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1 Introduction

Agent orientation has recently emerged as a new software
development paradigm for developing complex software
systems that operates in a dynamic environment such
as the internet (Jennings, 2001). Several industrial
experiences have testified to the advantages and potentials
of using agents in manufacturing processes, web services
and web-based computational markets, and distributed
network management. Case studies have demonstrated the
possibility of exploiting agents and Multi-Agent Systems
(MAS) as enabling technologies for a variety of future
scenarios, i.e., pervasive computing, grid computing,
semantic web, web service, etc. (Zambonelli and Omicini,
2004). A wide range of potential applications of agent
technology are also predicated in Luck et al. (2005). From
the software engineering point of view, agent orientation
provides a higher level of abstractions and a complete set of
metaphors for information system modelling that are more
suitable than object orientation to tackle the complexity in
the development of software systems where autonomous
behaviours in dealing with dynamic environment are
essential.

In the past few years, with the increasing acceptance
and expectation of agent orientation as an emerging
software engineering paradigm, there have been a great
number of efforts in the research on developing
methodologies for complex MAS. Agent-Oriented Software
Engineering (AOSE) has become an active research area in
agent-based computing (Zambonelli and Omicini, 2004).
A number of methodologies, modelling languages,
programming languages and CASE tools or environments
have been proposed, such as Gaia (Zambonelli et al., 2003),
ROADMAP (Juan et al., 2002), AUML (Bauer et al., 2001),
Tropos (Giunchiglia et al., 2002), CAMLE (Shan and Zhu,
2005; Zhu and Shan, 2005; Zhu, 2006) and SLABS
(Zhu, 2001, 2003a, 2003b), etc.

Nevertheless, the research in AOSE is still in its early
stages. Several challenges need to be faced before AOSE
can deliver its promises and become a widely accepted and
practically usable paradigm for the development of complex
systems (Zambonelli and Omicini, 2004) that are typically
open, dynamic, unpredictable, hierarchically structured
but confined by global constraints (Mao and Yu, 2004).
We believe that, to be a successful general-purpose
software engineering paradigm, new language facilities and
computational mechanisms must be developed to enable
high level abstractions to be smoothly and naturally

transformed into concrete language facilities and efficiently
implemented in a systematic, robust, reliable and repeatable
fashion (Shan and Zhu, 2005). Moreover, the methods must
be universally applicable.

A key feature of agents that enables them to deal
with dynamic environments is their adaptation capability.
For example, in a social organisation, an agent may be
assigned to different roles at different times during an
execution and thus performs different functions and
demonstrates different behaviours to satisfy the design
objectives (Odell et al., 2002). In the sequel, we will use
adaptive agents to denote agents that are capable of
adapting to different behaviours at run time. Such agents
can be found in many applications such as enterprise
information systems, electronic commerce, medical care
systems, and military systems. Therefore, mechanism and
language facilities should be developed to support the
specification, analysis, design and implementation of
adaptive agents and MAS.

However, existing agent-oriented methodologies have
not provided enough supports to develop such systems that
naturally take such advantages, especially the modelling,
specification, design and implementation of such dynamic
behaviours in a systematic way. It is no surprise that
it is extremely difficult to develop MAS with dynamic
behaviours (Zhu, 2003a, 2003b). This paper addresses this
problem by presenting an adaptive casteship mechanism
based on the language facility caste proposed in Zhu and
Lightfoot (2003), proposing a graphical notation and a
number of rules for modelling adaptive behaviours
and checking models’ properties (e.g., conflict and
inconsistency) of adaptive agents in MAS, and discussing
how properties of such systems can be reasoned based on
the formal definition of the adaptive casteship mechanism
and the extended language facility.

The remainder of the paper is organised as follows.
Section 2 describes an example of adaptive agents that is
used throughout the paper to illustrate our proposed
concepts, mechanism and facilities. Section 3 briefly
reviews the basic concepts and methods of the caste-centric
methodology of agent-oriented software development that is
related with the adaptive casteship mechanism. Section 4
proposes the adaptive casteship mechanism to enrich the
caste language facility, formally defines the mechanism and
the semantics of its operations on castes. Section 5 presents
the approach to reasoning about the adaptive behaviours of
agents. Section 6 proposes a graphical notation of caste
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transition diagram and a number of consistency rules for
modelling and analysing adaptive agents based on the
adaptive casteship mechanism. Section 7 illustrates our
approach with an example. Section 8 gives a comparison
with related work. Section 9 concludes the paper with a
discussion of future works.

2  An example of adaptive agents

In order to understand adaptive agents and the requirements
on adaptive casteship mechanism, in this section, we
examine an example of an information system to illustrate
the basic characteristics of adaptive agents and discuss
the issues in modelling and designing such systems.
The example will be used throughout the paper to
illustrate the proposed concepts, mechanism and approach.
A complete study of the example using the adaptive
casteship mechanism and modelling language facilities
proposed in this paper will be given in Section 5.

Suppose that an information system is to be developed
for a wuniversity to support the management of the
university’s members such as students, staff, secretary and
related affairs such as registration, course selection,
authorisation, etc. The system will provide personal
assistances to the members of the university so that each
member can participate in the operations of the university
efficiently and effectively. Depending on the type of roles
that a member plays in the university, such as a student
or a staff member, a member can take certain actions in the
operation of the information systems, access a certain subset
of the information stored in the systems, and must obey a
certain set of rules that confines the member how to fulfil
his tasks. Each member in the university is therefore
supplied with a ‘personal assistant’, which is actually a
software agent that stores the personal information about the
member, the permitted actions that the member can take
according to his role, the behaviour rules that describe how
members behave in the university, as well as the personal
preferences and private information.

A member of the university is inevitably related to other
members of the university. Some of the relationships
between members are determined by the roles that the
members play rather than just a personal issue. Therefore,
the personal assistant agent must also support the
collaborations between the members. Such a structure
of the information systems that consists of a number of
personal assistant agents fits well with the current trend
in the development of computing technologies and their
applications represented by the rapid growth of mobile
computing devices such as handhold computers, notebook
computers, mobile phones with computing capabilities,
ubiquitous computing through the internet platform, etc.

In order to understand the dynamic and adaptive
behaviours of agents, now let us consider the following
specific scenarios for the members of the university in the
example.

The behaviour of the agent depends on the roles that it plays
in the organisation

Obviously, the behaviours of undergraduate and
postgraduate students in the university are different.
For example, when a student, say Alex, acts as an
undergraduate student, he can take undergraduate courses
but can not take courses only for graduate students.
Registering as a Teaching Assistant (TA) is only permitted
for postgraduate students and prohibited for undergraduate
students.

A member of the university may change roles while
remaining as a member of the organisation

As in almost all organisations, a member in the organisation
often changes role in order to adapt to the organisation
context and exhibit flexible behaviours. For example,
Alex is going to graduate from the university. After
graduation, he gets an offer from the university to study for
a Master degree. The graduation does not mean that Alex
will change his identity or leave the university. Actually,
he is still a member of the university. It just manifests that
he will play a new role in the organisation of university.
By changing role, he will no longer be an undergraduate but
a postgraduate. Therefore, by changing role, Alex will
change his behaviours in the university organisation context.
Alex’s personal assistant agent must be able to help Alex to
change his roles in the organisation of university during its
lifecycle.

A member of the university may play multiple roles at the
same time

As in almost all organisations, a member in the organisation
often plays multiple roles at some moment in order to
exhibit diversity of behaviours. For example, when Alex,
becomes a postgraduate, he may also take a job as
TA or Research Assistant (RA), which is a part of his offer
of the postgraduate studentship. Therefore, in his first year,
Alex is not only a postgraduate but also a TA. Alex’s
personal assistant agent must be able to help Alex to play
two or more different roles.

The changes of roles occur not only as moving from one
role to another, but also as in the form of temporarily
leaving a role and then returning to the role

As in almost all organisations, a member in the organisation
often temporarily leaves a role and then returns to the role,
which means that the behaviour specification of the role will
be suspended and unavailable when the agent leaves from
the role, and will be resumed when the agent returns to the
role. For example, after one year’s study, Alex decides to
take one year’s industrial placement job in order to gain
some work experience. He thus leaves the university for one
year and then comes back to school and carries on his study.
This does not mean that Alex will retreat from the role of
postgraduate student forever. Instead, during the work
placement year, he suspends his behaviour as postgraduate
temporarily. He is officially still a registered postgraduate
during this year, but he will not go to the university to take
courses or conduct researches. Alex’s personal assistant
agent must be able to help Alex to suspend by keeping all
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personal information such as the study program, scores
of passed or failed modules, credits earned, etc., and
suspending the permitted activities as well as some
restrictions on his performances while he is on leave, and
resume his study by reactivating such information and
activities after his returning to the university.

The above scenarios substantially exhibit the dynamic
and adaptive behaviours of agents in many applications.
In order to support the development of such applications,
the method should be proposed to model, analyse and
design the above dynamic and adaptive behaviours in a
natural way.

