
Formal Specification of Web Services in SLABS Hong Zhu, et al. 6/20/2004

 - 1 -

Agent-Oriented Formal Specification of Web Services

Hong Zhu(1), Bin Zhou(2), Xinjun Mao(2), Lijun Shan(2), David Duce(1)

(1) Department of Computing, Oxford Brookes University, Oxford OX33 1HX, UK
(2) Dept. of Computer Science, National Univ. of Defense Tech., Changsha, 410073, China

Email: hzhu@brookes.ac.uk

Abstract. Web services (WS) provide a technology for integrating applications
over the Internet. The components of a WS are active and persistent computa-
tional entities that have autonomous and social behaviours. The paper investi-
gates the formal specification of WS architecture and applications within a
caste-centric framework of multi-agent systems. An abstract specification of the
general architecture of WS and an example of WS application are given in the
SLABS language, which was designed for developing agent-based systems.

1 Introduction

As a distributed computing technology, Web services (WS) offer a promising ap-
proach to integrate applications over the Internet [1]. It is characterised by the domi-
nance of program-to-program business-to-business interactions [2], hence widely
recognised to be fundamentally different from existing distributed computing tech-
niques.

The development of WS applications is bound to be complex and difficult for two
main reasons. First, WS technology enables dynamic software integration at applica-
tion level. Program-to-program interaction established at runtime implies that it may
be impossible to determine the scope of integration at design time. There is little the-
ory and practice of such integration in the software engineering literature. Second,
business-to-business interaction implies that the integration can be within an enter-
prise as well as between enterprises. Thus, the software components in a WS applica-
tion are usually developed by different vendors. The lack of communications between
component providers and component users has long been recognised as a main cause
of difficulties in component technology, but no satisfactory solution has been found.
In the context of WS, recently, it is realised that, in addition to the descriptions of the
syntactical aspects such as the formats of the messages, the description of semantic
aspects such as business logic are of vital importance for the success of WS technol-
ogy [3, 4]. Proposed solutions in the literature rely on ontologies for taxonomic de-
scriptions of the functionality of each service, and on workflow for the restrictions on
the orders that services are called [5, 6]. It is still unclear whether ontology and work-
flow descriptions are adequate to provide the required semantic information.

In this paper, we propose an approach that uses formal specifications to describe
the semantic aspects of WS based on our caste-centric framework of multi-agent sys-
tems (MAS) and illustrate the uses of an agent-oriented formal specification language
SLABS [7, 8] to bridge the gulf between service providers and requesters.

Formal Specification of Web Services in SLABS Hong Zhu, et al. 6/20/2004

 - 2 -

2 Web Services as MAS

Agency is a fundamental concept in agent-based computing though what agenthood
means exactly is a matter of controversy. People tend define the concept by certain
characteristic properties [9, 10]. Among many such properties, autonomy,
pro-activity, responsiveness and social ability have been widely considered as the
most important. These properties match the features of software systems that consti-
tute a WS application. The components of a WS application can be considered as
software agents. For example, each provider or requester is autonomous. It can say
‘go’ to initiate actions such as to request for services. It can also say ‘no’ so as to re-
fuse a service request. These components have certain social ability because of their
dynamic discovery and invocation of services. At this level of abstraction, it is appar-
ent that agent technology is suitable for the development of WS applications.

However, not all agent models are suitable for the development of WS. For exam-
ple, BDI models define agents as computational entities that have mental states that
consist of belief, desire and intension [11, 12]. In such models, agents’ behaviours are
controlled by such mental states. Game theory models define agents as computational
entities that aim to maximise their utility functions. WS has been considered as an
attractive technology for wrapping existing applications and IT assets so that new
solutions can be deployed quickly and recomposed to address new opportunities [2].
Few of existing IT assets can be considered as agents in these models.

Therefore, this paper take a
software engineering approach to
the analysis, modelling and design
of MAS [13]. We define agents as
active and persistent computational
entities that encapsulate data, op-
erations and behaviours and situate
in their designated environments.
Here, data represents an agent's
state. Operations are the actions that
an agent can take. Behaviours are rules that govern the agent’s state changes and ac-
tions. By encapsulation, we mean that an agent's state can only be changed by the
agent itself. In our model, agents’ structure consists of a name, an environment de-
scription, a list of state space and action declarations, and a body in the form of Fig. 1
that determines its behaviour.

