern Pi that are being
composed, u be the set of properties of the pattern P of the
result of composition, andM be the mapping for translating
properties of Pi to properties of P . Then,

1) for all variables x1 and x2, Cðx1Þ ¼ Cðx2Þ implies that
Typeðx1Þ ¼ Typeðx2Þ ¼ TypeðCðx1ÞÞ;

2) for every sentence S, if S 2 ui thenMðSÞ 2 u;
3) if S 62 ui thenMðSÞ 62 u.
In [60], Dong et al. also showed how to verify these con-

ditions with an example where Composite is composed
with Iterator. However, there was no theory or method for
proving their faithfulness conditions in general.

Condition (1) above ensures that the results of the
translation of formulas are well formed. However, it lim-
its the pattern compositions to be only valid for one-to-
one overlaps. Condition (2), that composition should not
lose properties, is similar to our feature preservation
condition, but weaker because the compositions are lim-
ited to one-to-one overlaps. Condition (3), means that
composition should not gain properties, but it is very
difficult if not impossible to prove. Moreover, it is not
necessary, as argued by Taibi and Ngo [64]: “while the
second condition of faithfulness is relevant to component, it is
not always necessary in the case of patterns”. In fact, a com-
position of patterns may well introduce additional prop-
erties as shown in our case studies.

Taibi and Ngo [64] also observed the faithfulness condi-
tions (1) and (2) of Dong but only informally explained why
his example satisfied condition (2). There is a lack of formal
methods either for proving or for disproving faithfulness.

Our feature preservation property ensures that no fea-
tures are lost from the original pattern, whereas our seman-
tic preservation property ensures that no features are
added. This latter property may be too strong, as extra fea-
tures are often wanted, so soundness preservation is used
instead as a minimal requirement that the added features
do not cause a conflict. Dong and Taibi do not have such a
condition. But what distinguishes our approach even more
is that they have no systematic methods to prove their faith-
fulness conditions, whereas we have the general theorems
about when soundness is preserved and how semantics are
changed when patterns are composed. In addition, we can
apply algebraic laws for the operators and automated theo-
rem provers to prove feature preservation and soundness
as demonstrated in the case study.

Interactions and conflicts between patterns were also dis-
cussed by Bottoni et al. for a different approach to pattern
formalization [69]. Their pattern formalization approach is
general for specifying patterns of all types of models, includ-
ing OO designs, workflow models, etc. Their approach is
graphical but formally based on category theory. They
express patterns as triples of graphs (source, target and cor-
respondence). These represent, respectively, the structure or
configuration of the pattern, the roles of the pattern, giving
the vocabulary of the application domain, and the mapping
from this structure to these roles. Pattern satisfaction, com-
position and expansionwere all defined as graph operations.
Graphs also represent constraintswith constraint satisfaction
defined in terms of graph matching. Our power set types are
represented in their notation by variable parts, visualized as
triangles. They discuss pattern composition informally with
an example and identify three types of conflicts.

� Fatal conflicts, which result in unsatisfiable composi-
tions, i.e., loss of soundness.

� Conflicts affecting satisfaction, which change parts of
elements in the design that constitute an instance of
the pattern.

� Conflicts between invariants, which change the seman-
tics of the invariants.

Obviously, the second and third types of conflict cannot
be considered to be invalid pattern compositions. It is
unclear however how to validate a pattern composition, e.g.
to prove that it is satisfiable without a conflict.

8.2 Future Work

It would be useful to have tools to prove soundness for spe-
cific compositions and to support equational reasoning on
them. Our case study employed the automated theorem
prover SPASS and it indicates that it is feasible to design
and implement such a tool.

The composition of OO design patterns has also been
studied in the context of aspect-oriented programming
(AOP) [70], in which overlap based compositions can be
implemented by employing a crosscutting mechanism.
Cacho et al. demonstrated in an empirical study that under
certain conditions such blending of design patterns could
achieve a better modularity than by simply merging state-
ments, methods and/or classes in overlapped pattern com-
ponents using traditional OO programming languages. The
notions of feature preservation, semantics preservation and
soundness preservation for the validity of pattern composi-
tions proposed in this paper should be applicable to such
an implementation of pattern compositions. The pattern
operators express pattern composition and instantiation at a
high level of abstraction, and thus they are independent
of the way that pattern compositions are implemented.
Therefore, the theory presented in this paper should also be
applicable to the blending of design patterns. It is worth
conducting some empirical study to demonstrate how to
apply the theory to prove or disprove the validity of pattern
blending in practice.

An interesting research questions is: how expressive are
the pattern operators? In our previous work [43], we dem-
onstrated that the six pattern operators can express all
pattern compositions documented by Gamma et al. in [2]. In
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[32], we demonstrated that they can express the design deci-
sions made in a real pattern-oriented design process of the
general request handling framework. In this paper, we have
also demonstrated that all overlap-based compositions can
be expressed using the six operators. However, how to for-
mally define the notion that a set of operators is complete
and to prove or disprove that the set of six operators is com-
plete still remains open for future work.
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