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Abstract: In this paper, we propose an adaptive casteship mechanism for modelling and 
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change of castes during their lifecycles by executing ‘join’, ‘quit’, ‘activate’ and ‘deactivate’ 
operations on castes. The formal semantics of caste operations are rigorously defined.  
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1 Introduction 

Agent orientation has recently emerged as a new software 
development paradigm for developing complex software 
systems that operates in a dynamic environment such  
as the internet (Jennings, 2001). Several industrial 
experiences have testified to the advantages and potentials  
of using agents in manufacturing processes, web services 
and web-based computational markets, and distributed 
network management. Case studies have demonstrated the 
possibility of exploiting agents and Multi-Agent Systems 
(MAS) as enabling technologies for a variety of future 
scenarios, i.e., pervasive computing, grid computing, 
semantic web, web service, etc. (Zambonelli and Omicini, 
2004). A wide range of potential applications of agent 
technology are also predicated in Luck et al. (2005). From 
the software engineering point of view, agent orientation 
provides a higher level of abstractions and a complete set of 
metaphors for information system modelling that are more 
suitable than object orientation to tackle the complexity in 
the development of software systems where autonomous 
behaviours in dealing with dynamic environment are 
essential.  

In the past few years, with the increasing acceptance  
and expectation of agent orientation as an emerging 
software engineering paradigm, there have been a great 
number of efforts in the research on developing 
methodologies for complex MAS. Agent-Oriented Software 
Engineering (AOSE) has become an active research area in 
agent-based computing (Zambonelli and Omicini, 2004).  
A number of methodologies, modelling languages, 
programming languages and CASE tools or environments 
have been proposed, such as Gaia (Zambonelli et al., 2003), 
ROADMAP (Juan et al., 2002), AUML (Bauer et al., 2001), 
Tropos (Giunchiglia et al., 2002), CAMLE (Shan and Zhu, 
2005; Zhu and Shan, 2005; Zhu, 2006) and SLABS  
(Zhu, 2001, 2003a, 2003b), etc. 

Nevertheless, the research in AOSE is still in its early 
stages. Several challenges need to be faced before AOSE 
can deliver its promises and become a widely accepted and 
practically usable paradigm for the development of complex 
systems (Zambonelli and Omicini, 2004) that are typically 
open, dynamic, unpredictable, hierarchically structured  
but confined by global constraints (Mao and Yu, 2004).  
We believe that, to be a successful general-purpose  
software engineering paradigm, new language facilities and 
computational mechanisms must be developed to enable 
high level abstractions to be smoothly and naturally 

transformed into concrete language facilities and efficiently 
implemented in a systematic, robust, reliable and repeatable 
fashion (Shan and Zhu, 2005). Moreover, the methods must 
be universally applicable.  

A key feature of agents that enables them to deal  
with dynamic environments is their adaptation capability. 
For example, in a social organisation, an agent may be 
assigned to different roles at different times during an 
execution and thus performs different functions and 
demonstrates different behaviours to satisfy the design 
objectives (Odell et al., 2002). In the sequel, we will use 
adaptive agents to denote agents that are capable of 
adapting to different behaviours at run time. Such agents 
can be found in many applications such as enterprise 
information systems, electronic commerce, medical care 
systems, and military systems. Therefore, mechanism and 
language facilities should be developed to support the 
specification, analysis, design and implementation of 
adaptive agents and MAS. 

However, existing agent-oriented methodologies have 
not provided enough supports to develop such systems that 
naturally take such advantages, especially the modelling, 
specification, design and implementation of such dynamic 
behaviours in a systematic way. It is no surprise that  
it is extremely difficult to develop MAS with dynamic  
behaviours (Zhu, 2003a, 2003b). This paper addresses this 
problem by presenting an adaptive casteship mechanism 
based on the language facility caste proposed in Zhu and 
Lightfoot (2003), proposing a graphical notation and a 
number of rules for modelling adaptive behaviours  
and checking models’ properties (e.g., conflict and 
inconsistency) of adaptive agents in MAS, and discussing 
how properties of such systems can be reasoned based on 
the formal definition of the adaptive casteship mechanism 
and the extended language facility. 

The remainder of the paper is organised as follows. 
Section 2 describes an example of adaptive agents that is 
used throughout the paper to illustrate our proposed 
concepts, mechanism and facilities. Section 3 briefly 
reviews the basic concepts and methods of the caste-centric 
methodology of agent-oriented software development that is 
related with the adaptive casteship mechanism. Section 4 
proposes the adaptive casteship mechanism to enrich the 
caste language facility, formally defines the mechanism and 
the semantics of its operations on castes. Section 5 presents 
the approach to reasoning about the adaptive behaviours of 
agents. Section 6 proposes a graphical notation of caste 
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transition diagram and a number of consistency rules for 
modelling and analysing adaptive agents based on the 
adaptive casteship mechanism. Section 7 illustrates our 
approach with an example. Section 8 gives a comparison 
with related work. Section 9 concludes the paper with a 
discussion of future works. 

2 An example of adaptive agents 

In order to understand adaptive agents and the requirements 
on adaptive casteship mechanism, in this section, we 
examine an example of an information system to illustrate 
the basic characteristics of adaptive agents and discuss  
the issues in modelling and designing such systems.  
The example will be used throughout the paper to  
illustrate the proposed concepts, mechanism and approach.  
A complete study of the example using the adaptive 
casteship mechanism and modelling language facilities 
proposed in this paper will be given in Section 5.  

Suppose that an information system is to be developed 
for a university to support the management of the 
university’s members such as students, staff, secretary and 
related affairs such as registration, course selection, 
authorisation, etc. The system will provide personal 
assistances to the members of the university so that each 
member can participate in the operations of the university 
efficiently and effectively. Depending on the type of roles 
that a member plays in the university, such as a student  
or a staff member, a member can take certain actions in the 
operation of the information systems, access a certain subset 
of the information stored in the systems, and must obey a 
certain set of rules that confines the member how to fulfil 
his tasks. Each member in the university is therefore 
supplied with a ‘personal assistant’, which is actually a 
software agent that stores the personal information about the 
member, the permitted actions that the member can take 
according to his role, the behaviour rules that describe how 
members behave in the university, as well as the personal 
preferences and private information.  

A member of the university is inevitably related to other 
members of the university. Some of the relationships 
between members are determined by the roles that the 
members play rather than just a personal issue. Therefore, 
the personal assistant agent must also support the 
collaborations between the members. Such a structure  
of the information systems that consists of a number of  
personal assistant agents fits well with the current trend  
in the development of computing technologies and their 
applications represented by the rapid growth of mobile 
computing devices such as handhold computers, notebook 
computers, mobile phones with computing capabilities, 
ubiquitous computing through the internet platform, etc.  

In order to understand the dynamic and adaptive 
behaviours of agents, now let us consider the following 
specific scenarios for the members of the university in the 
example. 

The behaviour of the agent depends on the roles that it plays  
in the organisation 

Obviously, the behaviours of undergraduate and 
postgraduate students in the university are different.  
For example, when a student, say Alex, acts as an 
undergraduate student, he can take undergraduate courses 
but can not take courses only for graduate students. 
Registering as a Teaching Assistant (TA) is only permitted 
for postgraduate students and prohibited for undergraduate 
students. 

A member of the university may change roles while 
remaining as a member of the organisation  

As in almost all organisations, a member in the organisation 
often changes role in order to adapt to the organisation 
context and exhibit flexible behaviours. For example,  
Alex is going to graduate from the university. After 
graduation, he gets an offer from the university to study for 
a Master degree. The graduation does not mean that Alex 
will change his identity or leave the university. Actually,  
he is still a member of the university. It just manifests that 
he will play a new role in the organisation of university.  
By changing role, he will no longer be an undergraduate but 
a postgraduate. Therefore, by changing role, Alex will 
change his behaviours in the university organisation context. 
Alex’s personal assistant agent must be able to help Alex to 
change his roles in the organisation of university during its 
lifecycle. 

A member of the university may play multiple roles at the 
same time  

As in almost all organisations, a member in the organisation 
often plays multiple roles at some moment in order to 
exhibit diversity of behaviours. For example, when Alex, 
becomes a postgraduate, he may also take a job as  
TA or Research Assistant (RA), which is a part of his offer 
of the postgraduate studentship. Therefore, in his first year, 
Alex is not only a postgraduate but also a TA. Alex’s 
personal assistant agent must be able to help Alex to play 
two or more different roles.  

The changes of roles occur not only as moving from one 
role to another, but also as in the form of temporarily 
leaving a role and then returning to the role 

As in almost all organisations, a member in the organisation 
often temporarily leaves a role and then returns to the role, 
which means that the behaviour specification of the role will 
be suspended and unavailable when the agent leaves from 
the role, and will be resumed when the agent returns to the 
role. For example, after one year’s study, Alex decides to 
take one year’s industrial placement job in order to gain 
some work experience. He thus leaves the university for one 
year and then comes back to school and carries on his study. 
This does not mean that Alex will retreat from the role of 
postgraduate student forever. Instead, during the work 
placement year, he suspends his behaviour as postgraduate 
temporarily. He is officially still a registered postgraduate 
during this year, but he will not go to the university to take 
courses or conduct researches. Alex’s personal assistant 
agent must be able to help Alex to suspend by keeping all 
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personal information such as the study program, scores  
of passed or failed modules, credits earned, etc., and 
suspending the permitted activities as well as some 
restrictions on his performances while he is on leave, and 
resume his study by reactivating such information and 
activities after his returning to the university.  

