

The Dynamic Casteship Mechanism for Modeling and Designing Adaptive Agents

Xinjun Mao1, Zhiming Chang1, Lijun Shang1, Hong Zhu2 and Ji Wang1
1Dept. of Computer Science, National University of Defense Technology,

Changsha, China, 410073
Email: xjmao@nudt.edu.cn, wj@nudt.edu.cn

2Dept. of Computing, Oxford Brookes University
Oxford OX33 1HX, UK

Email: hzhu@brookes.ac.uk

Abstract. It is still a challenge to develop complex multi-
agent systems with agents that typically exhibit adaptation
to various behaviors in different situations. In this paper,
we propose an extension of the dynamic casteship
mechanism for modeling and designing adaptive agents. In
our approach, caste is the modular unit in the design and
implementation of multi–agent systems and provides an
abstraction of the ways that agents adapt to different
behaviors in different situations. The dynamic behaviors of
agents are realized as the change of castes that agents bind
during execution by “join” and “quit” operations on agent’s
casteships. The extended mechanism also enables agents to
change the status of its castes to be either active or inactive
at run-time. Accordingly, two new operations ‘deactivate’
and ‘activate’ on agent’s casteships are introduced. In the
paper, the formal semantics of these operations is
rigorously defined. The properties of dynamic binding
mechanism are investigated.
Keywords: adaptive agent, caste, dynamic binding

1. Introduction
Agent orientation has recently emerged as a new

software development paradigm for developing complex
software systems that operates in dynamic environment
such as the Internet [6]. In the past few years, with the
increasing acceptance and expectation of agent orientation
as an emerging software engineering paradigm, there have
been a great number of efforts in the research on
development methodologies of complex multi-agent
systems (MAS). Agent-oriented software engineering
(AOSE) has become an active research area in agent-based
computing. A number of methodologies, programming
languages and CASE tools or environments have been
proposed, such as Gaia[5], Tropos[11], CAMLE[3], etc.

Nevertheless, several challenges need to be faced before
AOSE can deliver its promises and become a widely
accepted and practically usable paradigm for the
development of complex systems [9] that are typically
unpredictable, open, dynamic, hierarchically structured but
confined by global constraints [1]. We believe that, to be a
successful general-purpose software engineering paradigm,
language facilities must be developed to enable high level

abstractions to be smoothly and naturally transformed into
concrete language facilities and efficiently implemented in
a systematic, robust, reliable and repeatable fashion [4].
Moreover, the methods must be universally applicable. This
paper investigate the language facility caste proposed in [3]
and [12] for the design and implementation of dynamic
behavior adaptation in MAS. In the sequel, we will use
adaptive agents to denote agents that are capable of
adapting to different behaviors at runtime.

Agents executing in a dynamic environment often have
to behave differently in different situations. For example,
frequent role changes are common for agents in human
societies and organizations. However, existing agent-
oriented methodologies have not provided enough supports
to develop such systems that naturally take such
advantages, especially in the modeling, specification,
design and implementation of such dynamic behaviors in a
systematic way. It is no surprise that it is extremely difficult
to develop MAS with adaptive behaviors [12]. This paper
addresses this problem by the dynamic binding mechanism
based on the language facility caste proposed in [4,12].

The remainder of the paper is organized as follows.
Section 2 introduces an example of adaptive agents. In
section 3, caste is defined and dynamic binding mechanism
is informally discussed. Section 4 rigorously defines the
formal model of MAS and the formal semantics of four
atomic operations on castes. The properties of dynamic
binding mechanism are also investigated in this section.
Finally section 5 concludes the paper.

2. An example of adaptive dynamic MAS
In order to understand the requirements on the dynamic

binding mechanism, in this section, we examine an example
of information system to illustrate the basic characteristics
of complex systems that consist of adaptive agents.