The central concept of our approach is caste, which is the classifier of agents. It is
a new concept introduced by SLABS. In our model, the agents in a MAS are grouped
into castes. The agents in the same caste have a set of common structural and behav-
ioural characteristics. An example of behaviour characteristics is that an agent follows
a specific communication protocol to communicate with other agents. The relation-
ship between agents and castes is similar to that between objects and classes. The dif-
ference is that an agent can join a caste and retreat from a caste dynamically at
run-time. Inheritance relationships can also be defined between castes. A sub-caste
inherits the structure and behaviour features from its super-castes. However, a
sub-caste cannot override the structure and behaviour rules of a super-caste, although
it can have some additional state variables, actions and behaviour rules. The parame-

Begin
 Initialise state;
 Loop
 Perceive the visible actions and states of the agents in

its environment;
 Take actions and change state according to the situa-

tion in the environment and its internal state;
 end of loop;

end
Fig. 1. The control structure of agent’s body

Formal Specification of Web Services in SLABS Hong Zhu, et al. 6/20/2004

 - 3 -

ters of the super-castes may also be instantiated in a sub-caste. The caste facility pro-
vides a powerful vehicle to describe the normality of a society of agents. Multiple
inheritances are allowed to enable an agent to belong to more than one society and
play more than one role in the system at the same time. Castes plays a central role in
our methodology of agent-oriented software development [13, 14]. It distinguishes
our approach from the others. In the SLABS language, castes are specified in the form
shown in Fig. 2.

The components of a WS application can be
modelled as agents defined above. They are di-
vided into castes of service providers and ser-
vice requesters. Different types of service re-
questers can also be further grouped into
sub-castes so that components representing dif-
ferent types of service requesters are divided
into the different sub-castes and have different structural and behavioural features. An
agent can join a sub-caste to become a valid requester and retreats from the caste after
the service is finished or when it is unsatisfied with the service. When it is a member
of the caste, it must obey the behaviour rules in order to obtain the required services.
But, it has no obligations to follow the rules after it retreats from the caste.

Agents are situated in their designated environments. By designated environment,
we mean that the environment of an agent contains a specified subset of the entities in
the system. This subset may vary at run-time within a specified range. In SLABS, a
environment description specifies a collection of castes and a set of particular agents.
A designated environment differs from a completely open environment, where every
element in the system can always affect the behaviour of an agent. It also differs from
a fixed environment, where an agent can only be affected by a fix set of entities in the
environment. In both fixed and open environments, the agent cannot change its envi-
ronment. It is worth noting that both fixed and open environments are special cases of
the designated environments.

3 Specification of WS Architecture

The architecture of WS covers three main aspects of distributed computing: (a) a
framework of the organisation of the software systems for access through a network;
(b) the mechanism and facility for the publication and registration of the services so
that the services can be dynamically discovered; (c) a set of standards that enables
components to exchange data with each other. In particular, the provided services are
described in WSDL using a standard formal XML notation that provides all of the
details necessary to interact with the service including message format, transport pro-
tocol and location. The services are published with a service registry that complies
with a standard called UDDI. Once a WS is published, a service requester can find the
service via the UDDI interface. Standards like HTTP, SOAP and XML are used for
transportation and marshalling of parameters so that platform and lan-
guage-independent access to WS can be achieved.

At an abstraction level above the technical details, the architecture of WS consists

Name <= castes (instantiation)
Visible state-variables and actions

Invisible state-variables and actions

Behaviour-specification Environment
description

Fig. 2. SLABS’s specification of castes

Formal Specification of Web Services in SLABS Hong Zhu, et al. 6/20/2004

 - 4 -

of three types of components:
the service registry, the service
providers, and service request-
ers. These agents of belong to
three different castes specified
below.

The caste in Fig. 3 specifies
service providers. It states that a
service provider can have two
actions: to register and unregis-
ter at a service registry. It has a visible state that describes its services. Its behaviour is
specified by two rules: one for register and the other for unregister.