The above scenarios substantially exhibit the dynamic 
and adaptive behaviours of agents in many applications.  
In order to support the development of such applications, 
the method should be proposed to model, analyse and 
design the above dynamic and adaptive behaviours in a 
natural way.  

3 Caste-centric methodology 

This section briefly reviews the caste-centric methodology 
of agent-oriented software development and its basic 
concepts that are related to the adaptive casteship 
mechanism presented in the paper. More details can be 
found in Zhu (2003a), Shan and Zhu (2006) and  
Shan et al. (2006).  

3.1 Conceptual model 

In our conceptual model, the basic unit that forms a system 
is agent. An agent is defined as computational entity that 
encapsulates data, operations and behaviours, and situates in 
its designated environments.  

Agent = <Data, Operations, Behaviour>Environment. 

Here, Data represents an agent’s state. Operations are the 
actions that the agent can take. Behaviour is described by a 
set of rules that determine how agent behaves, including 
when and how to take actions and change state in the 
context of its designated environment. By encapsulation,  
we mean that an agent’s state can only be changed by agent 
itself. Consequently, a MAS consists of agents and nothing 
but agents, as stated in the following.  

MAS = {Agent n}, n ∈ Integer. 

The classifier of agents is called caste. The notion of caste 
was originally presented in SLABS intending to deal with 
the limitation of object technology (Zhu, 2003a, 2003b). 
Here, we regard caste as the basic abstraction to specify 
agents’ behaviours and the elementary modular unit to 
design and implement MAS. As a modular language 
facility, caste serves as a template that describes the 
structure and behaviour of agents. 

A state space defined by a caste is represented as a set of 
state variables. Each action consists of an action identifier 
and may contain a number of parameters. The state space 
and the set of actions are usually divided into two kinds: 
visible ones and invisible (or internal) ones. When an agent 
takes a visible action, it generates an event that can be 
observed by other agents in the system. An agent taking an  
internal action generates an event that can only be perceived  
 
 

by its components. Similarly, the value of a visible data can 
be observed by other agents, while the value of an internal 
data can only be observed by its components. For the sake 
of simplicity, in this paper, we are not concerned with the 
visibility issues. 

While a set of castes represent various types of 
participants, the structure of the problem domain is captured 
with certain relationships between castes, including  
part-whole relations, inheritance (is-a relation) and 
migration (membership-shift relations). In particular, there 
are two types of migration relations, i.e., migrate and 
participate. A participate relation from caste A to caste B 
means that agents of caste A can join caste B without 
quitting from caste A. A migrate relation from caste A to 
caste B means that agents of caste A can join caste B and 
quit from caste A. 

Although the relationship between agents and castes is 
similar to the relationship between object and class and the 
relationship between data and type, none of the terms like 
instance, member, classifier and type that are commonly 
used to represent the relationship between object and class 
accurately represents the relationship between agent and 
caste. The main difference is that an agent can take actions 
to join a caste or quit from a caste at run time, and 
consequently, it obtains or loses the structural and 
behavioural features defined by the caste. Agents’ capability 
of dynamic joining and quitting from castes is called 
dynamic casteship (Zhu, 2003a).  

Based on the conceptual model of MAS presented 
above, a caste-centric agent-oriented methodology has  
been developed for the development of MAS. It consists of 
a process model called growth model and a set  
of agent-oriented languages and software tools that  
support various development activities in the process.  
In requirement analysis phase, a modelling language and 
environment CAMLE (Shan and Zhu, 2005) supports the 
analysis and design of MAS. The semi-formal models in 
CAMLE can be automatically transformed into formal 
specifications in SLABS (Zhu, 2001, 2003a, 2003b), which 
is a formal specification language designed for formal 
engineering of MAS. In implementation phase, MAS are 
implemented directly in an agent-oriented programming 
language called SLABSp (Wang et al., 2005). 

3.2 Modelling MAS with CAMLE  

In our methodology, modelling aims at representing the 
users’ requirements with a set of agents at various 
granularities and organising the agents into an information 
system. The key activities in the modelling and analysis 
phase include the following. 

• First, identify the agents and castes of agents in the 
system as well as the relationships between them.  
The artifact produced in this phase is a caste model  
for the system from the perspective of system 
architecture.  
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• Second, identify the agents’ interaction patterns in 
various scenarios, and produce a set of collaboration 
models for the system from the perspective of dynamic 
behaviour. 

• Third, elaborate and specify how its agents perform 
actions and/or change states in typical scenarios for 
each caste so that a set of behaviour rules can be 
assigned to the caste. The artifact produced in this 
phase is a set of behaviour models, each associated to a 
caste in the system. 

The result of the modelling is a system model comprising a 
set of diagrams that represent the system from various views 
and at different levels of abstraction.  

3.3 Specifying MAS with SLABS  

One of the most appealing features of agent technology is its 
natural way to modularise complex systems in terms of 
multiple interacting autonomous components. This feature 
is supported by the language facility caste in SLABS for 
specifying MAS. It bridges the gap between graphic 
modelling and implementation in the development process 
of agent-oriented information system. At the specification 
phase, a system model in CAMLE as the output of the 
modelling phase can be transformed into formal 
specification of the system. The specification not only lays 
the ground for future system implementation, but also 
facilitates further formal analysis of the system design.  
The formal definition of the SLABS language and its  
meta-model can be found in Zhu (2003a). Figure 1 shows 
the format of caste specification in SLABS. 

Figure 1 Caste specification in SLABS 

 

In the specification language SLABS, a behaviour rule is 
specified in the form of “pattern  event, [scenario] 
[where pre-cond]”, where scenario and pre-condition are 
optional. The pattern in a rule describes the pattern of the 
agents’ previous behaviours. The scenario part describes the 
situation in the environment in terms of the behaviours of 
other agents in its environment. The where-clause is the  
pre-condition of the action to be taken by the agents.  
The event describes the action to be taken or state to be in 
when the scenario happens and the pre-condition is 
satisfied. In modelling language CAMLE, behaviour rules 
are described by behaviour diagrams that define the 
scenarios, patterns and events in various types of nodes 
linked by arrows (Shan and Zhu, 2005). In programming 
language SLABSp, behaviour rules are expressed in a 
structural control statement that consists of a list of  
scenario expression and action statement pairs so that the 

statement is executed only if the scenario expression is true 
(Wang et al., 2005). 

3.4 Implementing MAS with SLABSp 

A distinctive feature of our agent-oriented methodology of 
information systems is that we aim at the direct 
implementation of information systems with a novel  
agent-oriented programming language based on caste 
language facility. Such a programming language can 
significantly narrow the gap between specification  
and implementation. We have designed and implemented  
an agent-oriented programming language SLABSp  
(Wang et al., 2005), which is based on Java and extends 
Java with three key concepts and language facilities,  
i.e., caste, scenario and environment description. The design 
and implementation of SLABSp demonstrates that caste and 
scenario are feasible as programming language facilities.  

3.5 Developing adaptive agents with dynamic 
casteship 

It is worth noting that the notion of caste as the 
encapsulation of data, operation, behaviour rules and 
environment description in terms of the agents in 
collaboration meets the requirements induced from the 
structures and functionalities of the agents and MAS 
described in the example in Section 2.  

For the first scenario described in the example where  
the behaviour of agent depends on the roles that it plays  
in the organisation, the structure and behaviour specification 
of a role can be specified and encapsulated as a caste.  
This means that caste can act as a fundamental abstraction 
and modular unit to describe what state and actions that an 
agent has, what environment that the agent is situated in  
and what behaviour rules that the agent should respect when 
the agent plays some role. For the second scenario, Alex 
will no longer be an undergraduate since then and start to be 
a postgraduate. This means he must give up certain access 
to the information, certain actions that he was granted as an 
undergraduate student as well as certain relationships with 
other members of the organisation such as his personal 
tutor, etc. This will also give him some new capability of 
actions, such as the access to the graduate’s labs, new 
personal information, a master degree student ID number, 
and new relationships to other members, such as a professor 
as his supervisor, etc. The change of Alex’s role in the 
university must also be reflected in his personal assistant 
software agent in terms of the changes of the restrictions on 
his access to the information system, the set of permitted 
actions, and the set of rules that confine his activities, etc. 
What is more important is that the personal assistant agent 
must carry over all the personal information such as his 
academic records, personal details and personal preferences, 
etc. rather than start from scratch. The dynamic change of 
roles that agents play can be modelled by the language 
facilities proposed in Shan and Zhu (2005). Suppose that 
each role in the university information system is modelled 
by a caste, which encapsulates the data related to the role, 



22 X. Mao et al.  

the actions the agent of the role can take, the set of 
behaviour rules that the agent playing the role must obey 
and the agents in collaboration with. Moving from one role 
to another can be modelled by changing the agent’s 
casteships to a caste to another caste. The CAMLE-like 
diagram in Figure 2 illustrates how dynamic casteship can 
be used to model role changes from undergraduate to 
postgraduate, where the dash line arrow is the migration 
from one caste to another. For the third scenario in the 
example in Section 2, playing multiple roles at the same 
time can be modelled as agent with some casteship(s) 
participating another caste. This means that agent can bind 
to two or more castes by participating. 

