Automation of Datamorphic Testing

Hong Zhu, Ian Bayley
School of Engineering, Computing and Mathematics
Oxford Brookes University
Oxford OX33 1HX, UK
Email: (hzhulibayley)@brookes.ac.uk

Abstract—This paper presents an automated tool called
Morphy for datamorphic testing. It classifies software test
artefacts into test entities and test morphisms, which are
mappings on testing entities. In addition to datamorphisms,
metamorphisms and seed test case makers, Morphy also em-
ploys a set of other test morphisms including test case metrics
and filters, test set metrics and filters, test result analysers and
test executers to realise test automation. In particular, basic
testing activities can be automated by invoking test morphisms.
Test strategies can be realised as complex combinations of test
morphisms. Test processes can be automated by recording,
editing and playing test scripts that invoke test morphisms
and strategies. This paper proposes a set of test strategies that
combine datamorphisms to generate test sets that adequately
cover various types of mutant test cases. These strategies
are formally defined. Their implementation algorithms are
provided. The correctness of the algorithms are proved. The
paper also illustrates their uses for testing both traditional
software and Al applications with three case studies.

Keywords-Software test, Test automation, Artificial Intelli-
gence, Test tools, Datamorphic test

I. INTRODUCTION

With the rapid growth of artificial intelligence (Al) in
computer applications, ensuring the quality of software com-
ponents that employ Al techniques becomes indispensable
to software engineering. However, testing Al applications
is notoriously difficult and prohibitively expensive [9]. It is
highly desirable to advance software test automation tech-
niques that meet the requirements of testing Al applications.

Datamorphic testing has been proposed recently as an
approach to software test automation [29]. In this method,
test automation focuses on the development and application
of three types of test code. Seed makers generate test
cases. Datamorphisms transform existing test cases into new
ones. Metamorphisms assert the correctness of test cases.
Experiments [3], [18], [29], [30] have demonstrated that it
is effective at testing Al applications.

However, while datamorphic testing activities can be
automated by writing project specific test code, it is highly
desirable to develop a general testing tool to achieve the
following requirements of test automation.

1) Reusibility of the test code of datamorphisms, meta-

morphisms, seed makers, etc, to be reused even across
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different projects.

2) Composability of test code in different combinations to
conduct different experiments with the software under
test.

3) Constructability of the users’ own test automation
processes from existing test code so that the testing
process can be repeated.

To achieve these goals, this paper extends the datamorphic
testing framework by introducing the notion of test mor-
phisms and presents an automated test tool called Morphy'.

The paper is organised as follows. Section II extends
the datamorphic testing framework. Section III presents the
Morphy test tool. Section IV defines a set of strategies that
combines datamorphisms to generate test data. Section V
reports three case studies to demonstrate the uses of Morphy.
Section VI concludes the paper by a comparison with related
work and a discussion of future work.

II. EXTENDED DATAMORPHIC TESTING FRAMEWORK

We extend datamorphic testing method by classifying
the software artefacts involved in software testing into two
kinds: entities and morphisms.

Test entities are objects and data used and/or generated
in testing, which include test cases, test suites, the program
under test, and test reports, etc.

Test morphisms are mappings between entities. They gen-
erate and transform test entities to achieve testing objectives.
They can be implemented by writing test code. They can be
invoked to perform test activities and composed to form test
processes. Obviously, datamorphisms, metamorphisms and
seed makers in the existing model of datamorphic testing
are all test morphisms. However, there are other types of
test morphisms that play crucial roles in test automation.

A software test specification in this extended framework
specifies both of these artefacts and enables them to be
invoked, composed and reused as a test library. In Morphy,
a test specification is a Java class that declares a set of
attributes for test entities and a set of methods for test
morphisms.

! Available at https://github.com/hongzhu6129/MorphyExamples.git



In this section, we discuss how they are defined in order
to meet the requirements of test automation.