Suppose that an information system is to be developed
for a university to support the management of the
university’s students, staff and related affairs such as
registration, course selection, etc. and to provide personal
assistances to the members of the university so that each
member can participate in the operations of the university
efficiently and effectively. Depending on the type of roles
that a member plays in the university, a member can take

certain actions in the operation of the information systems,
access certain subset of the information stored in the
systems, and must obey certain set of rules that confines the
member to fulfill his tasks. Each member of the university
is then supplied with a ‘personal assistant’, which is a
software agent that stores the personal information about
the member, the permitted actions that the member can take
according to his role, as well as the personal preferences
and private information. The personal assistant agent must
also support the collaborations between the members.

As in almost all organizations, a member of the
university may change its roles while remaining as a
member of the organization. For example, an undergraduate
student, say Alex, who is going to graduate from the
university. After graduation, he gets an offer from the
university to study for a Master degree, which will take him
two years to complete. The graduation does not mean that
he will change his identity. It just manifests that he will
play a new role in the organization of the university. By
changing role, he will no longer be an undergraduate since
then and start to be a postgraduate. This means he must
give up certain access to the information, certain actions
that he was granted as an undergraduate student as well as
certain relationships with other members of the
organization such as his personal tutor, etc. This will also
give him some new capability of actions, such as access to
the master degree student labs, new personal information, a
master degree student ID number, and new relationships to
other members, such as a professor as his supervisor, etc.
The change of Alex’s role in the university must also be
reflected in his personal assistant software agent in terms of
the changes of the restrictions on his access to the
information system, and the set of permitted actions, etc.
What is important is that the personal assistant agent must
carry over all the personal information such as his academic
records, personal details and personal preferences, etc.
rather than start from scratch.

Role changes of occur not only as moving from one role
to another, but also as in the form of temporarily leaving
from a post and then returning to the role to continue the
job. For example, after one year’s study, Alex decides to
take one year industrial placement job in order to gain some
work experience. He thus leaves the university for one year
and then comes back to school and carries on his study.
This does not mean that Alex will retreat from the role of
postgraduate student for ever. Instead, during the work
placement year, he suspends his behavior as postgraduate
temporarily. He is officially still a registered postgraduate
during this year, but he will not go to the university to take
courses or conduct researches. The information system
should support Alex to suspend and resume his study by
keeping all personal information such as the study program,
scores of passed or failed modules, credits earned, etc.
suspending the permitted activities as well as some
restrictions on his performances, etc. while he is on leave,
and resuming his normal postgraduate student behavior
after returning to the university. The dynamic binding
mechanism that supports the changes between roles must

also be able to support such temporary suspension of a role
and resumptions of a role after suspensions.

As in almost all organizations, a member of the
university may also play multiple roles at the same time.
For example, when Alex becomes a postgraduate, he also
takes a teaching assistant (TA) job, which is a part of his
offer of the postgraduate studentship. Therefore, in his first
year, Alex is not only a postgraduate but also a TA. Alex’s
personal assistant agent must be able to help Alex on two
different roles. The dynamic binding mechanism should be
able to support the taking of new roles while stay in a role.

3. Caste and Dynamic Binding Mechanism
The notion of caste was originally introduced in SLABS.

It helps to deal with the limitation of object technology [4].
We regard caste as basic abstraction to specify agents’
behaviors and the modular unit to design and implement
multi-agent systems.

In our meta-model of MAS, agent is defined as an
autonomous and persistent computational entity situated in
certain environment. Each agent consists of four parts: data,
actions, behaviors and environments. That is, the structure
of an agent is a 4-tuple, i.e., Agent = <D, A, B, E>, were D
represents an agent’s state space, A is the actions that agent
can take, B is the behavior rules that determine how agent
behaves in the context of its designated environment E. It is
worth noting that these parts may change during the
execution of the agent. Such changes are realized by the
dynamic binding of an agent to castes.

A caste defines a set of structural features and behavior
patterns for agents. A caste is a 4-tuple, i.e., Caste = <D, A,
B, E>, where D defines a state space that the agents can
have, A defines a set of actions that agents can take for the
operation on the state space, B defines a set of behavior
rules specifying how agents behave in terms of when to
take an action and how to update its state in the context of
their designated environment, and E defines an
environment, which consists of a set of agents that have
influence on the agent’s behavior [12]. When an agent
binds to a caste, it obtains the state space and the capability
to take an action defined by the caste, becomes in
collaboration with and influenced by the agents specified in
the caste definition and must obey the behavior rules
specified in the caste. For example, in the above example,
we can define two castes to represent the roles of
undergraduate and postgraduate students, respectively.