Figure 2 Illustration of the modelling of role changes in dynamic 
casteship 

 

However, the caste model presented in Figure 2 has  
some drawbacks. Note that, the caste that represents 
undergraduate students is split into two castes in order to 
enable a part of the information that Alex gains in the study 
to be remembered in his whole lifetime. Similarly, the caste 
of postgraduate students is also split into two. In fact, many 
other castes should also have to be split into two, such as the 
TA and Work Placement caste. It is quite universal that the 
participation in a role will leave memorable information and 
knowledge. Splitting a caste into two parts to model what 
are memorable and what is forgettable has two particular 
disadvantages in the modelling and designing adaptive 
agents. First, it results in an unnecessarily higher complexity 
of the model. The level of abstraction is not high enough to 
enable software developers to concentrate on more 
important issues. Second, it is structurally awkward and 
unnatural to view an agent as a compound of two parts,  
one as the forgettable and that other as remembered.  

Another problem that must be addressed in the 
modelling and designing adaptive agents is that while  
new roles can be adapted by an agent during execution,  
two roles may have conflictions of interests and conflictions 
in the behaviour rules, etc. For example, in the university 
information system, it is prohibited for any student to  
play undergraduate and graduate roles at the same time.  
The inconsistency may occur when agent binds to multiple 
roles. The modelling and design method should support the 
identification and resolution of such conflictions.  
 

Addressing these problems, this paper proposes an 
adaptive casteship mechanism as an extension to the 
dynamic casteship mechanism. We will also investigate how 
to analyse the consistency of adaptive MAS by defining a 
set of consistency notions, devising a graphic notation to 
represent transitions between configuration states of 
adaptive agents and imposing consistency constraints on the 
configuration states.  

4 Adaptive casteship mechanism 

This section formally defines the adaptive casteship 
mechanism.  

4.1 Informal introduction to the mechanism 

In the proposed adaptive casteship mechanism, an agent can 
not only change its casteship to a caste dynamically,  
but also distinguish the states of the casteship as either 
active or inactive. An agent can take actions ‘activate’ and 
‘deactivate’ to change the state of casteship at run time. 
Figure 3 shows the transition of the agent’s casteships  
and their states. The following explains the meanings of the 
states of casteship. 

Figure 3 The adaptive casteship mechanism 

 

Active casteship 

An agent has an active casteship to a caste means that the 
agent obtains all the structural and behavioural features 
defined by the caste, and these structural and behavioural 
features will influence the agent’s behaviour. In other 
words, the agent can take actions defined in the action part 
of the caste according to the behaviour rules defined by the 
caste, which can be a change to the agent’s internal state 
that belongs to the part of the state space defined by the 
caste. When agent takes action to join a caste, the casteship 
will initially be active.  

Inactive casteship 

An agent has an inactive casteship to a caste means that the 
agent obtains all the structural and behavioural features 
defined by the caste, but can not change the state variables 
and take actions defined in the caste while it still holds  
its values of the state variables defined by the caste.  
The behaviour rules of the inactive caste will not affect the 
agent’s behaviour. It does not observe the agents in its 
environment defined by an inactive caste either. However, 
the state variables defined by an inactively bounded caste  
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are accessible. Moreover, when the agent becomes actively 
casteship to the caste again, the values of the state variables 
are resumed to that when the agent’s casteship to the caste 
last changed to inactive.  

The adaptive casteship mechanism provides a natural 
way to model agents’ adaptive behaviours in complex 
systems. It is more suitable than dynamic casteship 
mechanism for modelling, analysis and realisation of the 
adaptive agents such as one defined in Section 2. 

It is worth noting that an agent’s action of activating, 
inactivating, joining or quitting a caste is also determined by 
the behaviour rules defined by the caste that the agent 
currently has active casteship to. Therefore, the behaviour 
rules specified in each caste explicitly declare what castes 
the agent can join and quit as well as activate and deactivate 
and in what situation to do so. In the university example, 
Alex graduates and becomes a postgraduate student must be 
the result of executing a behaviour rule that enables an 
undergraduate to quit from the caste Undergraduate and to 
join the caste of Postgraduate. His suspension/resuming of 
study must be the result of executing behaviour rules of the 
Postgraduate caste that enables him to deactivate/activate 
the casteship to Postgraduate. 

4.2 Formal model of Multi-Agent Systems (MAS) 

In Zhu (2003a), the caste-centric formal model of MAS has 
been formally defined. The following extends the formal 
model to enable the adaptive casteship mechanism to be 
specified. For the sake of simplicity, we have omitted some 
aspects of the original model, such as the caste inheritance 
and scenario definition, so that we can focus on the adaptive 
casteship mechanism.  

In our meta-model of MAS, agent is defined as an 
autonomous and persistent computational entity that is 
situated in certain environment and can take actions  
in order to fulfill its design objectives. Each agent consists 
of four parts: data, actions, behaviours and environments. 
That is, the structure of an agent is a 4-tuple, i.e., 
Agent = <DA, AA, BA, EA>, where DA represents an agent’s  
state, AA is the actions that agent can take, BA is the 
behaviour rules that determine how agent behaves in the 
context of its designated environment EA. It is worth noting 
that these parts may change during the execution of the 
agent. Such changes are realised by the adaptive casteship 
of an agent to castes.  

A caste defines a set of structural features and behaviour 
patterns for agents. A caste also contains four parts. Thus,  
it is a 4-tuple, i.e., Caste = <D, A, B, E>, where D defines  
a state space that the agents can have, A defines a set  
of actions that agents can take for the operation on the  
state space, B defines a set of behaviour rules specifying 
how agents behave in terms of when to take an action and 
how to update its state in the context of their designated 
environment, and E defines an environment that consists  
of a set of agents that have influence on agent’s behaviour. 
When an agent holds a casteship to a caste, it obtains  
 

the state space and the capability to take an action defined 
by the caste, becomes in collaboration and influenced by  
the agents specified in the caste’s environment definition 
and must obey the behaviour rules specified in the caste.  
For example, in the university example, we can identify  
and define two castes to represent the roles of undergraduate 
and postgraduate students, respectively. Each caste has its 
associated data, actions, behaviour rules and environments.  

Definition 1: A model M of MAS consists of two parts 
<MAS, CASTE>, where MAS = {a1, a2, …, an} is a finite set 
of agents and CASTE = {c1, c2, …, cm} is a finite set of 
castes.  

Agents behave continuously and autonomously. A time 
moment is an element in a time index set T, which is 
defined as the set of natural numbers. Let MASt be the set of 
agents in the system at time moment t. The casteship of 
agent a at time moment t to caste c is denoted by a ∈ tc.  
We write CASTE(a, t) to denote the set of castes that agent a 
belongs to at moment t, i.e., CASTE(a, t) = {c | a ∈t c}.  
In our adaptive casteship mechanism, the castes that agent 
binds may be either in active state or inactive state. 
Therefore, we write CASTEA(a, t) to denote the set of active 
castes that agent a belongs to at moment t, and CASTEI(a, t) 
to denote the set of inactive castes that agent a belongs  
to at moment t. Thus, CASTE(a, t) = CASTEA(a, t) 
∪ CASTEI(a, t). We assume that CASTEA(a, t) ∩ CASTEI 

(a, t) = ∅, for all agents a in MAS and time moments t. This 
means that for at any moment t, a caste that an agent binds 
is either in active state or in inactive state. 

An agent’s state space at some moment depends on the 
castes that the agent binds to at that time moment and their 
status. Let DA

a,t = ∪{c∈CASTEA(a,t)}Dc denote the state spaces 
of agent a at moment t based on active castes that it binds to 
at moment t, DI

a,t = ∪{c∈CASTEI(a,t)}Dc denote the state spaces 
of agent a at moment t based on inactive castes that it binds 
to at moment t. Similar to the above, we define AA

a,t =  
∪{c∈ CASTEA(a, t)}Ac as the action set of agent a at moment t 
based on active castes that it binds to at moment t, 
AI

a,t = ∪{c∈ CASTEI (a, t)} Ac the action set of agent a at moment 
t based on inactive castes that it binds to at moment t.  
In particular, we assume that for any caste c, Ac includes 
‘join’, ‘quit’, ‘activate’ and ‘deactivate’ operations on 
castes. Similarly, let BA

a,t = ∪{c∈ CASTEA(a,t)}Bc the behaviour 
rule set of agent a at moment t based on active castes that it 
binds to at moment t, BI

a,t = ∪{c∈ CASTEI (a,t)}Bc the behaviour 
rule set of agent a at moment t based on inactive castes  
that it binds to at moment t; EA

a,t = ∪{c∈ CASTEA(a,t)}Ec the 
environment of agent a at moment t based on active castes 
that it binds to at moment t, EI

a,t = ∪{c∈ CASTEI(a,t)}Ec the 
environment of agent a at moment t based on inactive castes 
that it binds to at moment t.  

Definition 2: The configuration of agent a at moment  
t is based on the castes that it binds to and is defined  
as sa,t = sA

a,t × sI
a,t, where sA

a,t = DA
a,t × AA

a,t × BA
a,t × EA

a,t  
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denotes the configuration of agent a at moment t  
based on active castes that it binds to, and 
sI

a,t = DI
a,t × AI

a,t × BI
a,t × EI

a,t denotes the configuration of 
agent a at moment t based on inactive castes that it binds to. 

Let Sa = {sa,t | t ≥ t0 for any moment t in T, where t0 is the 
moment at which agent a is to be created} the set  
of all possible configurations of agent a. The configuration 
of MAS at moment t is SMAS,t = ∏(a∈MAS) sa,t. We write 
SMAS = ∪(t∈T) SMAS,t to denote the set of all possible 
configurations of MAS. 