A. Test Entities

Test cases and test suites are the most important kinds
of entities on which test morphisms are defined. To enable
the definition of various test morphisms, a test case must
contain not only information about the input and output of
the software, but also information about the following:

o How the test case is generated. Two particular pieces of
information about the test case are recorded: whether
it is a seed or a mutant, and which test morphism
generates the test case. In the sequel, the former is
called the feature of the test case, the latter is called
the rype of the test case.

o« How a test case is related to other test cases. If a
test case is generated by using a datamorphism, the
identities of test cases on which the datamorphism
applied are recorded, and they are called the origins
of the test case.

o The correctness of the test case. In datamorphic testing,
the correctness of a test case is checked against meta-
morphisms. Each metamorphism can be a partial cor-
rectness condition. Therefore, test case may pass some
of the metamorphisms but fail on the others. Therefore,
the correctness of a test case is a set of records of
checking the test case against metamorphisms. We will
use the following format to record the correctness:

{metamorphismName : (pass|fail)}*

A test suite consists of a list of test cases. Each test
case is also assigned with a universally unique identifier
(UUID). Therefore, the relationships between test cases can
be defined by references to their UUIDs.

The Morphy testing tool defines two generic classes
TestCase and TestPool for representing test cases and test
suites, respectively. They have two type parameters for the
input and output datatypes.

The generic class TestCase consists of attributes for (a)
the UUID of the test case, (b) the input data, (c) the output
data, (d) the feature, (e) the type of the test case, (f) the list
of origins, and (g) the correctness of the test case.

The generic class TestPool consists of a list of TestCases
and a number of methods for the operations of the test suite,
such as adding and removing test cases to/from the test
suite. The test suite used in the testing of the software is
declared as an attribute of TestPool type and annotated with
metadata @7estSetContainer. A test specification class can
also have attributes and methods without annotations. For
examples, an attribute of TestPool type without annotation
@TestSetContainer can be used as an auxiliary test set.

The source code of the TestCase and TestPool can be
found in [31].

B. Test Morphisms

In addition to the three components of the original data-
morphic testing model, we identify the following types of
test morphisms that are useful to automate software testing.

o Test case metrics are mappings from test cases to real
numbers. They measure test cases, for example, on the
similarity of a test case to the others in the test set.

o Test case filters are mappings from test cases to truth
values. They can be used, for example, to decide
whether a test case should be included in the test set.

o Test set metrics are mappings from test sets to real
numbers. They measure the test set, for example, on
its quality, such as code coverage.

o Test set filters are mappings from test sets to test sets.
A typical example is to remove some test cases from a
test set for regression testing.

o Test executers execute the program under test on test
cases and receive the outputs from the program. They
are mappings from a piece of program to a mapping
from input data to output. That is, they are functors in
category theory.

o Test result analysers analyse test results and generate
test reports. Thus, they are mappings from test set to
test reports.

C. Test Specifications

A Morphy test specification is a Java class, which declares
a set of attributes as test entities and a set of methods as test
morphisms; see [31] for an example. Each test morphism is
annotated with metadata to declare the type of test morphism
that the method belongs to. Table I lists the annotations and
datatypes of various types of test morphisms as implemented
in Morphy.

Table 1
ANNOTATIONS OF TEST MORPHISMS

[[ Morphism [ Annotation | Parameter | Return ||
Seed Maker @SeedMaker Nil Void
Datamorphism @Datamorphism TestCase TestCase
Metamorphism @Metamorphism TestCase Boolean
Test Case Metrics | @TestCaseMetrics | TestCase Real
Test Case Filter @TestCaseFilter TestCase Boolean
Test Set Metrics @TestSetMetrics Nil Real
Test Set Filter @TestSetFilter Nil Nil
Test Executer @TestExecuter Input Output
Analyser @ Analyser Nil Void

III. TEST TOOL MORPHY

As shown in Figure 1, Morphy consists of three main
facilities: test management, test runner and test scripting.
The test management facility enables test sets to be saved
into files, loaded from files and edited in a graphic user
interface. It also enables a test specification to be loaded
into the system so that various test morphisms of the test



specification can be executed by the test runner. The test
runner also implements various test strategies that combine
test morphisms to acheive advanced test automation. The
test scripting facility enables interactive testing activities to
be recorded as test scripts, saved into files, reloaded from
files and replayed.
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Figure 1. The Architecture of Morphy

Test specifications can be developed with any Java IDE,
but a wizard has been developed as an Eclipse plugin to
generate new skeleton Java class of test specification.