3 Caste-centric methodology

This section briefly reviews the caste-centric methodology
of agent-oriented software development and its basic
concepts that are related to the adaptive -casteship
mechanism presented in the paper. More details can be
found in Zhu (2003a), Shan and Zhu (2006) and
Shan et al. (2006).

3.1 Conceptual model

In our conceptual model, the basic unit that forms a system
is agent. An agent is defined as computational entity that
encapsulates data, operations and behaviours, and situates in
its designated environments.

Agent = <Data, Operations, Behaviour> g,.i.onment-

Here, Data represents an agent’s state. Operations are the
actions that the agent can take. Behaviour is described by a
set of rules that determine how agent behaves, including
when and how to take actions and change state in the
context of its designated environment. By encapsulation,
we mean that an agent’s state can only be changed by agent
itself. Consequently, a MAS consists of agents and nothing
but agents, as stated in the following.

MAS = {Agent ,}, n € Integer.

The classifier of agents is called caste. The notion of caste
was originally presented in SLABS intending to deal with
the limitation of object technology (Zhu, 2003a, 2003b).
Here, we regard caste as the basic abstraction to specify
agents’ behaviours and the elementary modular unit to
design and implement MAS. As a modular language
facility, caste serves as a template that describes the
structure and behaviour of agents.

A state space defined by a caste is represented as a set of
state variables. Each action consists of an action identifier
and may contain a number of parameters. The state space
and the set of actions are usually divided into two kinds:
visible ones and invisible (or internal) ones. When an agent
takes a visible action, it generates an event that can be
observed by other agents in the system. An agent taking an
internal action generates an event that can only be perceived

by its components. Similarly, the value of a visible data can
be observed by other agents, while the value of an internal
data can only be observed by its components. For the sake
of simplicity, in this paper, we are not concerned with the
visibility issues.

While a set of castes represent various types of
participants, the structure of the problem domain is captured
with certain relationships between castes, including
part-whole relations, inheritance (is-a relation) and
migration (membership-shift relations). In particular, there
are two types of migration relations, i.e., migrate and
participate. A participate relation from caste 4 to caste B
means that agents of caste 4 can join caste B without
quitting from caste 4. A migrate relation from caste 4 to
caste B means that agents of caste 4 can join caste B and
quit from caste 4.

Although the relationship between agents and castes is
similar to the relationship between object and class and the
relationship between data and type, none of the terms like
instance, member, classifier and type that are commonly
used to represent the relationship between object and class
accurately represents the relationship between agent and
caste. The main difference is that an agent can take actions
to join a caste or quit from a caste at run time, and
consequently, it obtains or loses the structural and
behavioural features defined by the caste. Agents’ capability
of dynamic joining and quitting from castes is called
dynamic casteship (Zhu, 2003a).

Based on the conceptual model of MAS presented
above, a caste-centric agent-oriented methodology has
been developed for the development of MAS. It consists of
a process model called growth model and a set
of agent-oriented languages and software tools that
support various development activities in the process.
In requirement analysis phase, a modelling language and
environment CAMLE (Shan and Zhu, 2005) supports the
analysis and design of MAS. The semi-formal models in
CAMLE can be automatically transformed into formal
specifications in SLABS (Zhu, 2001, 2003a, 2003b), which
is a formal specification language designed for formal
engineering of MAS. In implementation phase, MAS are
implemented directly in an agent-oriented programming
language called SLABSp (Wang et al., 2005).

3.2 Modelling MAS with CAMLE

In our methodology, modelling aims at representing the
users’ requirements with a set of agents at various
granularities and organising the agents into an information
system. The key activities in the modelling and analysis
phase include the following.

e  First, identify the agents and castes of agents in the
system as well as the relationships between them.
The artifact produced in this phase is a caste model
for the system from the perspective of system
architecture.
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e Second, identify the agents’ interaction patterns in
various scenarios, and produce a set of collaboration
models for the system from the perspective of dynamic
behaviour.

e  Third, elaborate and specify how its agents perform
actions and/or change states in typical scenarios for
each caste so that a set of behaviour rules can be
assigned to the caste. The artifact produced in this
phase is a set of behaviour models, each associated to a
caste in the system.

The result of the modelling is a system model comprising a
set of diagrams that represent the system from various views
and at different levels of abstraction.

3.3 Specifying MAS with SLABS

One of the most appealing features of agent technology is its
natural way to modularise complex systems in terms of
multiple interacting autonomous components. This feature
is supported by the language facility caste in SLABS for
specifying MAS. It bridges the gap between graphic
modelling and implementation in the development process
of agent-oriented information system. At the specification
phase, a system model in CAMLE as the output of the
modelling phase can be transformed into formal
specification of the system. The specification not only lays
the ground for future system implementation, but also
facilitates further formal analysis of the system design.
The formal definition of the SLABS language and its
meta-model can be found in Zhu (2003a). Figure 1 shows
the format of caste specification in SLABS.

Figure 1 Caste specification in SLABS

Name <= castes (instantiation)
Visible state-variables and actions

Invisible state-variables and actions

| Environment description | Behaviour-specification

In the specification language SLABS, a behaviour rule is
specified in the form of “pattern > event, [scenario]
[where pre-cond]”, where scenario and pre-condition are
optional. The pattern in a rule describes the pattern of the
agents’ previous behaviours. The scenario part describes the
situation in the environment in terms of the behaviours of
other agents in its environment. The where-clause is the
pre-condition of the action to be taken by the agents.
The event describes the action to be taken or state to be in
when the scenario happens and the pre-condition is
satisfied. In modelling language CAMLE, behaviour rules
are described by behaviour diagrams that define the
scenarios, patterns and events in various types of nodes
linked by arrows (Shan and Zhu, 2005). In programming
language SLABSp, behaviour rules are expressed in a
structural control statement that consists of a list of
scenario expression and action statement pairs so that the

statement is executed only if the scenario expression is true
(Wang et al., 2005).

3.4 Implementing MAS with SLABSp

A distinctive feature of our agent-oriented methodology of
information systems is that we aim at the direct
implementation of information systems with a novel
agent-oriented programming language based on caste
language facility. Such a programming language can
significantly narrow the gap between specification
and implementation. We have designed and implemented
an agent-oriented programming language SLABSp
(Wang et al., 2005), which is based on Java and extends
Java with three key concepts and language facilities,
i.e., caste, scenario and environment description. The design
and implementation of SLABSp demonstrates that caste and
scenario are feasible as programming language facilities.

3.5 Developing adaptive agents with dynamic
casteship

It is worth noting that the notion of caste as the
encapsulation of data, operation, behaviour rules and
environment description in terms of the agents in
collaboration meets the requirements induced from the
structures and functionalities of the agents and MAS
described in the example in Section 2.

For the first scenario described in the example where
the behaviour of agent depends on the roles that it plays
in the organisation, the structure and behaviour specification
of a role can be specified and encapsulated as a caste.
This means that caste can act as a fundamental abstraction
and modular unit to describe what state and actions that an
agent has, what environment that the agent is situated in
and what behaviour rules that the agent should respect when
the agent plays some role. For the second scenario, Alex
will no longer be an undergraduate since then and start to be
a postgraduate. This means he must give up certain access
to the information, certain actions that he was granted as an
undergraduate student as well as certain relationships with
other members of the organisation such as his personal
tutor, etc. This will also give him some new capability of
actions, such as the access to the graduate’s labs, new
personal information, a master degree student ID number,
and new relationships to other members, such as a professor
as his supervisor, etc. The change of Alex’s role in the
university must also be reflected in his personal assistant
software agent in terms of the changes of the restrictions on
his access to the information system, the set of permitted
actions, and the set of rules that confine his activities, etc.
What is more important is that the personal assistant agent
must carry over all the personal information such as his
academic records, personal details and personal preferences,
etc. rather than start from scratch. The dynamic change of
roles that agents play can be modelled by the language
facilities proposed in Shan and Zhu (2005). Suppose that
each role in the university information system is modelled
by a caste, which encapsulates the data related to the role,
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the actions the agent of the role can take, the set of
behaviour rules that the agent playing the role must obey
and the agents in collaboration with. Moving from one role
to another can be modelled by changing the agent’s
casteships to a caste to another caste. The CAMLE-like
diagram in Figure 2 illustrates how dynamic casteship can
be used to model role changes from undergraduate to
postgraduate, where the dash line arrow is the migration
from one caste to another. For the third scenario in the
example in Section 2, playing multiple roles at the same
time can be modelled as agent with some casteship(s)
participating another caste. This means that agent can bind
to two or more castes by participating.