Definition 3: A run r of a MAS is a mapping from time T to 
the set SMAS. The behaviour of a MAS is defined by the set R 
of all possible runs. For any given run r of MAS, a mapping 
ra from T to Sa is a run of agent a in the context of r, where 
for any moment t, ra(t) is the restriction of r(t) on Sa. In the 
sequel, we use Ra = {ra | r ∈R} to denote the behaviour of 
agent a in the system.  

We assume that agent takes actions step by step, which 
means if agent takes action act at moment t, then the action 
will be completed at (t + 1) moment. 

4.3 Formal definition of the adaptive casteship 
mechanism 

In this section, we rigorously define the adaptive casteship 
mechanism and the semantics of caste operations. Formally, 
we write ‘M |= r,t ϕ’ to denote that the model M of MAS and 
its run r satisfies formula ϕ at moment t, and ‘|= ϕ’ to denote 
that formula ϕ is valid for any model of MASs and their 
runs at all time. Let ‘< >’ be the dynamic operator to 
represent action execution, intuitively, ‘<a: act>’ indicates 
that agent a takes action act. ‘U’ is the until temporal 
operator and ‘ψUϕ’ means that ϕ will be eventually 
satisfied and before that ψ is satisfied. ‘●’ denotes the next 
temporal operator. 

Definition 4: The semantics of the above temporal 
operators are defined as follows.  

• M |=  r,t ψUϕ  iff  ∃ t′ ∈ T: (t ≤ t′) and (M |= r,t′ ϕ)  
and (∀t′′: t ≤ t′′ < t′ ⇒ M |= r,t′′ψ) 

• M |= r,t ● ϕ  iff  M |= r,t+1 ϕ . 

A number of special predicates are introduced to specify the 
castes of agent and their status. ‘BindCaste(a, c)’ means that 
agent a holds a casteship to caste c, ‘Active(a, c)’ denotes 
that agent a’s casteship to caste c is active. ‘Inactive(a, c)’ 
means that agent a’s casteship to caste c is inactive. 
Formally, their semantics are defined as follows. 

Definition 5: For all agents a, castes c and moments t,  

1 M |= r,t BindCaste(a, c) iff c ∈ CASTE(a, t) 

2 M |= r,t Active(a, c) iff c ∈ CASTEA(a, t) 

3 M |= r,t Inactive(a, c) iff c ∈ CASTEI(a, t). 

Definition 6: M|=r,t <a: join(c)> iff 

c ∉ CASTE(a, t) and CASTEA(a, t + 1) = CASTEA 

(a, t) ∪ {c} and CASTEI(a, t + 1) = CASTEI(a, t) 

Definition 6 means that agent a executes action ‘join(c)’ at 
moment t successfully, if and only if, at moment t, c is not 
the caste of agent a, and at moment (t + 1) agent a’s 
casteship to caste c is active, and the action execution will 
not change the inactive castes of agent a.  

Theorem 1: join operation has the following properties. 

1  |= <a: join(c)> →●(Active(a, c)) 

2  |= <a: join(c)> ∧ Inactive(a, c1) → ●Inactive(a, c1). 

Property (1) in Theorem 1 means that if agent a joins some 
caste c at moment t, then the agent will hold a casteship  
to caste c actively in the next moment. Property (2) means 
that the join operation will not change the inactive castes  
of agent. The theorem follows Definitions 5 and 6 
straightforwardly. 

Definition 7: M |= r,t <a: quit(c)> iff 

c ∈ CASTEA(a, t) and 
CASTEA(a, t + 1) = CASTEA(a, t)\{c} and 
CASTEI(a, t + 1) = CASTEI(a, t). 

Agent a quits caste c at moment t, if and only if, agent a 
holds a casteship to caste c actively at moment t, and at 
moment (t + 1) agent a does not hold a casteship to castes c 
and the action execution will not change the inactive castes 
of agent a.  

Theorem 2: quit operation has the following properties. 

1 |= < a: quit(c)> → ● (¬BindCaste(a, c)) 

2 |= < a: quit(c)> ∧ Inactive(a, c1) → ●Inactive(a, c1) 

Property (1) in Theorem 2 manifests that if agent a quits 
some caste c, then the agent will unbind to the caste c  
when action is completed. Property (2) means that the  
quit operation will not change the inactive castes of agent. 
The theorem follows Definitions 5 and 7 directly. 

Definition 8: M |= r, t <a: deactivate(c)> iff 

c ∈ CASTEA(a, t) and 
CASTEA(a, t + 1) = CASTEA(a, t)\{c} and 
CASTEI(a, t + 1) = CASTEI(a, t) ∪ {c}. 

Agent a deactivates caste c at moment t, if and only if, agent 
a holds a casteship to caste c actively at moment t, and at 
moment (t + 1) the status of caste c will be changed from 
active to inactive.  

Theorem 3: deactivate operation has the following 
properties 

1 |= <a: deactivate(c)> → Active(a, c) 

2 |= <a: deactivate(c)> → ● (Inactive(a, c)). 
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Property (1) in Theorem 3 states that if agent a  
deactivates a caste c, then the agent must hold a casteship  
to c actively before deactivation. Property (2) shows  
that if agent a deactivates some caste c, then the state  
of its casteship to c will be changed to inactive when  
the action is completed. The theorem follows Definitions 5 
and 8 directly. 

Definition 9: M |= r, t <a: activate(c)> iff 

c ∈ CASTEI(a, t) and CASTEI(a, t + 1) = CASTEI(a, t)\{c} 
and CASTEA(a, t + 1) = CASTEA(a, t) ∪ {c}. 

Agent a activates some caste c at moment t, if and only if, 
agent a holds a casteship to caste c inactively at moment t, 
and at moment (t + 1) the state of its casteship to c will be 
changed from inactive to active.  

Theorem 4: deactivate operation has the following 
properties. 

1 |= <a: activate(c)> → Inactive(a, c) 

2 |= <a: activate(c)> → ●(Active(a, c)). 

Property (1) in Theorem 4 states that if agent a activates  
its casteship to caste c, then the agent must hold an inactive 
casteship to caste c before the activation. Property (2)  
shows that if agent a activates caste c, then the state of its 
casteship to c will be changed from inactive to active.  
The theorem follows Definitions 5 and 9. The proof is 
straightforward. 

5 Reasoning about adaptive behaviours 

This section is devoted to the reasoning about adaptive 
behaviours as specified in adaptive casteship mechanism to 
ensure adaptive agents are well-designed. We will first 
introduce some notions about the structure of adaptive 
agents so that the reasoning about well-defined adaptive 
behaviour can be performed.  

Definition 10: For any c1, c2 ∈ CASTE, if the behaviour 
rules of c1 enables an agent that hold a casteship to caste c1 
to join caste c2, then we call c1 can directly reach c2,  
write c1 ⇒ c2.  

We assume that the directly reachable relationship between 
castes is irreflexive, which means any caste is not permitted 
to be joined again by an agent when it has already had a 
casteship to the caste. We write DReach(c) = {c′ | c⇒c′}  
to denote the directly reachable castes set of c,  
and DReach(a, t) = ∪{c∈ CASTEA(a,t)} DReach(c) to denote the 
directly reachable caste set of agent a at moment t.  

For example, if the behaviour rule of caste 
undergraduate explicitly declares that when undergraduate 
student passes the entrance examination, he may  
join the caste of postgraduate, then postgraduate ∈ 
DReach(undergraduate). The directly reachable relationship  
 
 

between castes does not necessarily satisfy transitive 
property. If c1 can directly reach c2, the agent that has 
casteship to caste c1 is possible to join caste c2 in its run 
when the scenario and the pre-condition specified in the 
behaviour rule are satisfied. 

Definition 11: Let c ∈ CASTE, the reachable castes set 
Reach(c) of caste c is recursively defined as follows.  

1 if c1 ∈ DReach(c), then c1∈ Reach(c). 

2 if c1 ∈ Reach(c) and c2∈ Reach(c1), then c2∈ Reach(c). 

Obviously, the reachable relationship between castes is 
transitive. It defines the possible castes that agent can hold 
casteships to during its lifecycle. If c1 can reach c2, then the 
agent that has the casteship to caste c1 is possible to join 
caste c2 in its run. Let Reach(a, t) = ∪{c∈CASTEA(a,t)}Reach(c) 
the reachable caste set of agent a at moment t.  

Definition 12: Let c1, c2 ∈CASTE. If caste c1 and c2 are 
strictly not permitted for any agent a to hold casteships at 
the same time to govern the agent’s behaviours 
simultaneously, then we say that caste c1 and c2 are conflict, 
written as c1↑ c2. Let V ⊆ CASTE be a subset of castes,  
if for all castes c1, c2 ∈ V, c1 and c2 are not conflict to each 
other, i.e., c1↑ c2 is not true, then we say that the caste set V 
is consistent. For an agent a and moment t, if CASTEA(a, t) 
is consistent, we say that agent a is consistent on its 
casteships at moment t. If agent a is always consistent on its 
casteships at all moments in its run, we say that agent a is 
coherent.  

The conflict relationship between castes is dependent on  
the applications. For example, if the university does not  
permit any student to be an undergraduate and postgraduate 
simultaneously, then the castes undergraduate and 
postgraduate are in conflict. Hence, the caste set 
{undergraduate, postgraduate} is not consistent. It is 
obvious that the conflict relationship between castes is 
reflexive, symmetric, but not transitive.  