Morphy’s main graphic user interface shown in Figure
2 provides a user friendly environment in which testing
artefacts can be managed, basic testing activities can be
performed and automated testing facilities can be invoked.

At the very top of Morphy’s main window are four panels
of buttons for the management of test entities, performing
test activities by invoking various types of test morphisms,
applying test strategies, and recording-replaying test scripts,
respectively.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column as input to perform the interactive and
automatic testing functions.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower one reports errors detected by checking
the test results against metamorphisms.

Morphy enables test automation at three different levels.
At the lowest level, various test activities can be performed
by invoking test morphisms via a click of buttons on
Morphy’s GUI. At the medium level, Morphy implements
various test strategies to perform complicated testing activ-
ities through combinations and compositions of test mor-
phisms. At the highest level, test processes are automated by
recording, editing and replaying test scripts that consist of
a sequence of invocations of test morphisms and strategies.
It is particularly useful for repeated testing processes, such

as in regression testing and repeated experiments with the
software under test to obtain data for statistical analysis.

IV. MUTANT COMBINATION STRATEGIES

Test strategies play a crucial role in the automation of
datamorphic testing because they can combine and compose
test morphisms together effectively to achieve commonly oc-
curing software testing requirements. This section proposes
a set of test strategies that combines datamorphisms to enrich
a given test set with adequate coverage of different types of
mutant test cases.

A. First Order Mutant Coverage

A datamorphic approach to testing Al applications uses
seed test cases to test the normal operation condition of the
Al system under test, and uses datamorphisms to transform
a test case that represents other operation conditions that can
be derived from the normal operation conditions [29].

For example, to test face recognition applications, data-
morphisms are developed to transform the images of human
faces by editing the facial attributes, such as adding makeup,
wearing glasses, changing skin tunes, change hair styles and
colour, etc. In Figure 3, (a) is the original photo, (b), (c),
and (d) are images obtained by applying datamorphisms
of adding spectacles, applying makeup, and changing hair
styles, respectively. They are used to test face recognition
applications [29].

Similarly, in [25], for testing driverless vehicles, data-
morphisms are developed to alter the weather condition
of a recorded driving process to be in fog, to transform
the lighting condition from daytime to nightime with street
lights, etc. Such transformed test cases are called the mutant
test cases, and can formally be defined as follows.

Let T be the set of all possible test cases for the software
under test, S C T (S # () be a set of test cases, and D # ()
be a set of datamorphisms and d € D be a datamorphism
in D. We say that d is k-ary (k > 0), if d: T% — T.

Definition 1: (First Order Mutants)

Atest case y € T is called a first order mutant test case, or
simply a first order mutant, of S generated by D, if there is
a k-ary datamorphism d € D and test cases x1,---, T € S
such that y = d(xq1, -, xg). O

In the context of testing Al applications where datamor-
phisms are transformations of test cases that alter the key
features of the test cases to represent different operation
conditions, it is important for cover each operation condition
adequately. Thus, here we propose a test adquacy criterion
called first order mutant completeness.

Definition 2: (First Order Mutant Completeness)

A set C of test cases is first order mutant complete with
respect to S and D, if S C C, and for each d : T 5T ¢
D,andeachz; € S,i=1,---,k, there is a test case y € C
such that y = d(x1,x2, -, xy), where d is k-ary. O



Figure 3.

In other words, a test set is first ord

Mutants for Face Recognition

er mutant complete

if it contains every seed and every first order mutant. A test
strategy is to test the software with all the seeds and all the
first order mutant test cases generated from the seeds using

selected datamorphisms.

The following algorithm generates the minimal test set
that is first order mutant complete with respect to a given
set of seed test cases and a set of datamorphisms.

Algorithm 1: (Generate 1st Order
Tests%

Mutant Complete

Input: S = the set of seed test cases;
D = the set of datamorphisms;
Output: C = a set of test cases;
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Figure 2. Morphy’s Main GUI

Variables: tempT = temporal set of test cases;
Begin
C = EmptySet;
for (each datamorphism d in D) {
tempT = EmptySet;

Assume that d is a k-ary datamorphism;

forall k-tuples (x1,... ,xk) of S {
add d(x1, ,xk) to tempT;
bi
C = C + tempT;
Vi
return C + S;
End

The following theorem asserts the correctness of the
algorithm. The proof can be found in [31].