Figure 2 Illustration of the modelling of role changes in dynamic

casteship
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However, the caste model presented in Figure 2 has
some drawbacks. Note that, the caste that represents
undergraduate students is split into two castes in order to
enable a part of the information that Alex gains in the study
to be remembered in his whole lifetime. Similarly, the caste
of postgraduate students is also split into two. In fact, many
other castes should also have to be split into two, such as the
TA and Work Placement caste. It is quite universal that the
participation in a role will leave memorable information and
knowledge. Splitting a caste into two parts to model what
are memorable and what is forgettable has two particular
disadvantages in the modelling and designing adaptive
agents. First, it results in an unnecessarily higher complexity
of the model. The level of abstraction is not high enough to
enable software developers to concentrate on more
important issues. Second, it is structurally awkward and
unnatural to view an agent as a compound of two parts,
one as the forgettable and that other as remembered.
Another problem that must be addressed in the
modelling and designing adaptive agents is that while
new roles can be adapted by an agent during execution,
two roles may have conflictions of interests and conflictions
in the behaviour rules, etc. For example, in the university
information system, it is prohibited for any student to
play undergraduate and graduate roles at the same time.
The inconsistency may occur when agent binds to multiple
roles. The modelling and design method should support the
identification and resolution of such conflictions.

Addressing these problems, this paper proposes an
adaptive casteship mechanism as an extension to the
dynamic casteship mechanism. We will also investigate how
to analyse the consistency of adaptive MAS by defining a
set of consistency notions, devising a graphic notation to
represent transitions between configuration states of
adaptive agents and imposing consistency constraints on the
configuration states.

4 Adaptive casteship mechanism

This section formally defines the adaptive -casteship
mechanism.

4.1 Informal introduction to the mechanism

In the proposed adaptive casteship mechanism, an agent can
not only change its casteship to a caste dynamically,
but also distinguish the states of the casteship as either
active or inactive. An agent can take actions ‘activate’ and
‘deactivate’ to change the state of casteship at run time.
Figure 3 shows the transition of the agent’s casteships
and their states. The following explains the meanings of the
states of casteship.

Figure 3 The adaptive casteship mechanism
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" deactivars~a
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Active casteship

An agent has an active casteship to a caste means that the
agent obtains all the structural and behavioural features
defined by the caste, and these structural and behavioural
features will influence the agent’s behaviour. In other
words, the agent can take actions defined in the action part
of the caste according to the behaviour rules defined by the
caste, which can be a change to the agent’s internal state
that belongs to the part of the state space defined by the
caste. When agent takes action to join a caste, the casteship
will initially be active.

Inactive casteship

An agent has an inactive casteship to a caste means that the
agent obtains all the structural and behavioural features
defined by the caste, but can not change the state variables
and take actions defined in the caste while it still holds
its values of the state variables defined by the caste.
The behaviour rules of the inactive caste will not affect the
agent’s behaviour. It does not observe the agents in its
environment defined by an inactive caste either. However,
the state variables defined by an inactively bounded caste
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are accessible. Moreover, when the agent becomes actively
casteship to the caste again, the values of the state variables
are resumed to that when the agent’s casteship to the caste
last changed to inactive.

The adaptive casteship mechanism provides a natural
way to model agents’ adaptive behaviours in complex
systems. It is more suitable than dynamic -casteship
mechanism for modelling, analysis and realisation of the
adaptive agents such as one defined in Section 2.

It is worth noting that an agent’s action of activating,
inactivating, joining or quitting a caste is also determined by
the behaviour rules defined by the caste that the agent
currently has active casteship to. Therefore, the behaviour
rules specified in each caste explicitly declare what castes
the agent can join and quit as well as activate and deactivate
and in what situation to do so. In the university example,
Alex graduates and becomes a postgraduate student must be
the result of executing a behaviour rule that enables an
undergraduate to quit from the caste Undergraduate and to
join the caste of Postgraduate. His suspension/resuming of
study must be the result of executing behaviour rules of the
Postgraduate caste that enables him to deactivate/activate
the casteship to Postgraduate.

4.2 Formal model of Multi-Agent Systems (MAS)

In Zhu (2003a), the caste-centric formal model of MAS has
been formally defined. The following extends the formal
model to enable the adaptive casteship mechanism to be
specified. For the sake of simplicity, we have omitted some
aspects of the original model, such as the caste inheritance
and scenario definition, so that we can focus on the adaptive
casteship mechanism.

In our meta-model of MAS, agent is defined as an
autonomous and persistent computational entity that is
situated in certain environment and can take actions
in order to fulfill its design objectives. Each agent consists
of four parts: data, actions, behaviours and environments.
That is, the structure of an agent is a 4-tuple, i.e.,
Agent =<Dy, Ay, By, E/>, where D, represents an agent’s
state, A, is the actions that agent can take, B, is the
behaviour rules that determine how agent behaves in the
context of its designated environment E 4. It is worth noting
that these parts may change during the execution of the
agent. Such changes are realised by the adaptive casteship
of an agent to castes.

A caste defines a set of structural features and behaviour
patterns for agents. A caste also contains four parts. Thus,
it is a 4-tuple, i.e., Caste =<D, A, B, E>, where D defines
a state space that the agents can have, A defines a set
of actions that agents can take for the operation on the
state space, B defines a set of behaviour rules specifying
how agents behave in terms of when to take an action and
how to update its state in the context of their designated
environment, and £ defines an environment that consists
of a set of agents that have influence on agent’s behaviour.
When an agent holds a casteship to a caste, it obtains

the state space and the capability to take an action defined
by the caste, becomes in collaboration and influenced by
the agents specified in the caste’s environment definition
and must obey the behaviour rules specified in the caste.
For example, in the university example, we can identify
and define two castes to represent the roles of undergraduate
and postgraduate students, respectively. Each caste has its
associated data, actions, behaviour rules and environments.

Definition 1: A model M of MAS consists of two parts
<MAS, CASTE>, where MAS = {ay, ay, ..., a,} is a finite set
of agents and CASTE = {cy, ¢, ..., ¢} 1s a finite set of
castes.

Agents behave continuously and autonomously. A time
moment is an element in a time index set 7, which is
defined as the set of natural numbers. Let MAS, be the set of
agents in the system at time moment #. The casteship of
agent a at time moment ¢ to caste ¢ is denoted by a € (.
We write CASTE(a, t) to denote the set of castes that agent a
belongs to at moment ¢, i.e., CASTE(a,f)={c | a€,c}.
In our adaptive casteship mechanism, the castes that agent
binds may be either in active state or inactive state.
Therefore, we write CASTE"(a, £) to denote the set of active
castes that agent a belongs to at moment ¢, and CASTE(a, )
to denote the set of inactive castes that agent a belongs
to at moment ¢ Thus, CASTE(a,()= CASTE(a,1)
U CASTEX(a, f). We assume that CASTE*(a, f) N CASTE'
(a, 1) = O, for all agents a in MAS and time moments ¢. This
means that for at any moment 7, a caste that an agent binds
is either in active state or in inactive state.

An agent’s state space at some moment depends on the
castes that the agent binds to at that time moment and their
status. Let DAa,, = UycecasTEA@yDc denote the state spaces
of agent a at moment ¢ based on active castes that it binds to
at moment ¢, Dlaq, = Uycecastii@Dc denote the state spaces
of agent a at moment ¢ based on inactive castes that it binds
to at moment £. Similar to the above, we define AAaq,:
Ulce CASTEA(, n14c a8 the action set of agent a at moment ¢
based on active castes that it binds to at moment ¢,
A[av, = Ulce CASTEI (¢, 5} Ac the action set of agent a at moment
t based on inactive castes that it binds to at moment ¢.
In particular, we assume that for any caste ¢, 4. includes
join’, ‘quit’, ‘activate’ and ‘deactivate’ operations on
castes. Similarly, let B! ar = Uice CASTEA(aBe the behaviour
rule set of agent a at moment ¢ based on active castes that it
binds to at moment z, Blaﬂ, = Ulce CASTEI (a9} B¢ the behaviour
rule set of agent ¢ at moment ¢ based on inactive castes
that it binds to at moment ¢; EAa,,= Ulce casTEA@yEc the
environment of agent @ at moment ¢ based on active castes
that it binds to at moment ¢, E’L,,,=u{CE casTEI@Ee the
environment of agent a at moment 7 based on inactive castes
that it binds to at moment ¢.

Definition 2: The configuration of agent a at moment
t is based on the castes that it binds to and is defined
as S, =5, xs',, where s',,=D" x4, xB' ,xE",,
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denotes the configuration of agent a at moment ¢
based on active castes that it binds to, and
s'ay=D'yyx A"y x B\, x E',, denotes the configuration of
agent a at moment ¢ based on inactive castes that it binds to.

Let S, = {s.: | t =t for any moment ¢ in T, where ¢, is the
moment at which agent a is to be created} the set
of all possible configurations of agent a. The configuration
of MAS at moment ¢ is Syus, = [lucpas) So, We write
Smas=Ugeny Smas, to denote the set of all possible
configurations of MAS.

Definition 3: A run » of a MAS is a mapping from time 7 to
the set Sy/4s. The behaviour of a MAS is defined by the set R
of all possible runs. For any given run » of MAS, a mapping
r, from T'to S, is a run of agent a in the context of r, where
for any moment ¢, ,(¢) is the restriction of 7(¢) on S,. In the
sequel, we use R, = {r, | r € R} to denote the behaviour of
agent a in the system.