A state space defined by a caste is represented as a set of
state variables. Each action consists of an action identifier
and may contain a number of parameters. The state space
and the set of actions are usually divided into two kinds:
visible ones and invisible (or internal) ones. When an agent
that binds to the caste takes a visible action, it generates an
event that can be observed by other agents in the system.
An agent taking an internal action generates an event that
can only be perceived by its components, which are also
agents. Similarly, the value of a visible data can be
observed by other agents, while the value of an internal

state can only be observed by its components. For the sake
of simplicity, in the sequel, we assume all the actions and
state variables are visible because, in this paper, we are not
concerned with the visibility issues.

Although there are similarities with the relationship
between object and class and the relationship between data
and type, none of the terms like instance, member,
classifier and type accurately represents the relationship
between agent and caste. The main difference is that an
agent can take actions to join a caste or retreat from a caste
at run-time. Consequently, it obtains (or lose) the structural
and behavioral features defined by the caste. Hence, the
relationship is called casteship.

It is worth noting that an agent’s action of joining or
quitting a caste is also determined by the behavior rules
defined by the caste that the agent currently binds to.
Therefore, the behavior rules specified in each caste
explicitly declare what castes the agent can join and quit
and in what situation to do so. In the above example, Alex
graduates and becomes a postgraduate student must be the
result of executing a behavior rule that enables an
undergraduate to quit from the caste Undergraduate and to
join the caste Postgraduate.

However, the existing mechanism of dynamic binding of
agents to castes is still insufficient in the modeling of
adaptive agents as discussed in section 2. For example, it
can not distinguish the castes in active status from ones in
inactive status. To overcome the drawbacks, this paper
extend the dynamic binding mechanism by introducing the
notion of active binding and inactive binding of an agent to
a caste.

(1) Active binding
An agent’s binding to a caste is active means that the

agent obtains all the structural and behavioral features
defined by the caste. In other words, the agent can take
actions defined in the action part of the caste according to
the behavior rules defined by the caste, which can be a
change to the agent’s internal state that belongs to the part
of the state space defined by the caste.

(2) Inactive binding
An agent’s binding to a caste can also be inactive, which

means that the agent can not change the state variables and
cannot take actions defined in an inactive caste while it still
maintains its values of the state variables defined by the
caste. The behavior rules of the inactive caste will not
affect the agent’s behavior. It does not observe the agents in
its environment defined by an inactive caste either.
However, the state variables defined by an inactively
bounded caste are accessible. Moreover, when the agent
becomes actively binding to the caste again, the values of
the state variables are resumed to that when the agent’s
binding to the caste last changed to inactive. This is
different from that agent retreats a caste.

An agent can change its casteship status by taking action
deactivate to become inactive and activate to become
active. When agent takes action to join a caste, the
casteship will be in active state.

4. Formal model of dynamic casteship mechanism
In this section, we formally define the extended dynamic

binding mechanism. We will first define the model of
multi-agent systems.

4.1. Model of Multi-Agent Systems

In [12], the caste-centric formal model of MAS has been
formally defined. The following extends the formal model
to enable active and inactive dynamic binding of agents to
be specified. For the sake of simplicity, we have omitted
some aspects, such as the inheritance relationship between
castes and scenario definition, of the original model so that
we can focus on the dynamic casteship mechanism.
Definition1. A model M of MAS consists of two parts <
MAS, CASTE>, where MAS = {a1, a2, ..., an} is a finite set
of agents and CASTE = {c1, c2, ..., cm } is a finite set of
castes.