The caste in Fig. 4 specifies service request-
ers. A service requester can make search re-
quests to a service registry, but there is no re-
striction on when and what to search for.
Therefore, there is no behaviour rule in the
body of the caste.

Fig. 5 is the specification of service registries in SLABS. There are three rules for
the behaviour of a service registry. The first states that when a service requester
searches for a WS with a criterion, the registry must reply with a set of registered WS
that matches the criterion. Here, we leave the function Match as a predefined func-
tion. The second and third rules deal with registration and unregistration, respectively.

Fig. 5. Specification of service registries

Notice that, first, the semantics of SLABS implies that an agent can be a member
of one or more castes. For example, a service provider can also be a service requester
of another service provider. Second, an agent can join a caste and retreat from a caste
at run-time. The membership relation is not static. Third, in the specification above,
instead of giving all the details of the standards UDDI, SOAP and WSDL, we treat
them as pre-defined data types and provide an abstract specification of the functional-
ity and behaviour of the components. This enables us to focus on the logic of WS
rather than syntactic and format details. Fourth, at the architectural level, there is no
relationship between the service providers and service requesters. The interactions
between them can be established at runtime and specified with the particular service
provider and requester. Finally, the specifications given in this paper are for the illus-
tration of the uses of SLABS. Some simplifications of the problems are made.

VAR List: UDDI;
ACTION Reply(A: AGENT, service:{UDDI});

Register(A:AGENT, service: WSDL); Unregister(A: AGENT, service: WDSL);

[] |→ Reply(A,S); if ∃A∈Service Requesters.[Self, Search(c)],
where ∀x∈S.(x∈List and Match(x,c))

[] |→ !List’=List∪{s}, if ∃A∈Service Providers.[Register(Self, s)]
[] |→ !List’=List − {s}, if ∃A∈Service Providers.[Unregister(Self, s)]

Service Registries

All: Service
Providers

All: Service
Requesters

VAR ServiceDescription: WSDL;
ACTION Register(R: Service Registries, service: WSDL);

Unregister(R: Service Registries, service: WSDL);
VAR State: {Start Service, In Service, Stop Service}

[!State=Start Service]
 |→ Register(R, ServiceDescription)!State’=In Service;

[!State=In Service, !State=Stop Service]
|→ Unregister(R, ServiceDescription);

Service Providers

Fig. 3. Specification of service provider

ACTION Search(R: Service Registries,
Criterion: UDDI);

Service Requesters

All: Service Registries

Fig. 4. Specification of service requester

Formal Specification of Web Services in SLABS Hong Zhu, et al. 6/20/2004

 - 5 -

4 Specification of WS Service Providers

The specification of a service provider not only needs to define the services that it
provides, but also the way that the services should be used. In a WS application, ser-
vice requesters can be further classified into a number of types. Each of them can be
specified by a caste.

For example, consider the online auction services. Two types of requesters may
interact with an online auction WS. Sellers ask for the service provider to set up an
online auction to sell its goods with certain conditions. Buyers can then bid for the
goods online. Thus, we identify three different castes in this application: (a) Auction
Service Providers, (b) Sellers, (c) Buyers. The caste in Fig. 6 specifies the behaviour
of auction providers.

Fig. 6. Specification of auction service provider

Auction Service Providers is a sub-caste of Service Providers. Sellers and Buyers
castes in Fig. 7 and Fig. 8 are sub-castes of the Service Requesters caste.

VAR AuctionInfo: {(ItemDetail: GOODS, Seller: Sellers;
Current_Bid: BID, Current_Bidder: Buyers, Current_BidID: BidID
Start, End: DATE_TIME, ID: AuctionID; Commision_Rate, Minimum_Price: REAL)};

ACTION Accept_Auction(Sellers, AuctionID); Announce (GOODS, AuctionID);
Accept_Member(Buyers, AuctionID, MembershipID);
Bid_Received (Buyers, MembershipID, BID); Bid_Accepted (Buyers, MembershipID, BID);
Bid_Failed (Buyers, MembershipID, BID);

VAR Members: {(id: AuctionID, A:Buyers, mid: MembershipID)}
ACTION Check_Credit (Buyer):{OK, FAIL};
 Clear_Payment(Buyer, Payment); Tranfer(Seller, Payment);