As the casteship of an agent can change from time to 
time and agent is possible to join any caste in its reachable 
castes set, agents should avoid being inconsistent on  
its castes during its run. Therefore, when developing 
adaptive MAS based on the adaptive casteship mechanism, 
the conflict requirements should be explicitly specified  
and the conflict relationship of castes should be detected 
and eliminated. For example, since {undergraduate, 
postgraduate} is inconsistent according to application 
requirement, an agent that has casteship to undergraduate 
must firstly quit the caste undergraduate before it joins the 
caste postgraduate. 

Definition 13: For agent a in MAS, a is called adaptive, if 
and only if, there are time moments t1 and t2 in T (t1 ≠ t2) 
such that CASTEA(a, t1) ≠ CASTEA(a, t2) or CASTEI(a, t1) ≠ 
CASTEI(a, t2). Otherwise, agent a is called static. 
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The above definition manifests that the adaptive agent will 
change its casteships in its lifecycle. In the example defined 
in Section 2, it is obvious that agent Alex is a typical 
adaptive agent. 

Lemma 1: Let t0 be the moment that agent a is created,  
if CASTE(a, t0) is consistent and a is a static agent, then 
agent a is coherent.  

The proof is straightforward, because according to the 
Definition 13, the caste set of static agent will never be 
changed in agent’s lifecycle.  

We assume that there is no other action in agents except 
‘join’, ‘quit’, ‘deactivate’ and ‘activate’ that can change the 
casteships of agent. Formally, the assumption is specified  
as follows. For any agent a, caste c, action act and  
time moment t, if M |=r,t <a: act> and act ∉ {join, quit, 
deactivate, activate}, then CASTEI(a, t) = CASTEI(a, t + 1) 
and CASTEA(a, t) = CASTEA(a, t + 1)).  

Definition 14: An agent a is rational about caste operations, 
if and only if, it satisfies the following properties.  

1 M |= r,t <a: join(c)> → M| = r,t ¬BindCaste(a, c) 

2 M |=r,t <a: quit(c)> → M| = r,t Active(a, c) 

3 M |=r,t <a: deactivate(c)> → M| = r,t Active(a, c) 

4 M |=r,t <a: activate(c)> → M| = r,t Inactive(a, c). 

Formula (1) in Definition 14 means that when an agent 
intends to join a caste, it should have no casteship to the 
caste. Formula (2) states that when an agent intends to quit a 
caste, the agent should have already an active casteship to 
the caste. Formula (3) means that when an agent intends to 
deactivate a caste, the agent should have already held an 
active casteship to the caste. Formula (4) states that when an 
agent intends to activate a caste, then the agent should have 
an inactive casteship to the caste.  

Definition 15: An agent a is faithful to caste operations,  
if and only if, agent a intending to join caste c at some  
moment t implies that the caste c is directly reachable for 
agent a at moment t. Formally, if M| = r,t <a: join(c)>, then 
c ∈ DReach(a, t). 

The above definition shows that a faithful agent will depend 
on the directly reachable caste set to join a new caste.  
Note that, an agent can only take actions defined by the 
castes that the agent has active casteship to, i.e., for any 
agent a, action act and moment t, M| = r,t <a: act> ⇒ ∃c: 
c ∈ CASTEA(a, t) and act ∈ Ac. 

Lemma 2: For any faithful agent a, caste c and moment t,  
if c ∉ Reach(a, t) and c∉CASTE(a, t), then for any t′ > t: 
c ∉ CASTE(a, t′). 
 
 
 
 

Proof: Assuming that there is t′ > t such that 
c ∈ CASTE(a, t′). Then, according to our assumption that 
there is no other action except ‘join’, ‘quit’, ‘deactivate’ and 
‘activate’ that can change the casteships of agent and 
definition 6, there must be a moment t < t″< t′, M| = r,t″<a: 
join(c)>. As agent is faithful, according to Definition 15, 
c ∈ DReach(a, t″) which is conflict with the pre-condition 
of the lemma. 

The lemma states that if a caste is not reachable for agent a 
at moment t, then the agent cannot hold a casteship to the 
caste in its future run. 

Definition 16: An agent a is consistent about caste 
operations, if and only if, it satisfies the following 
conditions.  

1 if agent a intends to join caste c at moment t, there is no 
caste c′ ∈CASTEA(a, t): c↑ c′;  

2 if agent a intends to activate caste c at moment t, there 
is no caste c′ ∈ CASTEA(a, t): c↑ c′. 

The above definition shows that a consistent agent will 
consider and avoid the conflict problem when it changes the 
casteships in its lifecycle. 

Lemma 3: For any agent a, caste c and moment t,  

1 if agent a executes action ‘join(c)’ and there is no caste 
c′  ∈ CASTEA(a, t): c↑ c′, then the caste set of agent a is 
consistent when the ‘join’ action is completed;  

2 if agent a executes action ‘activate(c)’ and there is no 
caste c′  ∈ CASTEA(a, t): c↑ c′, then the caste set of 
agent a is consistent when the ‘activate’ action is 
completed. 

The lemma shows that if an agent intends to join or activate 
a caste and the caste to be joined or activated does not 
conflict with any castes that agent a already has active 
casteships, then when the operation is completed the caste 
set of agent is consistent. The lemma follows Definition 12, 
Definitions 6 and 9 directly. 

Lemma 4: For any agent a that is consistent about caste 
operations and moment t, if Reach(a, t) is consistent, then 
the agent will be consistent in its future run. 

The lemma is a corollary of Lemma 2 and Definition 16. 
The proof is straightforward.  

Definition 17: We call that an agent a is reachable at 
moment t, if and only if, for any caste c ∈ CASTE(a, t),  
∃t′ < t: M|= r,t′ <a: join(c)> and c ∈ DReach(a, t′).  

The definition manifests that reachable agent always binds 
to castes in its directly reachable caste set.  
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Definition 18: For any caste operation act and agent a,  
we say that act is safe for agent a, if and only if, agent a is 
always consistent and reachable when performing act. 

Theorem 5: If agent a is rational, faithful and consistent 
about caste operations, then the ‘join’, ‘quit’, ‘activate’ and 
‘deactivate’ caste operations are all safe for agent a, i.e., for 
any caste operation act ∈ {join, quit, activate, deactivate}, 
caste c and moment t,  
 

1 if M|= r,t <a: act(c)> and agent a is consistent at  
moment t, then when act is completed agent a is still 
consistent;  

2 if M|= r,t <a: act(c)> and agent a is reachable at moment 
t, then when act is completed agent a is still reachable.  

Proof 1: For any model M of MAS and its run r, moment t 
and caste c, if M|= r,t <a: act(c)> and act ∈ {join, activate}, 
then according to Definition 16, there is no caste c′ 
 ∈ CASTEA(a, t): c↑ c′. Therefore based on Lemma 4,  
agent a is consistent when the ‘join’ or ‘activate’ action  
is completed. For act ∈ {quit, deactivate}, as agent a is 
consistent at moment t, then for any castes c1, 
c2 ∈ CASTEA(a, t), there is no c1↑ c2. Therefore, according  
to the formal semantics definitions of quit and deactivate 
operations, when quit and deactivate operations are 
completed at moment t′, the active castes of agent a at 
moment t′ is CA(a, t′) = CA(a, t)\{c}. It is obvious that  
for any castes c1, c2 ∈ CASTEA(a, t′), there is no c1 ↑ c2. 
Therefore, agent a is consistent when act is completed.  

Proof 2: For any model M of MAS and its run r,  
moment t and caste c, if M |=r,t<a: act(c)> and agent a  
is reachable at moment t, then for act ∈ {activate, 
deactivate}, according to semantics definitions of activate 
and deactivate operations, when activate and deactivate 
operations are completed at moment t + 1, the caste set of 
agent a at moment t + 1 is CASTE(a, t + 1) = CASTE(a, t). 
As agent a is reachable at moment t, therefore agent  
a is still reachable at moment (t + 1). For act ∈ {quit}, 
according to semantics definitions of quit operation,  
when quit operation is completed at moment t + 1 the caste 
set of agent a at moment t + 1 is CASTEA(a, t′) =  
CASTEA(a, t)\{c}. As agent a is reachable at moment t, 
therefore agent a is still reachable at moment (t + 1).  
For act ∈ {join}, according to semantics definitions of join 
operation, as agent a is faithful about caste operations, 
therefore according to Definition 15, c ∈ DReach(a, t).  
So, when join operation is completed at moment t + 1, agent 
a is reachable at moment t + 1.  

6 Modelling and analysing adaptive agents 

Adaptive agents and MAS typically have complex 
behaviours. A visual modelling language will be helpful to 
model and analyse the dynamic behaviours in such systems. 
In this section, we propose a diagrammatic notation called 
transition diagrams, which describes dynamic change of 

agent’s casteships during its lifecycle. The semantics  
of the visual notation is based on the adaptive casteship 
mechanism defined in Section 4. This section also 
introduces the constraints on transition diagrams for 
specifying and analysing adaptive agents with a number of 
model properties.  

6.1 Transition diagram 

In this section, we introduce transition diagram, present its 
graphic notation and its meanings. The abstract syntax is 
then formally defined to facilitate the definition of 
constraints in Section 6.2. 

