

 1

A Formal Specification Language for Agent-Oriented
Software Engineering

Hong Zhu
Department of Computing, School of Technology, Oxford Brookes University

Wheatley Campus, Oxford OX33 1HX, UK. Tel.: ++44 1865 484580
Email: hzhu@brookes.ac.uk

ABSTRACT
This paper reports a formal specification language SLABS for
developing multi-agent systems. One of the most appealing
features of agent technology is its natural way to modularise
complex systems in terms of multiple interacting autonomous
components. This feature is supported by the language facility
castes in the formal specification language SLABS for modular
and composable specification of multi-agent systems.

Categories and Subject Descriptors
D.2.1 [Requirements / Specifications]: Languages - formal
specification language; Methodologies - agent-oriented method-
ology. I.2.11 [Distributed Artificial Intelligence] Intelligent
agents, Languages and structures, Multi-agent systems.

General Terms
Languages

Keywords
Formal specification language, Multiagent Systems, Scenario,
Software Agent, Caste

1. INTRODUCTION
In recent years, agent technology has been increasingly applied to
critical application areas. It has also clearly demonstrated that its
suitability for web-based applications [1]. However, developing
agent-based systems is extremely difficult because their dynamic
behaviours are difficult to specify, analyse, verify and validate.
The new features of agent-based systems demand new methods
for the specification of agent behaviours and for the verification
and validation of their properties. It has been recognised that the
lack of rigour is one of the major factors hampering the wide-scale
adoption of agent technology [2]. On the other hand, the
modularity inherent in multi-agent systems can offer a new
approach to decomposing complicated formal specifications into
composable modular components.

Despite the large number of publications on agents in the
literature, we are lack of researches on language facilities that

support the development of large-scale complicated multi-agent
systems. In this paper, we report the language SLABS, which is a
formal specification language for agent-based systems.

2. THE LANGUAGE SLABS

2.1 Agents and Castes
The specification of a multi-agent system (MAS) in SLABS
consists of a set of specifications of agents and castes.
Caste is one of the novel concepts in SLABS, which is a natural
evolution of the concepts of classes in object-orientation. Castes
can play a significant role in the requirements analysis and
specification as well as design and implementation of MAS [3]. A
caste description contains a description of the structure of its
states and actions, a description of its behaviour, and a description
of its environment. It can be equivalently represented in a text
form or in a graphic form similar to schemas in Z [4].

 caste-description ::= Caste name [<= { caste-name / ,}] [instantiation ;]
 [environment-description ;]
 [structure-description ;] [behavior-description ;]
 end name

The clause 'Caste C <= C1, ..., Cn' specifies that caste C inherits
the structure, behaviour and environment descriptions of existing
castes C1,, ..., Cn. Thus, a binary inheritance relation ≺ is defined
on the castes. The inheritance relation is required to be a partial
ordering on castes.

The relationship between agents and castes is similar to what is
between objects and classes. The difference is that an agent can
join into a caste or quit from a caste at run-time. The following
gives the graphic form of agent descriptions.

Let tA C∈ denote that agent A belongs to caste C at time t. We
require that for all agents A and castes C and D, for all times t,

Visible state-variables and actions
Invisible state-variables and actions

Behaviour-specification

Name <= castes (instantiation)

Environment
description

Visible state-variables and actions

Invisible state-variables and actions

Behaviour-specification

Name: castes (Instantiation)

Environment
description

H. Zhu 8/16/2005

2

t tA C C D A D∈ ∧ ⇒ ∈≺ .

2.2 Environment
The SLABS language enables software engineers to explicitly
specify the environment of an agent as a subset of the agents in
the system that may affect its behaviour. This is another
fundamental difference between agents/castes and objects /classes.
The syntax for the description of environments is given below.
 Environment-description ::=
 ENVIRONMENT { (agent-name | All: caste-name
 | variable : caste-name) / , }+
where an agent name indicates a specific agent in the system. 'All'
means that all the agents of the caste have influence on its
behaviour. As a template of agents, a caste may have parameters.
The variables specified in the form of “identifier: class-name” in the
environment description are parameters. Such an identifier can be
used as an agent name in the behaviour description of the caste. It
indicates an agent in the caste when instantiated.