Theorem 1: The test set generated from S using D by
Algorithm 1 is the minimal set of test cases that is first
order mutant complete with respect to S and D. O

B. Higher Order Mutant Coverage

Datamorphisms can also be applied to test cases multiple
times to generate mutants of mutants, which are called high
order mutants and formally defined as follows. For the sake
of convenience, a test case x € S is called a 0’th order
mutant of S.

Definition 3: (Higher order mutants)

A test case y is a second order mutant of S by D, if there
is a k-ary datamorphism d € D and k test cases x1,- -+, Tk



such that y = d(x1,---,x) and for all x;, z; is either in
S or a first order mutant of S by D, and at least one of
x1,- -+, is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d € D and k test cases
X1,-+-, 2k such that y = d(x1,---,xx) and x; are m’th
order mutants of S by D, where m < n, and at least one
of z1,---,x is a (n — 1)’th order mutant of S by D. O

For many AI applications, higher order mutants are im-
portant test cases. For example, to test a face recognition
application, it is desirable to include test cases that are
obtained by adding to the image of a human face a pair
of glasses, applying makeups and dying the hair colour. In
Figure 3, image (e)-(g) are test cases of 2nd order mutants,
while image (h) is a 3rd order mutant of the original image.
In testing a driveless car, it is desirable to have test cases
representing an operating condition where the road condition
is wet and weather is foggy, and lighting is night time. Such
operating conditions may occur at the same time. Therefore,
it is necessary to test the system on such a combination of
operating conditions.

Similar to first order mutant completeness, a test set is
second order mutant complete if it contains all seed test
cases, all first order mutants and all second order mutants.
In general, we have the following test adequate criterion.

Definition 4: (K’th order mutant completeness) A set C
of test cases is k’th order mutant complete with respect to
S and D, if it contains all 7’th order mutant test cases of .S
by D forall i =0,---,k. O

The following can be proved based on Theorem 1 by
induction on the order K.

Corollary of Theorem I: By repeating Algorithm 1 for K
times such that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete. O

C. Datamorphic Combination Coverage

Assume that the set D of datamorphisms contains N
methods. If a test set is N’th order mutant complete with
respect to S and D, it contains all permutations of the
datamorphisms applied to all test cases. We say that the
test set is permutation complete. If the datamorphisms
are associative, commutative, distributive and idempotent, a
permutation complete test set contains all possible test cases
that can be derived from a given set of test cases using the
set of datamorphisms. The test set is therefore exhaustive
with regard to the set of seeds and the datamorphisms. It
usually contains a huge number of test cases, so the cost
of testing can be very high. A compromise is to cover the
combinations of datamorphisms.

A mutant of S by D can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 4 below shows some examples of mutants,

in which (a) and (b) are first order mutants, and (c) to (f)
are second order mutants.

5666 ¢

:
(c) e’ q’

(e) (d)

Figure 4. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the test
cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a
different variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substituting the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to
make higher order mutant test cases from seed test cases. We
say that a combination c is k-ary, if it contains k variables,
which is equivalent to the number of leaf nodes. We write
c(xq,- -, xk) to represent such a combination of datamor-
phism. When applying c to seed test cases ay,---,ay, We
write y = c(aq, - - -, ai) to denote the result mutant test case.
Let {dy,---,d,} be the set of datamorphisms in the tree,
we also say that ¢ is a combination of {dy,--,d,}. Given
a set D of datamorphisms, there may be many different
combinations of D.

Definition 5: (Combintatorial Coverage)

A set € of datamorphism combinations is combinatorial
complete for D, if for all non-empty subsets D’ C D,
there is a combination ¢ € % such that D’ is the set of
datamorphisms in c.