6.1.1 The graphic notation  

The notation of transition diagrams is an extension to 
CAMLE language. In CAMLE, information about agents’ 
dynamic transition is partly depicted in caste diagram and 
behaviour diagrams. Caste diagram describes the possible 
transition paths between castes. Behaviour diagrams define 
behaviour rules for each caste to describe how agents 
change their casteships in what scenario. But, when 
software engineers have particular interests on some 
adaptive agent, a transition diagram is helpful to explicitly 
describe the configuration of the agent at various time 
moments and the transitions between the configurations by 
changing the agent’s casteships. Figure 4 shows the notation 
and format of transition diagram.  

Figure 4 Notation and format of transition diagram 

 

Configuration specifies the state of an agent at a time 
moment in terms of its active and inactive casteships.  
In a transition diagram, a configuration is depicted as a 
round-corner rectangle that comprises three parts partitioned 
by a solid line and a dash line. The top part is annotated 
with the name of the configuration. The middle part 
contains the set of active casteships of the agent, and the 
bottom part contains the set of inactive casteships. There are 
two special kinds of configuration nodes. One is initial 
configuration represented by hexagon, which specifies the  
start point of an agent’s lifecycle. The other is final 
configuration represented by dark hollow circle, which 
denotes the end point of the agent’s lifecycle. When 
modelers need to depict some configurations as the start or 
end of the transition chain in the diagram but do not care 
about their details, initial configuration and end 
configuration can also be used.  
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A transition describes how an agent transforms  
from one configuration to another when some condition  
is satisfied in its lifecycle. In transition diagrams, a directed 
edge represents a transition relation between a pair of 
configurations. A transition is annotated with a transition 
rule, which represents the condition that results  
in the transition. The format of a transition rule is 
“pattern | → transition-actions [if scenario] [where  
pre-cond]”, which means that when the agent’s previous 
behaviour matches the pattern, behaviour of the agent’s 
environment matches the scenario and the pre-condition is 
satisfied, the agent will take the transition-actions which are 
a sequence of actions in the atomic action set {join, quit, 
deactivate, activate}. Transition rule is a special type of 
behaviour rule of caste. The execution of the rule will  
result in the change of agent’s configuration from the source 
to the destination of the edge. For example, Figure 4 shows 
that when the pattern matches e2, the agent will execute 
‘quit(c1), join(c2)’ , which leads to the agent’s configuration 
change from S1 to S2. Note that, a transition rule in a 
transition diagram is not necessarily a complete behaviour 
rule. It is acceptable as long as the transition-actions part  
is specified, while the other parts stating why the transition 
is invoked are optional. Transition diagrams, as one 
viewpoint to MAS, aim at correct design of adaptive agents 
with respect to certain properties. Analysing the properties 
of an adaptive agent can be realised through checking 
certain properties of the agent’s configurations and the 
transitions between the configurations in transition 
diagrams. Therefore transition modelling does not care the 
detailed structure and behaviour rules of castes or agents. 
The complete behaviour rules of each caste including 
transition rules should be specified in the behaviour diagram 
for the caste.   

In order for transition diagrams to be well organised 
with acceptable complexity, each transition diagram is 
regulated to model one certain caste of agents. Thus a 
transition diagram usually contains one non-trivial 
configuration (not initial situation or final situation) as the 
start-point of a set of transition chains, and the transition 
chains have only one hop. For example, in the transition 
diagram in Figure 4, the start configuration is S1,  
thus the ‘leading role’ in the diagram is caste C1.  
The diagram describes that an agent may join caste C1 under 
condition e1, (i.e., the transition from the initial situation to 
S1), then agents of caste C1 may migrate to C2 under 
condition e2 (i.e., from S1 to S2), or deactivate C1 under 
condition e3 (i.e., from S1 to S3), or quit C1 under condition 
e4 (i.e., from S1 to S2). Note that how the agents of C2 will 
change its casteship to other castes is not concerned in this 
diagram.  

6.1.2 The abstract syntax 

Graphic modelling with transition diagrams not only helps 
to explicitly describe specific design information about each 
adaptive agent, but also facilitates to further investigate 
special properties of the agents. To achieve this purpose,  
we use the GEBNF (Graphically Extended BNF) proposed 

in Zhu and Shan (2006)to rigorously define the type system 
and abstract syntax of the transition diagrams. Table 1 
shows the notation of GEBNF.  

Table 1 GEBNF notation 

Notation Meaning Examples and explanation 

<X> X is a concept or 
a type of entities 
in the model 

<Model> and <Diagram> represent 
the concepts of models and diagrams, 
respectively 

X ::= Y X is defined as Y <Model> ::= <Diagram>* : a 
model is defined as a number of 
diagrams  

X* Repetition of X 
(include null) 

<Diagram>*: the entity consists of a 
number N of diagrams, where N ≥ 0 

X+ Repetition of X 
(exclude null) 

<Diagram>+: the entity consists of 
a number N of diagrams, where N ≥ 1

X | Y Choice of X  
and Y 

<Actor node>|<Use case node> 
means that the entity is either an 
actor node or a use case node 

X , Y X and Y, the 
union of X and Y

<Actor node>,<Use case node>: an 
entity that consists of an actor node 
and a use case node 

[ X ] X is optional  [<Actor>]: element of actor is 
optional 

X Y Order pairs 
consists of  
X and Y 

<Actor node> <Use case node>: an 
element that consists of an order pair 
of an actor node and a use case node 

/X/ An annotation 
field named as X 

/Use case name/: the annotation field 
called use case name 

X : Y The type of X is 
Y 

/Use case name/: Text : the type of 
the annotation use case name is text 

(X) Parenthesis  It is used to change the preferences 
of the expression 

‘abc’ Terminal 
element, the 
literal value of a 
string 

‘extends’: the literal value of the 
string ‘extends’ 

Text 
[!F] 

Predefined type 
Text with syntax 
specified by F, 
where F is a BNF

Text: a text in any format; 
Text ! <object name> ‘:’ <class 
name> : the text that consists of an 
object name and a class name 
separated by a colon 

In GEBNF, we can define the type system and abstract 
syntax of transition diagram as follows.  

6.2 Constraints on transition diagrams 

Based on the adaptive casteship mechanism described in 
Section 4, we define some constraints for transition 
diagrams to support analysing and checking the properties  
of adaptive agents. Modellers can analyse adaptive agents’ 
properties, such as rational, faithful, consistent, and 
reachable properties, through checking the agents’ transition 
diagrams against the constraints. Diagrams satisfying such 
constraints represent well-defined agents with the desirable 
properties.  
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6.2.1 Notation for defining constraints 

We use the formal notation proposed in Zhu and  
Shan (2006) to define the constraints based on the  
type system and abstract syntax given in Section 6.1.  
The following summarises the formal notation, which is a 
first-order logic for defining structural properties of graphic 
models.  

ML is the modelling language. Let ϕ be an n-ary 
operator defined on the type t1, t2, …, tn, that results in a 
value of type t. Let ρ be an n-ary relation defined on the 
type t1, t2, …, tn.  

• Expressions are formed by finite applications of the 
following constructions.  

• Variables of various types are expressions of their 
own types. 

• Constants are expressions of their own types.  

• ϕ (e1, e2, …, en) is an expression of type t,  
if e1, e2, …, en are expressions of types t1, t2, …, tn, 
respectively.  

• e.f is an expression, if e is an expression of type t 
and f is a field defined by the language ML for the 
type t. The type of e.f is ft, if the type for field f is 
defined to be of type ft by ML. 

• e.t is an expression, whose value is the set of the 
elements of type t in e, where type t is defined  
in ML. 

• Type(e) is an expression if e is an expression.  
The value of Type(e) is the type of e.  

• Statements are formed by finite application of the 
following constructions.  

• ρ(e1, e2, …, en) is a statement, if e1, e2, …, en are 
expressions of types t1, t2, …, tn, respectively;  
in particular, e1 = e2 and e1 ∈ e2 are statements,  
if e1 and e2 are expressions.  

• Type(e) = t is a statement, if e is an expression and 
t is a type name.  

 
 

• ¬ρ, ρ1 ⇒ ρ2, ρ1 ⇔ ρ2, ρ1 ∧ ρ2, and ρ1 ∨ ρ2 are 
statements, if ρ, ρ1 and ρ2 are statements. Here the 
symbols ¬, ⇔, ⇒, ∧ and ∨ denote their respective 
logic relations as usual, namely ¬ for ‘not’, ⇒ for 
‘imply’, ∧ for ‘and’, ∨ for ‘or’ and ‘ρ1 ⇔ ρ2’ for 
‘(ρ1 ⇒ ρ2) ∧ (ρ2 ⇒ ρ1)’. 

• ∀X ∈ E.S and ∃X ∈ E.S are statements, if X is a 
free variable in statement S. 

6.2.2 Constraints for adaptive properties 

Based on the properties of adaptive agents defined in 
Section 4.4, constraints on transition diagrams can be 
formally specified as statements of the first order language 
defined above. The abstract syntax of transition diagrams 
specified in Section 6.1 defines the notation for representing 
constructs of transition diagrams in the following 
constraints.  

(A) Constraints for rational agents 

Recall that Definition 14 defines rational agents as the 
agents that satisfy four properties. The four properties of 
agents are represented as the following four constraints on 
transition diagrams. A transition diagram describes a 
rational agent if each transition T in the diagram satisfies the 
constraints. We use Begin (T) to denote the configuration 
where T starts.  