2.3 State and Action Spaces
In SLABS, the state space of an agent is described by a set of
variables with keyword VAR. The set of actions is described by a
set of identifiers with keyword ACTION. An action can have a
number of parameters. An asterisk before the identifier indicates
invisible variables and actions.
 structure-description ::=
 [Var { [*] identifier: type; }+]
 [Action { [*] action-declaration / ; }+]
 action-declaration ::= identifier | identifier ({ [parameter:] type / , }+)

2.4 Behaviour
The SLABS language uses transition rules to specify agent’s
behaviour. Each rule consists of a description of a scenario of the
environment, the action to be taken by the agent in the scenario
and a condition of the agent’s internal state and previous
behaviour. The syntax of behaviour rules is given below.
 Behaviour-rule ::=
 [< rule-name >:] pattern | [prob]−>event,
 [if Scenario] [where pre-cond] ;
In a behaviour rule, the pattern describes the agent's previous
behaviour. The scenario describes the situation in the environment.
The where-clause is the pre-condition of the action to be taken by
the agent. The event is the action to be taken in the scenario and if
the pre-condition is satisfied.

There are four basic forms of scenarios that can be logically
combined by & (and), ∨ (or) and ¬ (not) to form more
complicated description of the system’s state:
1. Unanimous behaviours :a C p∀ ∈ : all agents in caste C have

the same pattern p of behaviour;
2. Existential behaviours :a C p∃ ∈ : there is an agent in caste C

that demonstrated a pattern p of behaviour;
3. Selective (or Individual) behaviour A: p : a specific agent A

demonstrates a pattern p of behaviour;
4. Statistical behaviours :a C pµ ∈ : it is the number of agents in

caste C that demonstrated the pattern p of behaviour.
A pattern describes the behaviour of an agent by a sequence of
observable state changes and observable actions. A pattern is

written in the form of [p1, p2, ..., pn] where n≥0.

An example of behaviour rule is given below. It states that if all
agents of the caste CRegionUsers (Critical Region Users) give
permissions to access a region, the agent will enter the region by
change its state from “Waiting” to ‘In Region’.
 [!State=Waiting] |−> !State’=InRegion;
 if ∀A: CRegionUsers.[PermissionOK(Region,
 MyName, RequestTime), $^k]

3. EXAMPLE
A number of examples of formal specification of MAS in SLABS
have been given in our previous papers, which include the Mae’s
personal assistant Maxim, Ants, a simple communication protocol,
speech-act and the evolutionary MAS ecosystem Amalthaea, a
distributed synchronisation algorithm, etc. [5,6].

4. CONCLUSION
The SLABS language integrates a number of novel language
facilities that support the specification of agent-based systems.
Among these facilities, the notion of caste plays a crucial role. A
caste represents a set of agents in a MAS that have same
capability of performing certain tasks and have same behaviour
characteristics. Such common capability and behaviour can be the
capability of speaking a language, using an ontology, following a
communication and/or collaboration protocol, and so on. It is a
notion that generalises the notion of types in data type and the
notion of classes in object-oriented paradigm. This facility can be
effectively used to specify or implement a number of notions
proposed in agent-oriented methodologies, such as the notions of
role, team, agent society, organisation, and so on. For example, a
caste can be the set of agents playing the same role in the system.
However, agents of the same caste can also play different roles
especially when agents form teams dynamically and determine
their roles at run time. Based on the caste facility, a number of
other facilities in SLABS are defined. For example, the
environment of an agent can be described as the agents of certain
castes. A global scenario in a MAS can be described as the
patterns of the behaviours of the agents of a certain caste. The
example systems and features of agent-based systems specified in
SLABS have shown that these facilities are powerful and useful
for the formal specification of agents in various models and
theories in a modular and composable way.

REFERENCES
[1] Jennings, N. R., Wooldridge, M. J. (eds.). Agent Technology:

Foundations, Applications, And Markets. Springer, 1998.
[2] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R.,

Treur, J. DESIRE: Modelling Multi-Agent Systems in a
Compositional Formal Framework, in Int. J. of Cooperative
Information Systems 1(6) (1997), 67-94.

[3] Zhu, H. The role of caste in formal specification of MAS, in
Proc. of PRIMA’2001, LNCS 2132, Springer, 1-15.

[4] Spivey, J. M. The Z Notation: A Reference Manual (2nd
edition), Prentice Hall, 1992.

[5] Zhu, H. Formal Specification of Evolutionary Software
Agents, Proc. of ICFEM’2002 (Shanghai, China, Oct. 2002),
Springer LNCS 2495, pp249-261.

[6] Zhu, H. SLABS: A Formal Specification Language for Agent-
Based Systems, Int. J. of Software Engineering and
Knowledge Engineering 11(5) (Nov. 2001), 529-558.