We assume that agent takes actions step by step, which
means if agent takes action act at moment ¢, then the action
will be completed at (¢ + 1) moment.

4.3 Formal definition of the adaptive casteship
mechanism

In this section, we rigorously define the adaptive casteship
mechanism and the semantics of caste operations. Formally,
we write ‘M |=,, ¢ to denote that the model M of MAS and
its run r satisfies formula ¢ at moment ¢, and ‘|= ¢’ to denote
that formula ¢ is valid for any model of MASs and their
runs at all time. Let ‘< >’ be the dynamic operator to
represent action execution, intuitively, ‘<a: ac>’ indicates
that agent a takes action act. ‘U’ is the until temporal
operator and ‘pU¢ means that ¢ will be eventually
satisfied and before that y/ is satisfied. ‘@’ denotes the next
temporal operator.

Definition 4: The semantics of the above temporal
operators are defined as follows.

e M=, wUpiff A e T: (¢ <) and M |=,, )
and (V" 1<t <t =>M=,,p)

e M=, 0¢iff M|=,,11 .

A number of special predicates are introduced to specify the
castes of agent and their status. ‘BindCaste(a, c¢)’ means that
agent a holds a casteship to caste ¢, “Active(a, c¢)’ denotes
that agent a’s casteship to caste c is active. ‘Inactive(a, c)’
means that agent a’s casteship to caste ¢ is inactive.
Formally, their semantics are defined as follows.

Definition 5: For all agents a, castes ¢ and moments ¢,
1 M |=,;BindCaste(a, c) iff c € CASTE(a, f)

2 M|=,,Active(a, ¢) iff c € CASTE(a, )

3 M|=,, Inactive(a, c) iff c € CASTE'(a, 1).

Definition 6: M|=,, <a: join(c)> iff

¢ & CASTE(a, t) and CASTE(a, t + 1) = CASTE"
(a, ) U {c} and CASTE'(a, t + 1) = CASTE'(a, 1)

Definition 6 means that agent @ executes action ‘join(c)’ at
moment ¢ successfully, if and only if, at moment ¢, ¢ is not
the caste of agent @, and at moment (¢+ 1) agent a’s
casteship to caste ¢ is active, and the action execution will
not change the inactive castes of agent a.

Theorem 1: join operation has the following properties.
1 |=<a:join(c)> —>e(Active(a, c))
2 |=<a:join(c)> A Inactive(a, c;) — ®Inactive(a, c;).

Property (1) in Theorem 1 means that if agent a joins some
caste ¢ at moment ¢, then the agent will hold a casteship
to caste ¢ actively in the next moment. Property (2) means
that the join operation will not change the inactive castes
of agent. The theorem follows Definitions 5 and 6
straightforwardly.

Definition 7: M |=,, <a: quit(c)> iff

c € CASTE"(a, ) and
CASTE*(a, t + 1) = CASTE"(a, t)\{c} and
CASTE'(a, t + 1) = CASTE(a, 1).

Agent a quits caste ¢ at moment ¢, if and only if, agent a
holds a casteship to caste ¢ actively at moment ¢, and at
moment (¢ + 1) agent a does not hold a casteship to castes ¢
and the action execution will not change the inactive castes
of agent a.

Theorem 2: quit operation has the following properties.
1 |=<a: quit(c)> — ® (=BindCaste(a, c))
2 |=<a: quit(c)> A Inactive(a, c1) — ®lnactive(a, c1)

Property (1) in Theorem 2 manifests that if agent a quits
some caste ¢, then the agent will unbind to the caste ¢
when action is completed. Property (2) means that the
quit operation will not change the inactive castes of agent.
The theorem follows Definitions 5 and 7 directly.

Definition 8: M |=, , <a: deactivate(c)> iff

c € CASTE"(a, t) and
CASTE*(a, t + 1) = CASTE"(a, )\{c} and
CASTE'(a, t + 1) = CASTE'(a, ) U {c}.

Agent a deactivates caste ¢ at moment ¢, if and only if, agent
a holds a casteship to caste ¢ actively at moment ¢, and at
moment (¢ + 1) the status of caste ¢ will be changed from
active to inactive.

Theorem 3: deactivate operation has the following
properties

1 |= <a: deactivate(c)> — Active(a, c)

2 |=<a: deactivate(c)> — o (Inactive(a, c)).
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Property (1) in Theorem 3 states that if agent a
deactivates a caste c, then the agent must hold a casteship
to ¢ actively before deactivation. Property (2) shows
that if agent a deactivates some caste ¢, then the state
of its casteship to ¢ will be changed to inactive when
the action is completed. The theorem follows Definitions 5
and 8 directly.

Definition 9: M |=, , <a: activate(c)> iff

c € CASTE'(a, f) and CASTE (a, t + 1) = CASTE'(a, {)\{c}
and CASTE(a, t + 1) = CASTE"(a, 1) U {c}.

Agent a activates some caste ¢ at moment ¢, if and only if,
agent a holds a casteship to caste ¢ inactively at moment ¢,
and at moment (¢ + 1) the state of its casteship to ¢ will be
changed from inactive to active.

Theorem 4: deactivate operation has the following
properties.

1 |=<a: activate(c)> — Inactive(a, c)
2 |=<a: activate(c)> — o(Active(a, c)).

Property (1) in Theorem 4 states that if agent a activates
its casteship to caste ¢, then the agent must hold an inactive
casteship to caste ¢ before the activation. Property (2)
shows that if agent a activates caste ¢, then the state of its
casteship to ¢ will be changed from inactive to active.
The theorem follows Definitions 5 and 9. The proof is
straightforward.

5 Reasoning about adaptive behaviours

This section is devoted to the reasoning about adaptive
behaviours as specified in adaptive casteship mechanism to
ensure adaptive agents are well-designed. We will first
introduce some notions about the structure of adaptive
agents so that the reasoning about well-defined adaptive
behaviour can be performed.

Definition 10: For any ¢, c; € CASTE, if the behaviour
rules of ¢; enables an agent that hold a casteship to caste c;
to join caste ¢, then we call ¢; can directly reach c,,
write ¢; = ¢;.

We assume that the directly reachable relationship between
castes is irreflexive, which means any caste is not permitted
to be joined again by an agent when it has already had a
casteship to the caste. We write DReach(c) = {¢’ | c=c"}
to denote the directly reachable castes set of c,
and DReach(a, t) = Ulce CASTEA(a,)} DReach(c) to denote the
directly reachable caste set of agent a at moment .

For example, if the behaviour rule of caste
undergraduate explicitly declares that when undergraduate
student passes the entrance examination, he may
join the caste of postgraduate, then postgraduate €
DReach(undergraduate). The directly reachable relationship

between castes does not necessarily satisfy transitive
property. If ¢; can directly reach c,, the agent that has
casteship to caste ¢; is possible to join caste ¢, in its run
when the scenario and the pre-condition specified in the
behaviour rule are satisfied.

Definition 11: Let ¢ € CASTE, the reachable castes set
Reach(c) of caste c is recursively defined as follows.

1 if ¢; € DReach(c), then c;€ Reach(c).
2 if¢; € Reach(c) and c,€ Reach(cy), then c,€ Reach(c).

Obviously, the reachable relationship between castes is
transitive. It defines the possible castes that agent can hold
casteships to during its lifecycle. If ¢, can reach c,, then the
agent that has the casteship to caste ¢, is possible to join
caste ¢, in its run. Let Reach(a, t) = Ulce CASTEA(Q,,)}Reach(c)
the reachable caste set of agent a at moment ¢.

Definition 12: Let ¢, c; € CASTE. If caste ¢; and ¢, are
strictly not permitted for any agent a to hold casteships at
the same time to govern the agent’s behaviours
simultaneously, then we say that caste ¢, and ¢, are conflict,
written as ¢;T ¢,. Let V' < CASTE be a subset of castes,
if for all castes ¢y, ¢, € V, ¢; and ¢, are not conflict to each
other, i.e., ¢;T ¢, is not true, then we say that the caste set V/
is consistent. For an agent a and moment ¢, if CASTE"(a, f)
is consistent, we say that agent a is consistent on its
casteships at moment z. If agent a is always consistent on its
casteships at all moments in its run, we say that agent a is
coherent.

The conflict relationship between castes is dependent on
the applications. For example, if the university does not
permit any student to be an undergraduate and postgraduate
simultaneously, then the castes wundergraduate and
postgraduate are in conflict. Hence, the caste set
{undergraduate, postgraduate} is not consistent. It is
obvious that the conflict relationship between castes is
reflexive, symmetric, but not transitive.