<Accept Auction>: [] |→ (Accept_Auction(A, AID) ! AuctionInfo’=AuctionInfo+(Auct));

Annouce_Auction(Item_info, AID),
if ∃A∈Seller:[RequestAuction(Item_info, sd, ed, mp, cr)]
where Auct.ItemDetail = Item_info & Auct. ID = AID

& Auct.Start=sd & Auct.End=ed
& Auct.Minimum_Price=mp & Auct.Commision_Rate=cr

<Accept Member>: [] |→ Accept_Member(A, AID, MID) ! Member’=Members+(A, AID, MID);
 if ∃A∈Buyers:[Join_Auction(Self, AID)] where Check_Credit (A) = OK;

<Receive Bid>: [] |→ Bid_Received (A, MID, Bid_ID);
 if ∃A∈Buyers:[Submit_Bid(AID, MID, Bid)] where (A, AID, MID)∈Members;

<Failed Bid>: [Bid_Received (A, MID, Bid_ID)] |→Bid_Failed (A, MID, Bid_ID);
 if ∃A∈Buyers:[SubmitBid(AID, MID, Bid)]
 where Auct∈AuctionInfo & Auct.ID=AID & Not Beat(Bid, Auct.Current_Bid)

<Update Bid>: [Bid_Received (A, MID, Bid_ID)]
|→ !Auct.Current_Bid’=Bid & Auct.Current_Bidder’=A & Auct.Current_BidID’=BidID);

 if ∃A∈Buyers:[SubmitBid(AID, MID, Bid)]
 where Auct∈AuctionInfo & Auct.ID=AID & Beat(Bid, Auct.Current_Bid)

<Accept Bid>: []|→Auct.End:Bid_Accepted(Auct.Current_Bidder,Auct.ID, Auct.Current_BidID)
 where Auct∈AuctionInfo;

<ClearPayment>: [Bid_Accepted (A, AID, BidID)]
|→ Clear_Payment(payment);Transfer(Auct.Seller, Deduct(Payment,Auct.cr));

 if A:[Pay(Bid_ID, AID, payment)]
 where Auct∈AuctionInfo & Auct.ID=AID& Payment_OK(Bid_ID, payment)

Auction Service Provider <= Service Providers

All: Sellers

All: Buyers

Formal Specification of Web Services in SLABS Hong Zhu, et al. 6/20/2004

 - 6 -

The interactions between a service
provider and a requester are often so
complicated that an interaction protocol
must be defined. In the online auction
example, the protocol defines how to bid
and who will be the winner, etc. It is
defined by two sets of rules, one for the
auctioneer and one for the buyers. The protocol specified in Fig. 8 is a simplified ver-
sion of English auction. The rules restrict the behaviour of a buyer in an auction, but
not on how individuals make decisions. Similarly, a protocol for the interaction be-
tween a seller and the auction service provider must be defined and specified. Details
are omitted for the sake of space.

Fig. 8. Specification of buyer

It is worth noting that in the above example a WS service provider is specified by
one caste to define the provider’s functionality and behaviour together with two castes
to specify the expected behaviours of the service requesters. The specification of the
requesters serves as the assumptions about the requesters’ actions and behaviours. It
explicitly states how the services should be used. The correctness of an implementa-
tion of a WS service provider can only be understood and proved by using all of these
castes. Such information is crucial for software developers not only on the service
provider side but also on the service requester side. The specification of the requesters
also leaves a great space of flexibility about their behaviour. For example, a specific
buyer can have its own rules to determine when and what bid is to be submitted.

VAR BusinessInfo: UDDI;
ACTION Submit_Bid(AuctionID, MembershipID, BID);

Pay(BID_ID, PAYMENT); Join_Auction(Auction Service Providers, AuctionID);
VAR Membership: {Yes, No}; MID: MembershipID; Auction: AuctionID; Bid_ID: BID_ID;
<Join Auction>: [!Membership= No] |→ time: Join_Auction(Auctioneer, AID);

if Auctioneer:[Announce_Auction(d, AID)];
where Auct∈ Auctioner.AuctionInfo& time < Auct.Start & Auct.ID=AID