A set C' of test cases is combinatorial complete with
respect to S and D, if

« there is a set ¥ of datamorphism combinations that is

combinatorial complete with respect to D; and

« for every combination ¢ € ¥, if ¢ is k-ary, then for all

k-tuples of test cases (z1,---,xx) € S*, there is a test
case y in C such that y = ¢(x1, -+, 25). O

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2: (Generate Combinatorial Complete Test

Set)
Input: S = the set of seed test cases;
D = the set of datamorphisms;
Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin

for (each datamorphism d in D) {
tempT = empty_set;
Assume d is a k-ary, where k>0;
for (all k-tuples (x1,...,xk) of S){
add d(x1,...,xk) to tempT;

bi
S =S + tempT;



return C + S;
End

Theorem 2: The test set generated by Algorithm 2 is
combinatorial complete with respect to S and D. 0O

Note that, the test set generated by Algorithm 2 may be
not minimal in size if there is a datamorphism that is non-
unary.

V. CASE STUDIES

We have conducted three case studies on the development
of Morphy test specifications and the uses of Morphy in
automated software testing. The purpose of the case studies
is to examine the usability of the proposed test automation
approach in general and the testing tool Morphy in particular.
We focus on the following features.

1) the feasibility of the proposed software test automation
approach: how much effort is required to develop
test morphisms to achieve test automation for vari-
ous different types of software systems including Al
applications.

2) the composability of test morphisms and test strategies
to form automated test processes for different types of
software systems.

3) the reusability of the test morphisms: whether the test
morphisms developed for testing one software system
can be reused for testing a different system.

These case studies are summarised below. 2 More details
can be found in [31].

A. Triangle Classification

Triangle classification is a classic software testing prob-
lem that Myer used to illustrate the importance of combining
various types of test cases [19]. The program under test
“reads three integer values from an input dialog. The three
values represent the lengths of the sides of a triangle. The
program displays a message that states whether the triangle
is scalene, isosceles, or equilateral.” [19] Myer listed 14
questions for testers to assess the adequacy of a test and
reported that, for such a seemingly simple program, “highly
qualified professional programmers score, on the average,
only 7.8 out of a possible 14”.

The case study demonstrated that datamorphisms can
easily be easily developed to achieve test adequacy and the
testing process can be automated. A set of 20 datamorphisms
was developed, inspired by Myer’s test criteria. When the
first order mutant complete strategy is applied to these
datamorphisms on 4 seed test cases, 80 mutant test cases are
generated automatically; these fully meet Myer’s test crite-
ria. Moreover, for each datamorphism, we also developed
a corresponding metamorphism to check the correctness of
the program under test. Four different programs were tested:
two incorrect ones and two correct ones using different

2The source code of the case studies can be found on GitHub at the
URL: https://github.com/hongzhu6129/MorphyExamples.git

algorithms. The testing successfully detected the bugs in the
faulty programs, while the correct ones passed the test. The
test specifications were split into two classes, so the test
morphisms were reused; see Figure 5.
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Figure 5.

B. Trigonometric Functions

Three trigonometric functions sin(x), cos(z) and tan(x)
provided by Java’s Math class are tested. The correctness of
the library’s implementation of these functions is checked
against a set of 27 trigonometric identities implemented as
metamorphisms; see Table II.

Two seed makers were written: one generates a set of 17
special values between 0 and 27; the other generates 100
random test cases in the range between 0 and 3

Unary datamorphisms were written for the mappings from
rto2rtx, ™k, g 4 x, —x, and binary datamorphisms
from x and y to x + y, and %”’

The first order mutant complete and the combination
complete test sets were generated using Morphy testing tool.
The testing revealed an error rate of 0.957%, which are on
test cases where the inputs to tan(x) are not defined, or very
close to undefined.

Table 11
LIST OF METAMORPHISMS

sin(m — x) = sin(x) sin(m + z) = —sin(zx)
cos(m — ) = —cos(x) cos(m + x) = —cos(x)
tan(m — z) = —tan(z) tan(m + x) = tan(x)

3

sin(m/2 — x) = cos(x)

sin(m/2 + x) = cos(x)
) cos(m/2 — x) = sin(x)