As the casteship of an agent can change from time to
time and agent is possible to join any caste in its reachable
castes set, agents should avoid being inconsistent on
its castes during its run. Therefore, when developing
adaptive MAS based on the adaptive casteship mechanism,
the conflict requirements should be explicitly specified
and the conflict relationship of castes should be detected
and ecliminated. For example, since {undergraduate,
postgraduate} is inconsistent according to application
requirement, an agent that has casteship to undergraduate
must firstly quit the caste undergraduate before it joins the
caste postgraduate.

Definition 13: For agent a in MAS, a is called adaptive, if
and only if, there are time moments ¢ and %, in T (¢ # t,)
such that CASTE"(a, t,) # CASTE*(a, t,) or CASTE'(a, t;) #
CASTE(a, t,). Otherwise, agent a is called static.



26 X Mao et al.

The above definition manifests that the adaptive agent will
change its casteships in its lifecycle. In the example defined
in Section 2, it is obvious that agent Alex is a typical
adaptive agent.

Lemma 1: Let t) be the moment that agent a is created,
if CASTE(a, ty) is consistent and a is a static agent, then
agent a is coherent.

The proof is straightforward, because according to the
Definition 13, the caste set of static agent will never be
changed in agent’s lifecycle.

We assume that there is no other action in agents except
‘join’, ‘quit’, ‘deactivate’ and ‘activate’ that can change the
casteships of agent. Formally, the assumption is specified
as follows. For any agent a, caste ¢, action act and
time moment ¢, if M|=,<a:act> and act¢ {join, quit,
deactivate, activate}, then CASTE'(a, f)= CASTE'(a, t + 1)
and CASTE"(a, t) = CASTE"(a, t + 1)).

Definition 14: An agent a is rational about caste operations,
if and only if, it satisfies the following properties.

1 M|=,,<a:join(c)> = M| =, =BindCaste(a, c)
2 M=, <a: quit(c)> — M| = ., Active(a, )

3 M=, <a:deactivate(c)> — M| = ,, Active(a, c)
4 M |=.,<a: activate(c)> — M| = ., Inactive(a, c).

Formula (1) in Definition 14 means that when an agent
intends to join a caste, it should have no casteship to the
caste. Formula (2) states that when an agent intends to quit a
caste, the agent should have already an active casteship to
the caste. Formula (3) means that when an agent intends to
deactivate a caste, the agent should have already held an
active casteship to the caste. Formula (4) states that when an
agent intends to activate a caste, then the agent should have
an inactive casteship to the caste.

Definition 15: An agent a is faithful to caste operations,
if and only if, agent a intending to join caste ¢ at some
moment ¢ implies that the caste ¢ is directly reachable for
agent a at moment ¢. Formally, if M| =, <a: join(c)>, then
¢ € DReach(a, t).

The above definition shows that a faithful agent will depend
on the directly reachable caste set to join a new caste.
Note that, an agent can only take actions defined by the
castes that the agent has active casteship to, i.e., for any
agent a, action act and moment ¢, M| =, <a: act> = Jc:
¢ € CASTE*(a, t) and act € A..

Lemma 2: For any faithful agent a, caste ¢ and moment t,
if ¢ & Reach(a,t) and cg CASTE(a, 1), then for any t >t
¢ ¢ CASTE(a, t).

Proof: Assuming that there is ¢ >¢ such that
¢ € CASTE(a, '). Then, according to our assumption that
there is no other action except ‘join’, ‘quit’, ‘deactivate’ and
‘activate’ that can change the casteships of agent and
definition 6, there must be a moment ¢ < ’< ¢, M| =, <a:
join(c)>. As agent is faithful, according to Definition 15,
¢ € DReach(a, t”) which is conflict with the pre-condition
of the lemma.

The lemma states that if a caste is not reachable for agent a
at moment ¢, then the agent cannot hold a casteship to the
caste in its future run.

Definition 16: An agent a is consistent about caste
operations, if and only if, it satisfies the following
conditions.

1  if agent a intends to join caste ¢ at moment ¢, there is no
caste ¢’ € CASTEX(a, 1): ¢T ¢’;

2 if agent a intends to activate caste ¢ at moment 7, there
is no caste ¢ € CASTE(a, 1): ¢T ¢'.

The above definition shows that a consistent agent will
consider and avoid the conflict problem when it changes the
casteships in its lifecycle.

Lemma 3: For any agent a, caste ¢ and moment t,

1 ifagent a executes action ‘join(c)’ and there is no caste
¢’ € CASTE(a, t): ¢T ¢, then the caste set of agent a is
consistent when the ‘join’ action is completed;

2 ifagent a executes action ‘activate(c)’ and there is no
caste ¢ € CASTE(a, t): cT ¢, then the caste set of
agent a is consistent when the ‘activate’ action is
completed.

The lemma shows that if an agent intends to join or activate
a caste and the caste to be joined or activated does not
conflict with any castes that agent a already has active
casteships, then when the operation is completed the caste
set of agent is consistent. The lemma follows Definition 12,
Definitions 6 and 9 directly.

Lemma 4: For any agent a that is consistent about caste
operations and moment t, if Reach(a, t) is consistent, then
the agent will be consistent in its future run.

The lemma is a corollary of Lemma 2 and Definition 16.
The proof is straightforward.

Definition 17: We call that an agent a is reachable at
moment ¢, if and only if, for any caste ¢ € CASTE(a, 1),
3¢ <t M=, ,<a: join(c)> and ¢ € DReach(a, t).

The definition manifests that reachable agent always binds
to castes in its directly reachable caste set.
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Definition 18: For any caste operation act and agent a,
we say that act is safe for agent a, if and only if, agent a is
always consistent and reachable when performing act.

Theorem 5: If agent a is rational, faithful and consistent
about caste operations, then the ‘join’, ‘quit’, ‘activate’ and
‘deactivate’ caste operations are all safe for agent a, i.e., for
any caste operation act € {join, quit, activate, deactivate},
caste ¢ and moment t,

1 if M|=,,<a: act(c)> and agent a is consistent at
moment #, then when act is completed agent « is still
consistent;

2 if M|=,,<a: act(c)> and agent a is reachable at moment
t, then when act is completed agent « is still reachable.

Proof I: For any model M of MAS and its run », moment ¢
and caste ¢, if M|=,, <a: act(c)> and act € {join, activate},
then according to Definition 16, there is no caste ¢’
€ CASTEX(a, #): ¢T ¢. Therefore based on Lemma 4,
agent a is consistent when the ‘join’ or ‘activate’ action
is completed. For act € {quit, deactivate}, as agent a is
consistent at moment ¢, then for any castes c,
c € CASTEA(a, f), there is no e:T ¢,. Therefore, according
to the formal semantics definitions of quit and deactivate
operations, when quit and deactivate operations are
completed at moment ¢, the active castes of agent a at
moment ¢ is C¥a, ') = C*(a, H)\{c}. It is obvious that
for any castes ¢y, c; € CASTEA(a, t), there is no ¢ Te.
Therefore, agent a is consistent when act is completed.

Proof 2: For any model M of MAS and its run r,
moment ¢ and caste ¢, if M|=.<a: act(c)> and agent a
is reachable at moment ¢, then for acte {activate,
deactivate}, according to semantics definitions of activate
and deactivate operations, when activate and deactivate
operations are completed at moment ¢+ 1, the caste set of
agent a at moment ¢+ 1 is CASTE(a, t + 1) = CASTE(a, f).
As agent a is reachable at moment ¢, therefore agent
a is still reachable at moment (¢+ 1). For acte {quit},
according to semantics definitions of quit operation,
when quit operation is completed at moment ¢ + 1 the caste
set of agent a at moment t+1 is CASTE'(a,?)=
CASTE*(a, H)\{c}. As agent a is reachable at moment ?,
therefore agent a is still reachable at moment (z+1).
For act € {join}, according to semantics definitions of join
operation, as agent a is faithful about caste operations,
therefore according to Definition 15, ¢ € DReach(a, t).
So, when join operation is completed at moment ¢ + 1, agent
a is reachable at moment z + 1.

6 Modelling and analysing adaptive agents

Adaptive agents and MAS typically have complex
behaviours. A visual modelling language will be helpful to
model and analyse the dynamic behaviours in such systems.
In this section, we propose a diagrammatic notation called
transition diagrams, which describes dynamic change of

agent’s casteships during its lifecycle. The semantics
of the visual notation is based on the adaptive casteship
mechanism defined in Section 4. This section also
introduces the constraints on transition diagrams for
specifying and analysing adaptive agents with a number of
model properties.

6.1 Transition diagram

In this section, we introduce transition diagram, present its
graphic notation and its meanings. The abstract syntax is
then formally defined to facilitate the definition of
constraints in Section 6.2.

6.1.1 The graphic notation

The notation of transition diagrams is an extension to
CAMLE language. In CAMLE, information about agents’
dynamic transition is partly depicted in caste diagram and
behaviour diagrams. Caste diagram describes the possible
transition paths between castes. Behaviour diagrams define
behaviour rules for each caste to describe how agents
change their casteships in what scenario. But, when
software engineers have particular interests on some
adaptive agent, a transition diagram is helpful to explicitly
describe the configuration of the agent at various time
moments and the transitions between the configurations by
changing the agent’s casteships. Figure 4 shows the notation
and format of transition diagram.