 Agents in MAS behave continuously and
autonomously. A time moment is an element in a time
index set T, which is defined as the set of natural numbers.
Let MASt be the set of agents in the system at time moment
t. The casteship of agent a at time moment t to caste c is
denoted by a∈tc. We write CASTE(a, t) to denote the set of
castes that agent a belongs to at moment t, i.e. CASTE(a, t)
= {c | a∈t c}. In our dynamic binding mechanism, the castes
that agent binds may be either in active state or inactive
state. Therefore, we write CASTEA(a, t) to denote the set of
active castes that agent a belongs to at moment t, and
CASTEI(a,t) to denote the set of inactive castes that agent a
belongs to at moment t. Thus, CASTE(a, t) = CASTEA(a, t)
∪CASTEI(a, t). We assumes that CASTEA(a, t) ∩ CASTEI

(a, t) = ∅, for all agents a in MAS and time moments t.
This means that for at any moment t, a caste that an agent
binds is either in active state or in inactive state.

Agent’s state space at some moment depends on the
casts that agent binds to at that time moment and their
status. Let DA

a,t = ∪{c∈CASTEA(a, t)}Dc denote the state spaces
of agent a at moment t based on active castes that it binds
to at moment t, DI

a,t = ∪{c∈CASTEI(a, t)}Dc denote the state
spaces of agent a at moment t based on inactive castes that
it binds to at moment t. Similar to the above, we define AA

a,t
= ∪{c∈ CASTEA(a, t)}Ac the action set of agent a at moment t
based on active castes that it binds to at moment t, AI

a,t =
∪{c∈ CASTEI (a, t)}Ac the action set of agent a at moment t
based on inactive castes that it binds to at moment t. In
particular, we assume that for any caste c, Ac includes
“join”, “quit”, “activate” and “deactivate” operations on
castes. Similarly, let BA

a,t = ∪{c∈ CASTEA(a, t)}Bc the behavior
rule set of agent a at moment t based on active castes that it
binds to at moment t, BI

a,t = ∪{c∈ CASTEI (a, t)}Bc the behavior
rule set of agent a at moment t based on inactive castes that
it binds to at moment t; EA

a,t = ∪{c∈ CASTEA(a, t)}Ec the
environment of agent a at moment t based on active castes
that it binds to at moment t, EI

a,t = ∪{c∈ CASTEI(a, t)}Ec the
environment of agent a at moment t based on inactive

castes that it binds to at moment t.
Definition2. The state of agent a at moment t is based on
the castes that it binds to and is defined as sa,t = sA

a,t × sI
a,t,

where sA
a,t = DA

a,t × AA
a,t × BA

a,t × EA
a,t denoting the state of

agent a at moment t based on active castes that it binds to,
and sI

a,t = DI
a,t × AI

a,t × BI
a,t × EI

a,t denoting the state of agent
a at moment t based on inactive castes that it binds to.

Let Sa = {sa,t | t ≥ t0 for any moment t in T where t0 is the
moment at which agent a is to be created} the set of all
possible configurations of agent a. The state of MAS at
moment t is SMAS,t = ∏(a∈MAS) sa,t. We write SMAS = ∪(t∈T)
SMAS,t the set of all possible configurations of MAS.
Definition3. A run r of a MAS is a mapping from time T to
the set SMAS. The behavior of a MAS is defined by the set R
of all possible runs. For any given run r of MAS, a mapping
ra from T to Sa is a run of agent a in the context of r, where
for any moment t, ra(t) is the restriction of r(t) on Sa In the
sequel, we use Ra ={ ra | r ∈R }to denote the behavior of
agent a in the system.

We assume that agent takes actions step by step, which
means if agent takes action act at moment t, then the action
will be completed at (t+1) moment.
Definition4. For any c1, c2∈ CASTE, if the behavior rules
of c1 permit an agent that binds to caste c1 to join caste c2,
then we call c1 can directly reach c2, denoted as c1 ⇒ c2.