• Join (C) ∈ T.<Transition rule>.<Action> ⇒ C ∉ Begin 
(T). (<Active Casteship> ∪ <Inactive Casteship>)  

This constraint means that for transition T, if action 
Join (C) is among the action part of its transition rule, 
its start configuration must not contain C as active or 
inactive casteship.  

• Quit (C) ∈ T.<Transition rule>.<Action> ⇒ C ∈ Begin 
(T). <Active Casteship> 

This constraint means that for transition T, if action 
Quit (C) is among the action part of its transition rule, 
its start configuration must contain C as active 
casteship.  
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• Deactivate (C) ∈ T.<Transition rule>.<Action> ⇒ 
C ∈ Begin (T) . <Active Casteship> 
This constraint means that for transition T, if action 
Deactivate (C) is among the action part of its transition 
rule, its start configuration must contain C as active 
casteship.  

• Activate (C) ∈ T.<Transition rule>.<Action> ⇒ 
C ∈ Begin (T) . <Inactive Casteship> 
This constraint means that for transition T, if action 
Activate (C) is among the action part of its transition 
rule, its start configuration must contain C as inactive 
casteship.  

(B) Constraints for faithful agents 

Let CASTES denote the set of castes in the system to be 
developed. Based on the definition of DReach() for 
individual caste, Definition 10, we define a 2-tuple  
relation DirectReach = {<c1, c2> | c1 ⇒ c2, c1, c2 ∈ Castes}.  
DirectReach is an irreflexive, non-symmetric,  
non-transitive relation that represents the set of directly 
reachable pairs of castes in the system. From the global 
perspective to the system, using DirectReach rather than 
DReach() simplifies the definition of constraints on 
transition diagrams. When developing adaptive systems, 
modelers should explicitly define DirectReach for the 
system at early stage of software development based on the 
analysis of targeted systems. Such information that restricts 
certain types of relations between castes can be used to 
regulate the design and to detect errors in system models. 
Recall the definition of faithful agents, Definition 15.  
A transition diagram D for an agent a must satisfy the 
following constraint in order for a to be a faithful agent.  

• ∀T ∈ D.<Transition>. (Join(c) ∈ T.<Transition 
rule>.<Action> ⇒ ∃s ∈ Begin (T).<Active Casteships>. 
(<s, c> ∈ DirectReach))  

This constraint means that for any transition T, if action Join 
(c) is among the action part of its transition rule, there must 
be an active casteship s in the start configuration so that 
<s, c> bears DirectReach relation.  
(C) Constraints for consistent agents 

Based on the definition of conflict for individual caste, 
Definition 12, we define a 2-tuple relation Conflict =  
{<c1, c2> | c1 ↑ c2, c1, c2 ∈Castes}. Conflict is irreflexive, 
symmetric and non-transitive relation that denotes the set of 
conflict pairs of castes in the system. Modelers should also 
explicitly define Conflict for the system at the early stage of 
software development. Recall that Definition 16 defines the 
agents that are consistent about caste operations.  
A transition diagram D for an agent a must satisfy the 
following constraints in order for a to be a consistent  
agent about caste operations. We use End(T) to denote the 
configuration where a transition T is directed to.  

• ∀T ∈ D.<Transition>.(Join(c) ∈ T.<Transition 
rule>.<Action> ⇒ ∀s ∈ End (T).<Active Casteships>. 
(<s, c> ∉ Conflict)). 

This constraint means that for transition T, if action Join (c) 
is among the action part of its transition rule, there must be 
no such active casteship s in the end configuration that  
<s, c> bears Conflict relation.  

• ∀T ∈ D.<Transition>.(Activate(c) ∈ T.<Transition 
rule>.<Action> ⇒ ∀s ∈ End (T).<Active Casteships>. 
(<s, c> ∉ Conflict)). 

This constraint means that for transition T, if action Activate 
(c) is among the action part of its transition rule, there must 
be no such active casteship s in the end configuration that 
<s, c> bears Conflict relation.  

Besides the consistency with respect to actions, each 
configuration of a consistent agent must also be consistent 
by itself, i.e. do not contain conflict pair of castes. Formally, 
for a transition diagram D,  

• ∀S ∈ D.<Configuration>.∀a, c ∈ S.<Active 
Casteships>. (<a, c> ∉ Conflict). 

(D) Constraints for reachable agents 

Recall that Definition 17 defines reachable agents. In the 
context of graphic modelling, the set of agents of a caste is 
reachable if all directly reachable relations from the caste 
are described in the transition diagram for the caste. Given 
the DirectReach set for a system, a transition diagrams D 
defines a reachable caste when it satisfies the following 
constraint.  

• ∀<s, c> ∈ DirectReach. (s ∈ D.<StartConfiguration>. 
<Active Casteship> ⇒ ∃T ∈ D.<Transition>. 
(Begin(T) = D.<StartConfiguration> ∧ c ∈ End(T). 
<Active Casteships>)) 

where D.<StartConfiguration> denotes the non-trivial  
(not initial situation or final situation) start configuration in 
diagram D. This constraint means that if D is for agents of 
caste s, all possible direct casteship transition from s must 
be described in D. 

The constraints defined above can be used individually 
or in combination to check whether the models of adaptive 
MAS are correct with respect to certain desirable properties. 
The constraints are apt to be implemented as automatic tool 
so that the checking of models can be automated. In our 
previous study on agent-oriented modelling with the 
CAMLE language, we have developed a consistency 
checking tool based on the type system, syntax and 
consistency constraints of CAMLE (Shan and Zhu, 2004). 
The effectiveness of our consistency checking method has 
been verified (Shan and Zhu, 2006). The implementation of 
automated tool for checking transition diagrams is in our 
research agenda.  

7 Case study: university information system  

This section illustrates the use of transition diagram for 
modelling adaptive MAS with the example of the university 
information system specified in Section 2. Using the 
constraints of transition diagram defined in Section 6.2 for 
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checking CAMLE model and transition diagrams is also 
demonstrated.  

7.1 Caste diagram 

To capture the structure of the university information 
system, the castes that constitute the system and the 
structural relations between the castes, a caste diagram in 
CAMLE is constructed as shown in Figure 5. The notation 
shown in Figure 5 is the part of the notation of CAMLE 
caste diagram that is involved in this example. It is worth 
noting that both migrate and participate represent casteship 
transition relations. The difference between them is that 
migrate relation between caste A and caste B denotes that an 
agent of A quits from A before it joins B, while participate  
relation between A and B denotes that an agent of caste A 
joins caste B while remaining its casteship to A.  

Figure 5 Caste diagram for University and the notation  

 

Castes in the University information system is represented 
by the set  

CASTES = {Undergraduate, Postgraduate, Staff, Secretary, 
 Alumni, TA, RA}  

Note that only Undergraduate, Postgraduate, Staff and 
Secretary represent the members of a university. The caste 
Alumni is considered in the system because the university 
needs to keep a record of the alumni. TA and RA are 
positions that the university provides for postgraduates. 
Since the example aims to demonstrate the effectiveness of 
our adaptive casteship mechanism rather than give a 
complete model of the university system, we do not 
consider more refined classification for Staff or Secretary 
for the sake of space.  

In the system, agents of Undergraduate and Postgraduate 
may be adaptive agents, while agents of Staff, Secretary  
and Alumni are static agents because they cannot change 
their casteships. To properly model adaptive agents, we 
must define the DirectReach and Conflict set for the 
system. Without loss of generality, suppose the university 
neither allows a student (undergraduate or postgraduate) to 
take part-time job as staff or secretary, nor a staff or 
secretary to be part-time student. A postgraduate may  
be TA or RA or both or neither of them during his study.  
A postgraduate, staff or secretary may belong to the  
alumni if he did graduate from the university. Therefore,  
we have that  
 
 
 

DirectReach = {<Undergraduate, Postgraduate>, 
 <Undergraduate, Alumni>,  
 <Postgraduate, Alumni>,  
 <Postgraduate, TA>, <Postgraduate, RA>,  
 <Postgraduate, Staff>},  

Conflict = {(Undergraduate, Alumni), (Undergraduate, 
 Postgraduate), (Undergraduate, Staff),  
 (Undergraduate, Secretary), (Undergraduate,  
 TA), (Undergraduate, RA), (Postgraduate,  
 Staff), (Postgraduate, Secretary),  
 (Staff, Secretary), (Staff, TA), (Staff, RA), 
 (Secretary, TA), (Secretary, RA)}. 

To help define Conflict, we can also define Consistent  
as the set of the 2-tuple castes without conflict relation.  
In other words, Consistent = {(x, y) | x, y ∈ Castes, x ≠ y} 
 – Conflict.  

Consistent = {(Postgraduate, Alumni),  
 (Postgraduate, TA), (Postgraduate, RA), 
 (Staff, Alumni), (Secretary, Alumni),  
 (Alumni, TA), (Alumni, RA), (TA, RA)}. 

The caste diagram that describes the whole set of castes in 
the system and the migration relations between the castes 
helps to define the sets. Actually, DirectReach equals to the 
migration relations in the caste diagram. Note that Conflict 
relation is not directly related to the relations described in 
caste diagram.  

7.2 Transition diagram 

The definition of Conflict resulted from the analysis of the 
requirement and constraints of the system. Conflict can be 
used to detect errors in transition diagrams. For example,  
it is incorrect to design an agent that joins Staff and 
Postgraduate at the same time. 