Figure 4 Notation and format of transition diagram

© 4 N ©

\l/e, |—>Join(c;) S,

e>|>Quit(c), Join(c:)

Initial Configuration

o Final Configuration

C] Configuration
| Caste

—>  Transition

e3|—>Deactivate(c;)

ey|>Quit(c;)

Notation

Configuration specifies the state of an agent at a time
moment in terms of its active and inactive casteships.
In a transition diagram, a configuration is depicted as a
round-corner rectangle that comprises three parts partitioned
by a solid line and a dash line. The top part is annotated
with the name of the configuration. The middle part
contains the set of active casteships of the agent, and the
bottom part contains the set of inactive casteships. There are
two special kinds of configuration nodes. One is initial
configuration represented by hexagon, which specifies the
start point of an agent’s lifecycle. The other is final
configuration represented by dark hollow circle, which
denotes the end point of the agent’s lifecycle. When
modelers need to depict some configurations as the start or
end of the transition chain in the diagram but do not care
about their details, initial configuration and end
configuration can also be used.
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A transition describes how an agent transforms
from one configuration to another when some condition
is satisfied in its lifecycle. In transition diagrams, a directed
edge represents a transition relation between a pair of
configurations. A transition is annotated with a transition
rule, which represents the condition that results
in the transition. The format of a transition rule is
“pattern | — transition-actions  [if  scenario] [where
pre-cond]”, which means that when the agent’s previous
behaviour matches the pattern, behaviour of the agent’s
environment matches the scenario and the pre-condition is
satisfied, the agent will take the transition-actions which are
a sequence of actions in the atomic action set {join, quit,
deactivate, activate}. Transition rule is a special type of
behaviour rule of caste. The execution of the rule will
result in the change of agent’s configuration from the source
to the destination of the edge. For example, Figure 4 shows
that when the pattern matches e,, the agent will execute
‘quit(cy), join(cy)’ , which leads to the agent’s configuration
change from S; to S,. Note that, a transition rule in a
transition diagram is not necessarily a complete behaviour
rule. It is acceptable as long as the transition-actions part
is specified, while the other parts stating why the transition
is invoked are optional. Transition diagrams, as one
viewpoint to MAS, aim at correct design of adaptive agents
with respect to certain properties. Analysing the properties
of an adaptive agent can be realised through checking
certain properties of the agent’s configurations and the
transitions between the configurations in transition
diagrams. Therefore transition modelling does not care the
detailed structure and behaviour rules of castes or agents.
The complete behaviour rules of each caste including
transition rules should be specified in the behaviour diagram
for the caste.

In order for transition diagrams to be well organised
with acceptable complexity, each transition diagram is
regulated to model one certain caste of agents. Thus a
transition diagram usually contains one non-trivial
configuration (not initial situation or final situation) as the
start-point of a set of transition chains, and the transition
chains have only one hop. For example, in the transition
diagram in Figure 4, the start configuration is S,
thus the ‘leading role’ in the diagram is caste C,.
The diagram describes that an agent may join caste C; under
condition ej, (i.e., the transition from the initial situation to
S1), then agents of caste C; may migrate to C, under
condition e, (i.e., from S; to S,), or deactivate C; under
condition e; (i.e., from S; to S3), or quit C; under condition
ey (i.e., from §; to S;). Note that how the agents of C, will
change its casteship to other castes is not concerned in this
diagram.

6.1.2 The abstract syntax

Graphic modelling with transition diagrams not only helps
to explicitly describe specific design information about each
adaptive agent, but also facilitates to further investigate
special properties of the agents. To achieve this purpose,
we use the GEBNF (Graphically Extended BNF) proposed

in Zhu and Shan (2006)to rigorously define the type system
and abstract syntax of the transition diagrams. Table 1
shows the notation of GEBNF.

Table 1 GEBNF notation

Notation Meaning Examples and explanation

<X> X is a concept or <Model> and <Diagram> represent
a type of entities the concepts of models and diagrams,
in the model respectively

X =Y XisdefinedasY <Model> ::= <Diagram>*:a
model is defined as a number of
diagrams

X* Repetition of X

(include null)

<Diagram>*: the entity consists of a
number N of diagrams, where N > 0

X+ Repetition of X
(exclude null)

XY Choice of X
and Y

<Diagram>+: the entity consists of
a number N of diagrams, where N > 1

<Actor node>|<Use case node>
means that the entity is either an
actor node or a use case node

X,Y X and Y, the <Actor node>,<Use case node>: an
union of X and Y entity that consists of an actor node
and a use case node

[X] X is optional [<Actor>]: element of actor is

optional

XY Order pairs
consists of
XandY

<Actor node> <Use case node>: an
element that consists of an order pair
of an actor node and a use case node

/X/ An annotation /Use case name/: the annotation field
field named as X called use case name

X:Y  Thetype of Xis /Use case namel: Text : the type of
Y the annotation use case name is text

X) Parenthesis It is used to change the preferences

of the expression

‘extends’: the literal value of the
string ‘extends’

Terminal
element, the
literal value of a
string

abc

Text Predefined type  Text: a text in any format;

[1F] Text with syntax  Texs | <object name> “:* <class
specified by F,  pgme> - the text that consists of an
where F is a BNF object name and a class name

separated by a colon

In GEBNF, we can define the type system and abstract
syntax of transition diagram as follows.

6.2 Constraints on transition diagrams

Based on the adaptive casteship mechanism described in
Section 4, we define some constraints for transition
diagrams to support analysing and checking the properties
of adaptive agents. Modellers can analyse adaptive agents’
properties, such as rational, faithful, consistent, and
reachable properties, through checking the agents’ transition
diagrams against the constraints. Diagrams satisfying such
constraints represent well-defined agents with the desirable
properties.
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<Active Casteship>::= <Caste Node>*

<Inactive Casteship >::= <Caste Node>*

<Transition Rule>::= <Event>, <Action>+

<Parameter>::= <Caste Name>

<Transition diagram>::= /Title/: Text | <Caste Name>, <Configuration>+, <Transition>*
<Configuration>::= <General Configuration> | <Initial Situation> | <Final Situation>
<General Configuration>::= /Name/: Text | <Configuration Name>, <Active Casteship>,

<Inactive Casteship>

<Caste Node>::= /Name/: Text ! <Caste Name>

<Transition>::= /Guard/: Text ! <Transition Rule>, <Configuration> <Configuration>

<Action>::= (‘Join’ | ‘Quit’ | ‘Activate’ | ‘Deactivate’ ) ‘(" <Parameter> ‘)’

6.2.1 Notation for defining constraints

We use the formal notation proposed in Zhu and
Shan (2006) to define the constraints based on the
type system and abstract syntax given in Section 6.1.
The following summarises the formal notation, which is a
first-order logic for defining structural properties of graphic
models.

ML is the modelling language. Let ¢ be an n-ary
operator defined on the type i, &, ..., t,, that results in a
value of type t. Let p be an n-ary relation defined on the

type t1, b, ..., t.

e  Expressions are formed by finite applications of the
following constructions.

e Variables of various types are expressions of their
own types.

e  Constants are expressions of their own types.

e ¢(e,ey, ..., e,) is an expression of type ¢,
if ey, ey, ..., e, are expressions of types #, t,, ..., t,,
respectively.

e efis an expression, if e is an expression of type ¢
and fis a field defined by the language ML for the
type ¢. The type of e.fis ft, if the type for field f'is
defined to be of type ft by ML.

e e.tis an expression, whose value is the set of the
elements of type ¢ in e, where type ¢ is defined
in ML.

e Type(e) is an expression if e is an expression.
The value of Type(e) is the type of e.

e  Statements are formed by finite application of the
following constructions.

o pley e, ..., e,)1s astatement, if ey, ey, ..., e, are
expressions of types #,, t,, ..., t,, respectively;
in particular, e; = e, and e; € e, are statements,
if e; and e, are expressions.

e Type(e) =t is a statement, if e is an expression and
t is a type name.

o D PP, PSP, P1LA P, and Py Vv p; are
statements, if p, p; and p, are statements. Here the
symbols —, &, =, A and Vv denote their respective
logic relations as usual, namely — for ‘not’, = for
‘imply’, A for ‘and’, v for ‘or’ and ‘p; & p,’ for

wr=>p) A= p).

e VXe ESand 3X e E.S are statements, if Xis a
free variable in statement S.

6.2.2 Constraints for adaptive properties

Based on the properties of adaptive agents defined in
Section 4.4, constraints on transition diagrams can be
formally specified as statements of the first order language
defined above. The abstract syntax of transition diagrams
specified in Section 6.1 defines the notation for representing
constructs of transition diagrams in the following
constraints.