<Get Membership ID>:
[Join_Auction(Auctioneer, AID)]|→ !Membership’=Yes & Auction’=AID, MID’=mid
if Auctioneer:[Accept_Member(Self, AID, mid)

<Submit Bid>: [!Membership=Yes] |→ Submit_Bid(Auction, MID, Bid);
where Beat(Bid, Auctioneer.auct.Current_Bid) & Auct∈ Auctioneer.AuctionInfo
& Auction.Auct.ID=Auction

<Receive Acknowledge Of Bid>: [Submit_Bid(Auction, MID, Bid)] |→!Bid_ID’=bidID;
if Auctioneer:[Bid_Received (Self, AID, mid, bidID)], where AID=Auction & mid = MID;

<Revise Bid After Failure>: [Submit_Bid(Auction,MID,Bid)] |→; Submit_Bid(Auction,MID, Bid2)
 If Auctioneer:[Bid_Failed(Self, AID, mid, bidID), $^k],

where Auct ∈ Auctioneer.AuctionInfo & Auct.ID=Auction
& Beat(Bid, Auct.Current_Bid) & Bid_ID = bidID & MID=mid;

<Pay Accepted Bid>: [Submit_Bid(Auction, MID, Bid)] |→; Pay(Bid_ID, Payment)
If Auctioneer:[Bid_Accepted (Self, AID, mid, bidID)],
Where AID=Auction & Bid_ID=bidID & MID = mid

<Quit From Auction>: [!Membership=Yes] |→ Quit_Auction(AuctionID)!Membership’=No,
if Auctioneer:[Bid_Failed(Self, AID, bidID), $^k]; where Auction=AID & Bid_ID = bidID

Buyers <= Service Requesters

Auctioneer:
Auction Service

Provider

VAR BusinessInfo: UDDI;
ACTION RequestAuction (ItemInfo: GOODS,

StartDateTime, EndDateTime: DATE_TIME,
MinimumPrice, CommissionRate: REAL);
… …

Sellers <= Service Requesters

Fig. 7. Specification of seller

Formal Specification of Web Services in SLABS Hong Zhu, et al. 6/20/2004

 - 7 -

5 Specification of WS Service Requesters

To demonstrate how such a specification can be used for the development of requester
side software, consider an online flight ticketing service that sells air tickets for an
airline. Assume that, the specific application has a more concrete rule for deciding
when to request online auction services. For example, the caste in Fig. 9 specifies a
business rule that it will try to sell the unsold tickets by online auction when the time
reaches 8 days before the scheduled flight.

The caste SellByAuction in Fig. 9 inherits the capability and behaviour of the caste
Sellers for its interaction with auction service providers and a caste TicketSellers for
its business rules. It also has
an additional rule for its
request of auction services.
In general, the specification
of business logic can be
separated from the specifi-
cation of the interaction
protocol by using two or
more castes.

An auction service re-
quester may use a number of
different auction service
providers, say auctioneer A
and B, to sell their products
such as air tickets. In such a case, we can declare two agents as instances of the caste
SellByAuction. Alternatively, agent A and B can be dynamically created as instances
of the caste. Details of their specifications are omitted for the sake of space.

4 Concluding remarks

The approach to the formal specification of WS proposed in this paper can be sum-
marised by two well-known software engineering principles. The first is the principle
of separation of concerns. The specification of different kinds of components such as
the providers and requester are separated into different castes. Different types of WS
requesters and providers are further separated into sub-castes. The specification of
private information such as business logic and internal decision making processes are
separated from the specification of public information such as interaction protocols,
communication protocols, etc. and specified in different castes. Such a modular
structure of specification enables the application of the second principle, which is the
principle of information hiding. The private information isolated in a caste can be
hidden from public access. At the same time, the public information, especially the
assumptions made by the service provider about the service requesters are specified.
These principles are strongly supported by the caste facility. The specifications in
SLABS are modular, composable and reusable.