We assume that the directly reachable relationship
between castes is irreflexive, which means any caste is not
permitted to be bound again when it has already bound. We
write DReach(c) = {c′ | c⇒c′ } to denote the directly
reachable castes set of c, and DReach(a,t) = ∪{c∈ CASTEA(a, t)}
DReach(c) to denote the directly reachable caste set of
agent a at moment t. For example, if the behavior rule of
caste undergraduate explicitly declares that when
undergraduate student passes the entrance examination, he
will join the caste of postgraduate, then postgraduate∈
DReach(undergraduate). The directly reachable
relationship between castes does not satisfy transitive
property. If c1 can directly reach c2, the agent that binds to
caste c1 is possible to join caste c2 when the scenario and
the pre-condition specified in the behavior rule are
satisfied.
Definition5. Let c∈CASTE, the reachable castes set
Reach(c) of caste c is recursively defined as follows.
(1) if c1∈ DReach(c), then c1∈ Reach(c).
(2) if c1∈ Reach(c) and c2∈ Reach(c1), then c2∈ Reach(c).

Obviously, the reachable relationship between castes is
transitive. It defines the possible castes that agent can bind
during its run. If c1 can reach c2, then the agent that binds to
caste c1 is possible to join caste c2 in its run. Let Reach(a,t)
= ∪{c∈ CASTEA(a, t)}Reach(c) the reachable caste set of agent a
at moment t.
Definition6. Let c1, c2∈ CASTE. If caste c1 and c2 are
strictly not permitted for any agent a to bind to at the same
time to govern the agent’s behaviors simultaneously, then
we say that caste c1 and c2 are conflict, written as c1↑ c2.
Let V⊆CASTE be a subset of castes, if for all castes c1,

c2∈V, c1 and c2 are not conflict to each other, i.e. c1↑ c2 is
not true, then we say that the caste set V is consistent. For
an agent a and moment t, if CASTEA(a,t) is consistent, we
say that agent a is consistent on its casteships at moment t.
If agent a is always consistent on its casteships at all time
moments in its run, we say that agent a is coherent.

For example, if the university does not permit any
student to be an undergraduate and postgraduate
simultaneously, then the castes undergraduate and
postgraduate are exclusive to each other. Hence, the caste
set {undergraduate, postgraduate} is not consistent. It is
obvious that the exclusiveness relationship between castes
is reflexive, symmetric, but not transitive. As the casteship
of an agent can change from time to time and agent is
possible to join any caste in its reachable castes set, agents
should avoid being inconsistent on its castes during its run.
Therefore, since {undergraduate, postgraduate} is
inconsistent, the agent that binds to undergraduate must
firstly quit the caste undergraduate before it joins the caste
postgraduate.
Definition7. For agent a in MAS, a is called adaptive, if
and only if, there are time moments t1 and t2 in T (t1≠ t2)
such that CASTEA(a,t1) ≠ CASTEA(a,t2) or CASTEI(a,t1) ≠
CASTEI(a,t2). Otherwise, agent a is called static.

In the above example, agent Alex is a typical adaptive
agent.
Lemma1. Let t0 be the moment that agent a is created, if
CASTE(a,t0) is consistent and a is a static agent, then agent
a is coherent. 1

4.2. Formalizing Dynamic Binding Mechanism

In this section, we formally define the dynamic binding
mechanism and investigate its properties. Formally, we
write “M |= r, t ϕ” to denote that the model M of MAS and
its run r satisfies formula ϕ at moment t, and “ |= ϕ” to
denote that formula ϕ is valid for any model of MASs and
their runs at all time. Let “< >” be the dynamic operator to
represent action execution, intuitively, “<a: act>” indicates
that agent a takes action act. “U” is the until temporal
operator and “ψUϕ” means that ϕ will be eventually
satisfied and before that ψ is satisfied. “●” denotes the next
temporal operator.
Definition8. Formally, the semantics of the above temporal
operators are defined as follows.
− M|= r, t ψUϕ iff ∃t′∈T: (t≤t′) and (M |= r,t′ ϕ) and (∀t′′:

t ≤ t′′ < t′ ⇒ M |= r,t′′ψ)
− M|= r, t ●ϕ iff M|= r, t+1 ϕ
Definition9. M|=r, t <a: join(c)> iff c∉CASTE(a, t) and
CASTEA(a, t+1)=CASTEA(a,t)∪{c} and CASTEI(a, t+1) =
CASTEI(a,t)