For agents of the Undergraduate caste, we develop a 
transition diagram as shown in Figure 6 to model the 
casteship transition within its lifecycle. The transition 
diagram shown in Figure 7 is for the agents of Postgraduate 
caste. Note that in each transition, the event part only 
describes the action or state of the agent that precedes the 
caste transition actions. It is not the complete condition that 
invokes the casteship transition, because the result action 
also depends on the scenario of the whole system. Take the 
transition from the configuration of Undergraduate to 
Suspend as an example. When an undergraduate applies to 
the university to suspend his study, his application may 
either get permitted or refused. Similarly, when an 
undergraduate applies graduate course from the university, 
he may either get an offer or be rejected. However, it should 
be the behaviour diagram in CAMLE rather than the 
transition diagram that specifies the complete set of 
behaviour rules of Undergraduate in various scenarios of the 
system. 
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Figure 6 Transition diagram for undergraduate agents 

 

The two transition diagrams describe all possible 
configurations and casteship changing of agents of the two 
castes. With the constraints defined in Section 6.2, it is easy 
to check the two transition diagrams of the properties and to 
conclude that the agents of Undergraduate and Postgraduate 
are rational, faithful, consistent and reachable, i.e., safe. 

The development process described above takes the sets 
of DirectReach and Conflict as part of requirement 
specification of the targeted system, then models the system 
based on the specification, and checks the properties of the 
model against the constraints defined on transition 
diagrams. The process of developing adaptive MAS  
may also start from graphic modelling with caste diagrams 
and transition diagrams based on the analysis of the targeted 
system. Then the two sets DirectReach and Conflict can be 
defined according to the models to rigorously document 
certain design decisions. Anyway, the constraints on the 
transition diagrams help to check the consistency between 
the two types of artifacts and to analyse the properties of the 
system under development. 

Figure 7 Transition diagram for postgraduate agents 

 

8 Comparison with related work 

In object-oriented paradigm, when an object is created  
by instantiating some class, it obtains the structural  
and behavioural features defined by the class. However,  
an object can not change its structure and behaviour in its 
lifecycle. The lack of support to dynamic re-classification of 
objects has been recognised to be a limitation of object 
oriented programming (Scheer and Pringle, 1998). In order 
to solve the problem, efforts have been made to extend 
object-oriented programming languages so that the class 
membership of an object can be changed at run-time,  
e.g., the language FickleII (Drossopoulou et al., 2002).  

In the literature of agent-oriented software engineering, 
many agent-oriented methodologies like MaSE, Tropos, 
etc., assume that agents in MAS are static in order to 
simplify the development processes and modelling 
languages (Mao and Yu, 2004). Some methodologies like 
ROADMAP (Juan et al., 2002), the recent version of Gaia 
(Zambonelli et al., 2003), etc., though claiming to support 
the development of open and dynamic systems, actually do 
not consider dynamic agents and therefore do not provide 
effective mechanisms and language facilities to support the 
modelling and designing of adaptive agents.  

However, there are still a number of agent-oriented 
software development methodologies, modelling languages 
and programming languages, such as AALADIN (Ferber 
and Gutknecht, 1998), AUML (Odell et al., 2003), and 
3APL (Dastani et al., 2005) etc., that have been proposed to 
support modelling role changes to some extents.  

In Zhu (2003a) and Zhu and Lightfoot (2003), a 
dynamic caste mechanism is proposed as a language facility 
for the design and implementation of dynamic adaptation of 
behaviours in MAS. Its direct support for role-based models 
is discussed in Zhu and Lightfoot (2003). In this paper, we 
further analyse the requirements for a language facility that 
supports adaptive agents and extend the caste facility to 
meet these requirements.  

In AALAADIN (Ferber and Gutknecht, 1998), the 
dynamic aspect of MAS is related to the institutionalised 
patterns of interactions that are defined within the roles, 
such as creation of groups, entering and leaving of a group 
by an agent, or acquisition of a role in relation, which can be 
specified by organisational sequence diagram, an extension 
of sequence diagram in UML. Therefore, the dynamic 
aspect in AALAADIN is considered in the structure level, 
i.e., group, which is different from our work that considers 
the dynamic aspect in the behaviour level. 

AUML is a set of UML idioms and extensions for 
specifying multi-agent software systems (Bauer et al., 
2001). Based on the insight that agent is an extension to 
active object, the core part of AUML is protocol diagram 
which describes how agent changes its roles in different 
contexts (Odell et al., 2003). However, role is an abstract 
concept closer to real world and can not act as design 
metaphor or modular unit to implement agents. In most of 
the existing agent-oriented methodologies and modelling 
languages, an concept of agent class or agent type is  
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introduced in the design and implementation phase as a 
template or modular unit to construct agents, but few 
formally define the concept with any adaptive casteship 
mechanism. The relationship between agent class or agent 
type and agent is the same as that in object orientation,  
i.e., agent class is the template to instantiate agent and agent 
is the instance of agent class. 

In 3APL (Dastani et al., 2005), four operations are 
presented such as ‘enact’, ‘deact’, ‘activate’ and 
‘deactivate’, to capture the dynamics of roles played by 
agents. Enacting a role means internalising the specification 
of the role, while activating a role means reasoning with the 
(internalised) specification of the role. The semantics of the 
operations ‘enact’, ‘deact’, ‘activate’ and ‘deactivate’ in 
3APL are actually different from that of the operations 
‘join’, ‘quit’, ‘activate’ and ‘deactivate’ defined in this 
paper. Moreover, 3APL assumes that at any moment only 
one role can be active and that all roles other than the 
enacted one are inactive. The cognitive architecture of 
agents is assumed in 3APL, on which agents’ enacting or  
deacting the roles are investigated. Obviously, these  
assumptions are too strong to tackle the whole aspects 
related to dynamic agents in complex systems. There is a 
huge gap between the role specification and agent cognitive 
architecture for developers to transfer the role model to 
cognitive model. Our approach to adaptive agents is 
different from 3APL as we permit multiple castes to be 
bound to at a moment and the join operation actually 
integrates with the enact and activate operations in 3APL. 
There is no explicit gap between requirement specification 
and software design in our approach as we use the unified 
concepts and abstractions in the whole development 
process. Therefore, our approach proposed in this paper 
simplifies the development of complex adaptive agents.  

9 Conclusion and future work 

Agent orientation provides high level abstractions and a 
natural modelling metaphor to develop software systems. 
However, in the literature of agent-oriented software 
engineering, it is still a challenge to develop complex  
MAS with agents that exhibit various and dynamic 
behaviours in their lifecycle. Such agents are desirable in 
many complex applications of MAS, such as internet-based 
applications, enterprise information systems, etc.  

In this paper, we present the adaptive casteship 
mechanism, which is the extension to Mao et al. (2006),  
to model and design individual adaptive agents in  
MAS. It enables the supports for the execution of adaptive 
agents at run-time. We adopt caste as the abstraction to 
specify agents’ behaviours and as the modular unit to design 
and implement adaptive agents. Our approach permits 
agents to hold casteship to multiple castes and the casteships 
that agent holds to be in active or inactive states. The 
dynamic adaptation of behaviours is realised as the change 
of agents’ casteships in their lifecycles, which can be 
specified and implemented by four atomic operations on  
 

castes i.e., join, quit, activate and deactivate. The semantics 
of the adaptive casteship mechanism and the caste 
operations are rigorously defined based on the temporal 
logic integrated with dynamic operators. The properties of 
adaptive agent’s behaviours are formally specified and 
proved. In order to support the modelling and analysing 
agents’ dynamic adaptation of the behaviours with the 
adaptive casteship mechanism at design-time, a visual 
notation of caste transition diagrams is proposed and a 
number of model consistency rules are designed. 

The adaptive casteship mechanism proposed in this 
paper provides an abstract and flexible way to develop 
complex MAS, especially ones that have adaptive agents. 
However, there are still a number of open problems that 
should be settled. 

• Firstly, the work reported in this paper is actually at the 
micro-level, i.e., it is concerned with individual agents 
and their dynamic properties and behaviours. However, 
the adaptability can be manifested at the level of  
MAS. As discussed in Mao and Yu (2004), the 
structure of MAS in terms of the relationships between 
agents may also change dynamically in some complex 
systems when environment changes. The adaptability 
issueat the macro-level, i.e., the adaptability of MAS, is 
not dealt with in this paper and deserves further 
investigation. For example, for the sake of simplicity, 
we have not taken the inheritance relationships between 
castes into consideration in this paper. It is also 
assumed in this paper that caste operations are not 
executed concurrently. 

• Secondly, the work reported in this paper set in the 
context of analysis and design of MAS. We believe that 
the adaptive casteship mechanism can be equally used 
in the design and implementation of agent-oriented 
programming languages that support the adaptive 
agents. Implementation of the adaptive casteship 
mechanism on runtime platforms is worth further 
investigation. 

• Moreover, we are carrying out case studies of the 
adaptive casteship mechanism with a number of 
complex applications. For example, we intend to 
implement resource sharing utility by applying the 
adaptive casteship mechanism. In mobile computing 
area, a mobile agent can access the destination 
computer by executing the behaviour specifications 
provided by the destination computer. The adaptive 
casteship mechanism can also be an effective technical 
solution to developing complex application such as 
self-organisation and self-management application. 

• Finally, the relation between caste transition diagrams 
and other diagrams in CAMLE is still an open problem. 
How to ensure the consistency between caste transition 
diagrams and CAMLE models, and whether it is 
possible to derive caste transition diagrams from caste 
diagram and behaviour diagrams are also problems to 
be investigated in our future work.  
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