608(71'/2 +z = —sin(x)

tan(mw/2 + x) —1/tan(z) tqn(w/Z —xz)= 1/tan(m)
sin(2m — x) = —sin(x) sin(2m + z) = sin(x)

cos(2m — ) = cos(x) cos(2m + ) = cos(x)
tan(27r — ) = —tan(z) tan(2m + x) = tan(x)
sin(—z) = —sin(x) cos(—z) = cos(x)

tan(—z) = —tan(x)

sin(z + y) = sin(x)cos(y) + cqs(m)szn(y)

cos(z +y) = cos(z)cos(y) — sin(x)sin(y)

sin(z —y) = sin(x)cos(y) — cqs(m)szn(y)

cos(x —y) = cos(z)cos(y) + sin(x)sin(y)
tan(x +y) = (tan(x) + tan(y))/(1 — tan(x)tan(y))
tan(z — y) = (tan(z) — tan(y))/(1 + tan(z)tan(y))

C. Face Recognition

The experiments with face recognition reported in [29],
[30] are repeated, but the test code is re-written in the form
of Morphy test specifications. The case study clearly demon-
strated the benefit of test automation and the reusability of



test code achieved by Morphy. The test data for testing a face
recognition application are images of sizes over 100 KB. In
[18], [29], [30], 200 images of different persons were used
and each generated 13 mutants using AttGAN [12] to alter
the facial features. In the case study, each mutant image was
only generated once and stored in the file system, then it was
reused to test different face recognition applications rather
than generated many times.

In addition to repeating the previous experiments, which
examines whether a face recognition application recognises a
person from a mutant image, a new experiment was designed
to examine whether a face recognition application rejects a
mutant images of a different person. The new experiment
is implemented by writing just one new seed maker. All
other test morphisms are the same as the existing ones.
The test specifications are split into three classes: one for
datamorphisms and analysers, one for seed makers and one
for test executers. This is in the similar structure to the test
specifications for Triangle Classification.

Test scripts were recorded and slightly edited to add code
for repeating tests a number of times in order to obtain
statistically significant data. A test analyser method was also
written to do statistical analysis of the experiment data. The
test process was highly automated and repeatable.

D. Results of The Case Studies

The following observations were made on the case studies.
First, test morphisms in the case studies are simple and
easy to write; see Table III, where TC stands for Triangle
Classification, Trg for Trigonometric Function, and FR for
Face Recognition. LOC is the lines of code.

Table III
SUMMARY OF CASE STUDIES

[ [ TC [ Trg [ FR |
Num of Classes 11 4 8
Total LOC 899 830 450
Num of Seed Makers 4 3 3
Average LOC of Seed Makers 26.25 | 61.67 | 21.33
Num of Datamorphisms 20 10 13
Average LOC of Datamorphisms 9 6 8
Num of Metamorphisms 25 30 -
Average LOC of Metamorphisms 8.72 7.00 -
Num of Analysers 2 2 2
Average LOC of Analysers 62 33 41

Second, test specifications are reusable especially when
they are properly structured. In the case study, test speci-
fications are decomposed into a number of classes where
common test morphisms are placed together. They are
inherited by classes that contain test specific morphisms.

Third, achieving test automation using facilities at three
different levels of activity, strategy and process is flexible
and practical. Different testing techniques can be easily
integrated into Morphy and used together.

VI. CONCLUSION
A. Main Contributions

The main contributions of the paper are as follows.

First, this paper redefines the method of datamorphic
testing method by classifying test artefacts into test entities
and morphisms. Datamorphisms, metamorphisms and seed
makers are examples of test morphisms. We have also iden-
tified a set of other test morphisms, which include test case
metrics and filters, test set metrics and filters, test executers
and analysers. The case studies reported in this paper have
clearly demonstrated the importance of the test morphisms
of test executers and analysers. The other types of test
morphisms also play crucial roles in the implementation of
test strategies; this will be reported in separate papers.

Second, the paper proposes a novel framework of test
automation and demonstrates its feasibility by a test automa-
tion tool called Morphy. In this framework, basic testing
activities can be automated by writing test codes for various
test morphisms and invoking them through a test tool like
Morphy. Advanced combinations of test morphisms can be
realised by test strategies to achieve a higher level of test
automation. Test automation can be further improved by a
test scripting facility through recording the interactive invo-
cations of test morphisms and test strategies as well as test
management activities such as loading test specifications,
loading and saving test sets, etc.