Definition 9 means that agent a executes action “join(c)”
at moment t successfully, if and only if at moment t, c is not
the caste of agent a, and at moment (t+1) agent a actively

1 For the sake of space, the proofs of the theorems and
lemma in the paper are omitted.

binds to castes c, and the action execution will not change
the inactive castes of agent a. A number of special
predicates are introduced to specify the castes of agent and
their status. “BindCaste(a, c)” means that agent a binds to
caste c, “Active(a, c)” denotes that agent a binds to caste c
and it is in active status. “Inactive(a, c)” means that agent a
binds to caste c and it is in inactive status. Formally, their
semantics are defined as follows.
Definition10. For all agents a, castes c and moments t,
− M |= r,t BindCaste(a, c) iff c∈CASTE(a, t)
− M |= r,t Active(a, c) iff c∈CASTEA(a, t)
− M |= r,t Inactive(a, c) iff c∈CASTEI(a, t)
Theorem1. join operation has the following properties.
(1) |= <a: join(c)> →●(Active(a, c))
(2) |= <a: join(c)> ∧ Inactive(a, c1)→ ●Inactive(a, c1)

Property (1) means that if agent a joins some caste c at
moment t, then the agent will bind caste c actively in the
next moment. Property (2) means that the join operation
will not change the inactive castes of agent.
Definition11. M |= r, t <a: quit(c)> iff c∈CASTEA(a, t) and
CASTEA(a, t+1)=CASTEA(a,t)\{c} and CASTEI(a, t+1) =
CASTEI(a,t)

Agent a quits caste c at moment t, if and only if, agent a
binds to caste c actively at moment t, and at moment (t+1)
agent a unbinds to castes c and the action execution will not
change the inactive castes of agent a.
Theorem2. quit operation has the following properties.
(1) |= < a: quit(c)> → ● (¬BindCaste(a, c))
(2) |= < a: quit(c)> ∧ Inactive(a, c1)→ ●Inactive(a, c1)

Property (1) manifests that if agent a quits some caste c,
then the agent will unbind to the caste c when action is
completed. Property (2) means that the quit operation will
not change the inactive castes of agent.
Definition12. M |= r, t <a: deactivate(c)> iff
c∈CASTEA(a, t) and CASTEA(a,t+1)=CASTEA(a,t)\{c}
and CASTEI(a,t+1)=CASTEI(a,t) ∪ {c}

Agent a deactivates caste c at moment t, if and only if,
agent a binds to caste c actively at moment t, and at
moment (t+1) the status of caste c will be changed from
active to inactive.
Theorem3. deactivate has the following properties
(1) |= <a: deactivate(c)> → Active(a, c)
(2) |= < a: deactivate(c)> → ● (Inactive(a, c))

Property (1) means if agent a deactivates some caste c,
then the caste c must be bound actively. Property (2) shows
if agent a deactivates some caste c, then the state of caste c
will be changed to inactive when the action is completed.
Definition13. M |= r, t < a: activate(c)> iff
c∈CASTEI(a, t) and CASTEI(a,t+1)=CASTEI(a,t)\{c} and
CASTEA(a,t+1)=CASTEA(a,t) ∪ {c}

Agent a activates some caste c at moment t, if and only
if, agent a binds caste c inactively at moment t, and at
moment (t+1) the state of caste c will be changed from
inactive to active.
Theorem4. deactivate has the following properties.

(1) |= <a: activate(c)> → Inactive(a, c)
(2) |= <a: activate(c)> → ●(Active(a, c))

Property (1) means that if agent a activates caste c, then
the caste c must be bound to inactively. Property (2) shows
that if agent a activates caste c, then the state of caste c will
be changed from inactive to active. We assume that there is
no other actions in agents except join, quit, deactivate and
activate that can change the casteships of an agent to any
caste. Formally, for any agent a, caste c, action act and time
moment t, if M|= r, t <a: act> and act∉{join, quit,
deactivate, activate}, then CASTEI(a, t) = CASTEI(a,t+1)
and CASTEA(a, t) = CASTEA(a,t+1)).
Definition14. An agent a is rational about caste operations,
if and only if, it satisfies the following properties.
(1) M|= r,t <a: join(c)> → M|= r,t ¬BindCaste(a, c)
(2) M|= r,t <a: quit(c)> → M|= r,t Active(a, c)
(3) M|= r,t <a: deactivate(c)> → M|= r,t Active(a, c)
(4) M|= r,t <a: activate(c)> → M|= r,t Inactive(a, c)