(A) Constraints for rational agents

Recall that Definition 14 defines rational agents as the
agents that satisfy four properties. The four properties of
agents are represented as the following four constraints on
transition diagrams. A transition diagram describes a
rational agent if each transition 7 in the diagram satisfies the
constraints. We use Begin (T) to denote the configuration
where T starts.

e Join (C) € T<Transition rule>.<Action> = C ¢ Begin
(7). (<Active Casteship> U <Inactive Casteship>)

This constraint means that for transition 7, if action
Join (C) is among the action part of its transition rule,
its start configuration must not contain C as active or
inactive casteship.

o  Quit (C) € T<Transition rule><Action> = C € Begin
(7). <Active Casteship>

This constraint means that for transition 7, if action
Quit (C) is among the action part of its transition rule,
its start configuration must contain C as active
casteship.
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e Deactivate (C) € T.<Transition rule><Action> =
C € Begin (T) . <Active Casteship>

This constraint means that for transition 7, if action
Deactivate (C) is among the action part of its transition
rule, its start configuration must contain C as active
casteship.

o Activate (C) € T.<Transition rule>.<Action> =
C e Begin (T) . <Inactive Casteship>

This constraint means that for transition 7, if action
Activate (C) is among the action part of its transition
rule, its start configuration must contain C as inactive
casteship.

(B) Constraints for faithful agents

Let CASTES denote the set of castes in the system to be
developed. Based on the definition of DReach() for
individual caste, Definition 10, we define a 2-tuple
relation DirectReach = {<c|, c;> | c; = ¢, ¢y, ¢» € Castes}.
DirectReach is an irreflexive, non-symmetric,
non-transitive relation that represents the set of directly
reachable pairs of castes in the system. From the global
perspective to the system, using DirectReach rather than
DReach() simplifies the definition of constraints on
transition diagrams. When developing adaptive systems,
modelers should explicitly define DirectReach for the
system at early stage of software development based on the
analysis of targeted systems. Such information that restricts
certain types of relations between castes can be used to
regulate the design and to detect errors in system models.
Recall the definition of faithful agents, Definition 15.
A transition diagram D for an agent a must satisfy the
following constraint in order for a to be a faithful agent.

e VTe D<Transition>. (Join(c) € T.<Transition
rule><Action> = s € Begin (T).<Active Casteships>.
(<s, c> € DirectReach))

This constraint means that for any transition 7, if action Join
(c¢) is among the action part of its transition rule, there must
be an active casteship s in the start configuration so that
<s, ¢> bears DirectReach relation.

(C) Constraints for consistent agents

Based on the definition of conflict for individual caste,
Definition 12, we define a 2-tuple relation Conflict =
{<c1, > | ¢ T ¢y, 1, ¢y € Castes}. Confflict is irreflexive,
symmetric and non-transitive relation that denotes the set of
conflict pairs of castes in the system. Modelers should also
explicitly define Confflict for the system at the early stage of
software development. Recall that Definition 16 defines the
agents that are consistent about caste operations.
A transition diagram D for an agent a must satisfy the
following constraints in order for a to be a consistent
agent about caste operations. We use End(7) to denote the
configuration where a transition 7 is directed to.

e VTe D<Transition>.(Join(c) € T.<Transition
rule>.<Action> = Vs € End (T).<Active Casteships>.
(<s, c> ¢ Conflict)).

This constraint means that for transition 7, if action Join (c)
is among the action part of its transition rule, there must be
no such active casteship s in the end configuration that
<s, ¢> bears Conflict relation.

o VTe D<Transition>.(Activate(c) € T.<Transition
rule>.<Action> = Vs € End (T).<Active Casteships>.
(<s, c> ¢ Conflict)).

This constraint means that for transition 7, if action Activate
(c) is among the action part of its transition rule, there must
be no such active casteship s in the end configuration that
<s, ¢> bears Conflict relation.

Besides the consistency with respect to actions, each
configuration of a consistent agent must also be consistent
by itself, i.e. do not contain conflict pair of castes. Formally,
for a transition diagram D,

e VSe D.<Configuration>Na, c € S.<Active
Casteships>. (<a, c> ¢ Conflict).

(D) Constraints for reachable agents

Recall that Definition 17 defines reachable agents. In the
context of graphic modelling, the set of agents of a caste is
reachable if all directly reachable relations from the caste
are described in the transition diagram for the caste. Given
the DirectReach set for a system, a transition diagrams D
defines a reachable caste when it satisfies the following
constraint.

e V<s, > € DirectReach. (s € D.<StartConfiguration>.
<Active Casteship> = 3T € D.<Transition>.
(Begin(T) = D.<StartConfiguration> A ¢ € End(T).
<Active Casteships>))

where D.<StartConfiguration> denotes the non-trivial
(not initial situation or final situation) start configuration in
diagram D. This constraint means that if D is for agents of
caste s, all possible direct casteship transition from s must
be described in D.

The constraints defined above can be used individually
or in combination to check whether the models of adaptive
MAS are correct with respect to certain desirable properties.
The constraints are apt to be implemented as automatic tool
so that the checking of models can be automated. In our
previous study on agent-oriented modelling with the
CAMLE language, we have developed a consistency
checking tool based on the type system, syntax and
consistency constraints of CAMLE (Shan and Zhu, 2004).
The effectiveness of our consistency checking method has
been verified (Shan and Zhu, 2006). The implementation of
automated tool for checking transition diagrams is in our
research agenda.

7 Case study: university information system

This section illustrates the use of transition diagram for
modelling adaptive MAS with the example of the university
information system specified in Section 2. Using the
constraints of transition diagram defined in Section 6.2 for
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checking CAMLE model and transition diagrams is also
demonstrated.

7.1 Caste diagram

To capture the structure of the university information
system, the castes that constitute the system and the
structural relations between the castes, a caste diagram in
CAMLE is constructed as shown in Figure 5. The notation
shown in Figure 5 is the part of the notation of CAMLE
caste diagram that is involved in this example. It is worth
noting that both migrate and participate represent casteship
transition relations. The difference between them is that
migrate relation between caste 4 and caste B denotes that an
agent of 4 quits from A before it joins B, while participate
relation between 4 and B denotes that an agent of caste 4
joins caste B while remaining its casteship to 4.

Figure S Caste diagram for University and the notation
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Notation

Castes in the University information system is represented
by the set

CASTES = {Undergraduate, Postgraduate, Staff, Secretary,
Alumni, TA, RA}

Note that only Undergraduate, Postgraduate, Staff and
Secretary represent the members of a university. The caste
Alumni is considered in the system because the university
needs to keep a record of the alumni. TA and RA are
positions that the university provides for postgraduates.
Since the example aims to demonstrate the effectiveness of
our adaptive casteship mechanism rather than give a
complete model of the university system, we do not
consider more refined classification for Staff or Secretary
for the sake of space.

In the system, agents of Undergraduate and Postgraduate
may be adaptive agents, while agents of Staff, Secretary
and Alumni are static agents because they cannot change
their casteships. To properly model adaptive agents, we
must define the DirectReach and Conflict set for the
system. Without loss of generality, suppose the university
neither allows a student (undergraduate or postgraduate) to
take part-time job as staff or secretary, nor a staff or
secretary to be part-time student. A postgraduate may
be TA or RA or both or neither of them during his study.
A postgraduate, staff or secretary may belong to the
alumni if he did graduate from the university. Therefore,
we have that

DirectReach = {<Undergraduate, Postgraduate>,
<Undergraduate, Alumni>,
<Postgraduate, Alumni>,
<Postgraduate, TA>, <Postgraduate, RA>,
<Postgraduate, Staff>},

Conflict = {(Undergraduate, Alumni), (Undergraduate,
Postgraduate), (Undergraduate, Staff),
(Undergraduate, Secretary), (Undergraduate,
TA), (Undergraduate, RA), (Postgraduate,
Staff), (Postgraduate, Secretary),

(Staff, Secretary), (Staff, TA), (Staff, RA),
(Secretary, TA), (Secretary, RA)}.

To help define Conflict, we can also define Comnsistent
as the set of the 2-tuple castes without conflict relation.
In other words, Consistent = {(x, y) | x, y € Castes, x # y}
— Confflict.

Consistent = {(Postgraduate, Alumni),
(Postgraduate, TA), (Postgraduate, RA),
(Staff, Alumni), (Secretary, Alumni),
(Alumni, TA), (Alumni, RA), (TA, RA)}.

The caste diagram that describes the whole set of castes in
the system and the migration relations between the castes
helps to define the sets. Actually, DirectReach equals to the
migration relations in the caste diagram. Note that Conflict
relation is not directly related to the relations described in
caste diagram.

7.2 Transition diagram

The definition of Conflict resulted from the analysis of the
requirement and constraints of the system. Conflict can be
used to detect errors in transition diagrams. For example,
it is incorrect to design an agent that joins Staff and
Postgraduate at the same time.