There have been several efforts to define specification languages and/or standards

[]|→ Flight.Date−8: (* 8 days before the departure date. *)
RequestAuction(
 Auctioner, (* the auction service provider *)
 <AirTicket, Flight.No, Seat>, (* product information *)

 Flight.Date-7, (* Start date of auction *)
 Flight.Date-1, (* End date of auction *)
 Flight.MinPrice, (* Minimum price *)
 10%), (* Commission rate *)
Where Flight ∈ AirTicketing.ListOfFlights
 & Flight.MaxSeats > Flight.SoldSeats
 & Seat ∈{1, 2, …, Flight.MaxSeats − Flight.SoldSeats}

SellByAuction <= TicketSellers, Sellers

Auctioneer:
Auction
Service

Providers

Fig. 9. Specification of air ticket seller who sells by auctions

Formal Specification of Web Services in SLABS Hong Zhu, et al. 6/20/2004

 - 8 -

for enabling software to use WS. Among the most well-known are IBM’s WSFL [5]
based on Petri Net theory, Microsoft’s XLANG [6] rejuvenated the Pi-Calculus
model, and BPMI.org’s BPML 1.0 [15] that unified these two approaches. More re-
cently, BEA, IBM, and Microsoft published BPEL4WS. Other organizations advo-
cated radically different approaches for business process modeling, such as DAML-S
[16]. There are two most important differences between SLABS and the above. First,
WSFL, BPML and DAML-S focus on the workflow management of multiple Web
Services, i.e. the execution orders and transactional issues. SLABS can specify these
issues as well as other semantic aspects of Web Service. Second, SLABS is on a more
abstract level while the related works are on a more operational level.

There are a number of problems that need further research. We are investigating
how formal specifications of WS can be represented in XML format and facilitate the
dynamic search and integration of WS applications.

Acknowledgement. The work reported in this paper is partly supported by China
National High Technology Research and Development Programme (863 programme)
under the grant 2002AA116070.

References

[1] Lau, C. and Ryman, A., Developing XML Web services with WebSphere Studio Applica-
tion Developer. IBM SYSTEMS JOURNAL, 2002. 41(2): pp178-197.

[2] Gottschalk, K., et al., Introduction to Web services architecture. IBM SYSTEMS
JOURNAL, 2002. 41(2): pp170-177.

[3] Leymann, F., Roller, D., and Schmidt, M.-T., Web services and business process manage-
ment. IBM SYSTEMS JOURNAL, 2002. 41(2): pp198-211.

[4] Lambros, P., Schmidt, M.-T., and Zentner, C., Combine Business Process Management
Technology and Business Services to Implement Complex Web Services, IBM Corp, 2001.

[5] Leymann, F., Web Services Flow Language, IBM Corporation, 2001.
[6] Thatte, S., XLANG-Web Services for Business Process Design, Microsoft Corp., 2001.
[7] Zhu, H., SLABS: A Formal Specification Language for Agent-Based Systems. Int. J. of

Software Engineering and Knowledge Engineering, 2001. 11(5): pp529-558.
[8] Zhu, H., A Formal Specification Language for Agent-Oriented Software Engineering, De-

partment of Computing, Oxford Brookes University, 2002.
[9] Jennings, N.R., On agent-based software engineering. Artificial Intelligence, 2000. 117:

pp277-296.
[10] Lange, D.B. Mobile Objects and mobile agents: The future of distributed computing? in

Proc. of Proceedings of The European Conference on Object-Oriented Programming, 1998.
[11] Rao, A.S. and Georgreff, M.P. Modeling Rational Agents within A BDI-Architecture. in

Proc. of the Int. Conf. on Principles of Knowledge Rep. and Reasoning, 1991, pp473~484.
[12] Wooldrighe, M., Reasoning About Rational Agents, 2000: The MIT Press.
[13] Shan, L. and Zhu, H. CAMLE: A Caste-Centric Agent-Oriented Modelling Language and

Environment. in Proc. of SELMAS'04 at ICSE'94, Edinburgh, UK., 2004, IEE, pp66-73.
[14] Zhu, H., The role of caste in formal specification of MAS, in Proc. of PRIMA'2001.

LNCS, Vol. 2132, 2001: Springer: Taipei, Taiwan, pp1~15.
[15] BPML.org, The BPML specification version 1.0, http://www.bpmi.org.
[16] Daml.org, The DAML Services Coalition. DAML-S: A Semantic Markup For Web Ser-

vices, http://www.daml.org/services/daml-s/2001/10/daml-s.pdf.