Formula (1) means that when an agent intends to join a
caste, then the caste should not be bound by the agent.
Formula (2) states that when an agent intends to quit a
caste, the agent should have already actively bound to the
caste. Formula (3) means that when an agent intends to
deactivate a caste, the agent should have already actively
bound to the caste. Formula (4) states that when an agent
intends to activate a caste, then the caste should be already
bound to inactively by the agent.
Definition15. An agent a is faithful, if and only if, agent a
intending to join caste c at some moment t implies that the
caste c is directly reachable for agent a at moment t.

Note that, an agent can only take actions defined by the
castes that the agent actively binds, i.e., for any agent a,
action act and moment t, M|= r,t <a: act> ⇒ ∃c:
c∈CASTEA(a,t) and act∈Ac.
Lemma2. For any faithful agent a, caste c and moment t, if
c∉Reach(a,t) and c∉CASTE(a,t), then for any t′ > t:
c∉CASTE(a, t′).

The lemma states that if a caste is not reachable for agent
a at some moment t, then the agent is impossible to bind the
caste in its future run.
Definition16. An agent a is consistent about caste
operations, if and only if, it satisfies the following
conditions. (1) if agent a intends to join caste c at moment t,
then there is no caste c′ ∈CASTEA(a,t): c↑ c′; (2) if agent a
intends to activate caste c at moment t, then there is no
caste c′ ∈CASTEA(a,t): c↑ c′.
Lemma3. For any faithful agent a and moment t, if
Reach(a,t) is consistent, then the agent will be consistent in
its future run.
Lemma4. For any agent a, caste c and moment t, if agent a
execute action “join(c)” and there is no caste c′
∈CASTEA(a,t): c↑ c′, then agent a is consistent when the
“join” action is completed; if agent a executes action
“activate(c)” and there is no caste c′ ∈CASTEA(a,t): c↑ c′,
then agent a is consistent when the “activate” action is
completed.

The lemma shows that if an agent intends to join or
activate a caste and the caste to be joined or activated does
not conflict with any castes that agent a has already been
actively bound to, then when the operation is completed the
agent is consistent.
Definition17. An agent follows the dynamic binding
mechanism in its run, if and only if, the agent is rational,
faithful and consistent about the caste operations. If all
agents in MAS follow the dynamic binding mechanism,
then we say that the MAS follows the dynamic binding
mechanism, such MAS is abbreviated as MASDBM.
Definition18. We call that an agent a is reachable at
moment t, if and only if, for any caste c∈ CASTE(a, t), ∃t′
< t: M|= r,t′ <a: join(c)> and c∈DReach(a,t′).
Definition19. For any caste operation act∈{join, quit,
activate, deactivate} and an agent a, if agent a are always
consistent and reachable based on the act operation, then
we say that the caste operation act is safe for agent a.
Theorem5. If agent a follows the dynamic binding
mechanism, then the join, quit, activate and deactivate
caste operations are safe for agent a, i.e., for any caste
operation act∈{join, quit, activate, deactivate}, caste c and
moment t, (1) if M|= r,t <a: act(c)> and agent a is consistent
at moment t, then when act is completed agent a is still
consistent ; (2) if M|= r,t <a: act(c)> and agent a is reachable
at moment t, then when act is completed agent a is still
reachable.