For agents of the Undergraduate caste, we develop a
transition diagram as shown in Figure 6 to model the
casteship transition within its lifecycle. The transition
diagram shown in Figure 7 is for the agents of Postgraduate
caste. Note that in each transition, the event part only
describes the action or state of the agent that precedes the
caste transition actions. It is not the complete condition that
invokes the casteship transition, because the result action
also depends on the scenario of the whole system. Take the
transition from the configuration of Undergraduate to
Suspend as an example. When an undergraduate applies to
the university to suspend his study, his application may
either get permitted or refused. Similarly, when an
undergraduate applies graduate course from the university,
he may either get an offer or be rejected. However, it should
be the behaviour diagram in CAMLE rather than the
transition diagram that specifies the complete set of
behaviour rules of Undergraduate in various scenarios of the
system.
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Figure 6 Transition diagram for undergraduate agents
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The two transition diagrams describe all possible
configurations and casteship changing of agents of the two
castes. With the constraints defined in Section 6.2, it is easy
to check the two transition diagrams of the properties and to
conclude that the agents of Undergraduate and Postgraduate
are rational, faithful, consistent and reachable, i.e., safe.

The development process described above takes the sets
of DirectReach and Conflict as part of requirement
specification of the targeted system, then models the system
based on the specification, and checks the properties of the
model against the constraints defined on transition
diagrams. The process of developing adaptive MAS
may also start from graphic modelling with caste diagrams
and transition diagrams based on the analysis of the targeted
system. Then the two sets DirectReach and Conflict can be
defined according to the models to rigorously document
certain design decisions. Anyway, the constraints on the
transition diagrams help to check the consistency between
the two types of artifacts and to analyse the properties of the
system under development.

Figure 7 Transition diagram for postgraduate agents
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8 Comparison with related work

In object-oriented paradigm, when an object is created
by instantiating some class, it obtains the structural
and behavioural features defined by the class. However,
an object can not change its structure and behaviour in its
lifecycle. The lack of support to dynamic re-classification of
objects has been recognised to be a limitation of object
oriented programming (Scheer and Pringle, 1998). In order
to solve the problem, efforts have been made to extend
object-oriented programming languages so that the class
membership of an object can be changed at run-time,
e.g., the language Fickley (Drossopoulou et al., 2002).

In the literature of agent-oriented software engineering,
many agent-oriented methodologies like MaSE, Tropos,
etc., assume that agents in MAS are static in order to
simplify the development processes and modelling
languages (Mao and Yu, 2004). Some methodologies like
ROADMAP (Juan et al., 2002), the recent version of Gaia
(Zambonelli et al., 2003), etc., though claiming to support
the development of open and dynamic systems, actually do
not consider dynamic agents and therefore do not provide
effective mechanisms and language facilities to support the
modelling and designing of adaptive agents.

However, there are still a number of agent-oriented
software development methodologies, modelling languages
and programming languages, such as AALADIN (Ferber
and Gutknecht, 1998), AUML (Odell et al., 2003), and
3APL (Dastani et al., 2005) etc., that have been proposed to
support modelling role changes to some extents.

In Zhu (2003a) and Zhu and Lightfoot (2003), a
dynamic caste mechanism is proposed as a language facility
for the design and implementation of dynamic adaptation of
behaviours in MAS. Its direct support for role-based models
is discussed in Zhu and Lightfoot (2003). In this paper, we
further analyse the requirements for a language facility that
supports adaptive agents and extend the caste facility to
meet these requirements.

In AALAADIN (Ferber and Gutknecht, 1998), the
dynamic aspect of MAS is related to the institutionalised
patterns of interactions that are defined within the roles,
such as creation of groups, entering and leaving of a group
by an agent, or acquisition of a role in relation, which can be
specified by organisational sequence diagram, an extension
of sequence diagram in UML. Therefore, the dynamic
aspect in AALAADIN is considered in the structure level,
i.e., group, which is different from our work that considers
the dynamic aspect in the behaviour level.

AUML is a set of UML idioms and extensions for
specifying multi-agent software systems (Bauer et al.,
2001). Based on the insight that agent is an extension to
active object, the core part of AUML is protocol diagram
which describes how agent changes its roles in different
contexts (Odell et al., 2003). However, role is an abstract
concept closer to real world and can not act as design
metaphor or modular unit to implement agents. In most of
the existing agent-oriented methodologies and modelling
languages, an concept of agent class or agent type is
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introduced in the design and implementation phase as a
template or modular unit to construct agents, but few
formally define the concept with any adaptive casteship
mechanism. The relationship between agent class or agent
type and agent is the same as that in object orientation,
i.e., agent class is the template to instantiate agent and agent
is the instance of agent class.

In 3APL (Dastani et al., 2005), four operations are
presented such as ‘enact’, ‘deact’, ‘activate’ and
‘deactivate’, to capture the dynamics of roles played by
agents. Enacting a role means internalising the specification
of the role, while activating a role means reasoning with the
(internalised) specification of the role. The semantics of the
operations ‘enact’, ‘deact’, ‘activate’ and ‘deactivate’ in
3APL are actually different from that of the operations
‘join’, ‘quit’, ‘activate’ and ‘deactivate’ defined in this
paper. Moreover, 3APL assumes that at any moment only
one role can be active and that all roles other than the
enacted one are inactive. The cognitive architecture of
agents is assumed in 3APL, on which agents’ enacting or
deacting the roles are investigated. Obviously, these
assumptions are too strong to tackle the whole aspects
related to dynamic agents in complex systems. There is a
huge gap between the role specification and agent cognitive
architecture for developers to transfer the role model to
cognitive model. Our approach to adaptive agents is
different from 3APL as we permit multiple castes to be
bound to at a moment and the join operation actually
integrates with the enact and activate operations in 3APL.
There is no explicit gap between requirement specification
and software design in our approach as we use the unified
concepts and abstractions in the whole development
process. Therefore, our approach proposed in this paper
simplifies the development of complex adaptive agents.

9 Conclusion and future work

Agent orientation provides high level abstractions and a
natural modelling metaphor to develop software systems.
However, in the literature of agent-oriented software
engineering, it is still a challenge to develop complex
MAS with agents that exhibit various and dynamic
behaviours in their lifecycle. Such agents are desirable in
many complex applications of MAS, such as internet-based
applications, enterprise information systems, etc.

In this paper, we present the adaptive casteship
mechanism, which is the extension to Mao et al. (2000),
to model and design individual adaptive agents in
MAS. It enables the supports for the execution of adaptive
agents at run-time. We adopt caste as the abstraction to
specify agents’ behaviours and as the modular unit to design
and implement adaptive agents. Our approach permits
agents to hold casteship to multiple castes and the casteships
that agent holds to be in active or inactive states. The
dynamic adaptation of behaviours is realised as the change
of agents’ casteships in their lifecycles, which can be
specified and implemented by four atomic operations on

castes i.e., join, quit, activate and deactivate. The semantics
of the adaptive casteship mechanism and the -caste
operations are rigorously defined based on the temporal
logic integrated with dynamic operators. The properties of
adaptive agent’s behaviours are formally specified and
proved. In order to support the modelling and analysing
agents’ dynamic adaptation of the behaviours with the
adaptive casteship mechanism at design-time, a visual
notation of caste transition diagrams is proposed and a
number of model consistency rules are designed.

The adaptive casteship mechanism proposed in this
paper provides an abstract and flexible way to develop
complex MAS, especially ones that have adaptive agents.
However, there are still a number of open problems that
should be settled.

e Firstly, the work reported in this paper is actually at the
micro-level, i.e., it is concerned with individual agents
and their dynamic properties and behaviours. However,
the adaptability can be manifested at the level of
MAS. As discussed in Mao and Yu (2004), the
structure of MAS in terms of the relationships between
agents may also change dynamically in some complex
systems when environment changes. The adaptability
issueat the macro-level, i.e., the adaptability of MAS, is
not dealt with in this paper and deserves further
investigation. For example, for the sake of simplicity,
we have not taken the inheritance relationships between
castes into consideration in this paper. It is also
assumed in this paper that caste operations are not
executed concurrently.

e Secondly, the work reported in this paper set in the
context of analysis and design of MAS. We believe that
the adaptive casteship mechanism can be equally used
in the design and implementation of agent-oriented
programming languages that support the adaptive
agents. Implementation of the adaptive casteship
mechanism on runtime platforms is worth further
investigation.

e Moreover, we are carrying out case studies of the
adaptive casteship mechanism with a number of
complex applications. For example, we intend to
implement resource sharing utility by applying the
adaptive casteship mechanism. In mobile computing
area, a mobile agent can access the destination
computer by executing the behaviour specifications
provided by the destination computer. The adaptive
casteship mechanism can also be an effective technical
solution to developing complex application such as
self-organisation and self-management application.

e Finally, the relation between caste transition diagrams
and other diagrams in CAMLE is still an open problem.
How to ensure the consistency between caste transition
diagrams and CAMLE models, and whether it is
possible to derive caste transition diagrams from caste
diagram and behaviour diagrams are also problems to
be investigated in our future work.
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