Third, this paper proposed a set of test strategies for
combining datamorphisms to achieve adequate coverage of
mutant test cases. These strategies are particularly useful for
testing Al applications such as face recognition and driveless
vehicles. They are formally defined and their implementation
algorithms are presented and their correctness are formally
proved. As far as we know, this is tthe first time test
strategies are formally studied in the literature of software
testing.

Finally, the paper reports three case studies with the
datamorphic testing tool Morphy. They clearly demonstrated
that the proposed approach to test automation in general
and the Morphy tool in particular have the benefit that test
automation code represented in the form of test morphisms
are highly reusable and composbable to construct test au-
tomation processes flexibly and easily. It is applicable to all
kinds of software systems including Al applications.

B. Related Work

There are two kinds of test automation frameworks: XUnit
[10], [17] like JUnit and GUI based test automation tools
like Selenium [22] and WebDriver [26]. In comparison
with them, Morphy provides more advanced test automation
facilities such as test strategies.

In XUnit framework, a test is defined by a set of methods
in a class or a set of test scripts for executing the program un-
der test together with methods for setting up the environment



before test executions and tearing down the environment
after test. Such a test specification is imperative. Our test
specifications are declaratively imperative in the sense that
each test class declares various testing morphisms while
each test morphism is coded in an imperative programming
language. Our case studies show that such test specifica-
tions are highly reusable and composable even for testing
different applications. This is what existing test automation
frameworks have not achieved.

GUI based test automation tools employ test scripts or test
code to interact with GUI elements. The most representative
and most well-known example of such testing tools is
Selenium [22]. It has two test environments: (a) the Selenium
IDE in which manual testing can be recorded into test scripts
and replayed; (b) the Web Drivers, which provided an API
for writing test code in programming languages. Morphy
also employs test scripts, but it is equipped with more
advanced test automation facilities such as test strategies,
so it achieves a higher level of test automation.

An advantage of Morphy is that the architecture enables
various testing techniques and tools to be integrated by
wrapping existing testing tools as methods in a test specifi-
cation to invoke the tools. For example, test case generation
techniques and tools [1] like fuzz testing [24], data mutation
testing [21], random testing [2], adaptive random testing [7],
[16], combinatorial testing [20] and model based test case
generators are all test morphisms, which can be wrapped
as seed makers or datamorphisms. Metamorphic relations in
metamorphic testing [6] and formal specification-based test
oracles [4], [5], [14], [15], [28] are metamorphisms. Test
coverage measurement tools like [23] are test set metrics.
Regression testing techniques and methods [27] that select or
prioritise test cases in an existing test set can be implemented
as test set filters. Search-based testing [8], [11] can be
regarded as test strategies. Therefore, they can all be easily
integrated into Morphy.

C. Future Work

The test adequacy criteria of 1st order mutant coverage,
higher order mutant coverage, and combinatorial mutant
coverage are proposed in this paper and are based on
our experiences in testing Al applications. Assessing their
effectiveness for Al applications is on our agenda for future
work.

In addition to the strategies defined in this paper, Morphy
has already implemented two other types of test strategies:
(a) exploration strategies, which explore the test space in
order to find the borders between subdomains for testing
the classification and clustering type of Al applications;
(b) test set optimisation strategies, which employ genetic
algorithms to optimise test sets. They will be reported in
separate papers. The case studies reported in this paper have
used test scripts intensively to improve test automation. A

more detailed study of the test script facility will be reported
in a separate paper, too.

It is worth noting that datamorphic testing focuses on
test morphisms related to test data and test sets, as its
name implies. There are other types of test morphisms.
For example, mutation operators in mutation testing [13]
and fault injection tools for fault-based testing methods
are test morphisms that are mappings from programs to
programs or to sets of programs. Specification mutation
operators are test morphisms that mapping from formal
specifications to specifications, or to sets of specifications.
It is an interesting further research question to ask how to
integrate such test morphisms into the datamorphic testing
tools like Morphy, although, theoretically speaking, there
should be no significant difficulty in doing so.

It is also possible to integrate XUnit like JUnit and GUI
based test automation tools like WebDriver with Morphy.
It will be interesting to see how the informal guidelines of
exploration testing strategies can be formalised and imple-
mented in the datamorphic testing framework.
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