5. Conclusion
 Dynamic agents that typically exhibit various behaviors
in their lifetime are widespread in complex MASs. In the
past years, many attempts have been made to support the
development of such agents. However, it is still a challenge
and open problem in the literature of AOSE. In this paper,
we present an approach of dynamic binding mechanism to
model and design dynamic agents. We adopt caste as
abstraction to specify agents’ behaviors and as modular unit
to implement dynamic agents. Our approach permits agents
to bind multiple castes and the caste that agent binds can be
in active or inactive state. The dynamic behaviors of agents
are interpreted and realized as the change of agents’
casteships in their lifecycles, which can be specified and
implemented by four atomic operations on castes. The
semantics of dynamic binding mechanism and caste
operations are rigorously defined based on the temporal
logic integrating with dynamic operators. Some important
properties of dynamic binding mechanism are formally
specified and discussed. Our approach to dynamic agents
differs from the approach proposed in [2] as we permit
multiple castes to be bound at a moment and the join
operation actually integrates with the enact and activate
operations. There is no explicit gap between caste
specification and agent design.

Acknowledgements. The authors acknowledge supports
from Natural Science Foundation of China (60373022,
90612009), 973 project of China (2005CB321802), 863

project of China (2005AA113130), and science foundation
of Huawei Corporation.

References

1. Xinjun Mao, Eric Yu, Organizational and Social
Concepts in Agent oriented Software Engineering,
Proceedings of AOSE, LNCS 3382, 1-15, 2005.

2. Mehdi Dastani, M. Birna van Riemsdijk, Joris Hulstijn,
Frank Dignum, John-Jules Ch. Meyer, Enacting and
Deacting Roles in Agent Programming, Proc. of AOSE
V, LNCS 3382, 189-204, 2005.

3. Shan, L. and Zhu, H., CAMLE: A Caste-Centric
Agent-Oriented Modelling Language and
Environment, Proc. of Software Engineering for Multi-
Agent Systems III: Research Issues and Practical
Applications, LNCS 3390, 144-161, Springer, 2005.

4. Zhu, H., and Lightfoot, D., Caste: A step beyond object
orientation, Proc. of JMLC, LNCS 2789, 59-62, 2003.

5. F. Zambonelli, N. R. Jennings, and M. Wooldridge,
Developing Multiagent Systems: The Gaia
Methodology, ACM Transactions on Software
Engineering Methodology, 12(3), 317-370, 2003.

6. N.R.Jennings, An agent-based approach for building
complex software systems, Communication of ACM,
44(4), 35-41, 2001.

7. E. Yu, Agent-Oriented Modelling: Software Versus the
World, Proc. Of AOSE, LNCS 2222, 206-225, 2001.

8. J. Ferber and O. Gutknecht. A meta-model for the
analysis and design of organizations in multi-agent
systems, Proc. of 3rd International Conference on
MultiAgent Systems, 128-135, 1998.

9. Franco Zambonelli, Andrea Omicini, Challenges and
Research Directions in Agent-Oriented Software
Engineering, Autonomous Agent and Multi-Agent
Systems, 9, 253-283, 2004.

10. Michael Luck, Peter McBurney and Chris Preist, Agent
Technology: Enabling Next Generation Computing, A
Roadmap for Agent-based Computing, http://www.
agentlink.org, 2005.

11. F Giunchiglia, John Mylopoulos and A Perini, The
Tropos Development Methodology: Processes, Models
and Diagrams, Proc. Of AAMAS, 35-36, 2002.

12. Zhu Hong, A formal specification language for agent-
oriented software engineering, Proc. of AAMAS, 1174
-1175, 2003.

13. Thomas Juan, Adrian Pearce and Leon Sterling,
ROADMAP: Extending the Gaia Methodology for
Complex Open System, Proc. of AAMAS, 3-10, 2002.

14. Bauer, B., Muller, J.P., and Odell, J., Agent UML: a
formalism for specifying multiagent software systems,
Proc. Of AOSE, LNCS 1957, 91-103, 2001.

15. J. Odell, H. V. D. Parunak, S. Brueckner, J. Sauter.
Temporal aspects of dynamic role assignment, Proc. Of
AOSE, LNCS 2935, 201-213, 2003.

16. Wang, J., Shen, R., Zhu, H. Agent Oriented
Programming based on SLABS, Proc. of COMPSAC,
2005.

