
A Formal Specification Language for MAS Engineering
Hong Zhu

School of Computing and Mathematical Sciences
Oxford Brookes University

Gipsy Lane, Headington, Oxford, OX3 0NW, UK
Email: hzhu@brookes.ac.uk

ABSTRACT
One of the most appealing features of multi-agent technology is
its natural way to modularise a complex system in terms of
multiple, interacting, autonomous components that have particular
objectives to achieve. This paper presents a formal specification
language SLAB that supports modular specification of multi-agent
systems. The syntax and semantics of the language are defined.
The style of formal specification of multi-agent systems is
illustrated by an example.

Categories and Subject Descriptors
D.2.1 [Requirements / Specifications]: Languages - formal
specification language; Methodologies - agent-oriented
methodology. I.2.11 [Distributed Artificial Intelligence]
Intelligent agents, Languages and structures, Multiagent systems.

General Terms
Languages

Keywords
Formal specification language, Multiagent Systems, Scenario,
Software Agent, Caste

1. INTRODUCTION
Agent technology has long been predicted to be the next
mainstream computing paradigm, see e.g. [1, 2, 3]. It is perceived
to be a viable solution for large-scale industrial and commercial
applications. However, researches on agent-based systems have
been mainly an AI endeavour so far. The majority of extant agent
applications are developed in an ad hoc fashion without proper
analysis and specification of system's requirements, and without
systematic verification and validation of the properties of the
implemented system. For a long time, software engineers and
computer scientists alike have learned from many incidents that
the behaviours of a system should be understood and documented
before the system is put in operation, even before a serious
implementation effort is make. One of such incidents that is
related to autonomous software agents in particular is the crash of

Air France's Airbus 320 at an air show in June 1988 [4, 5]. Airbus
320 was the first fly-by-wire passenger aircraft in the world. In
other words, an autonomous agent controls the aircraft. The
incident was caused by a conflict between the human pilot's
instruction and the autonomous control by the software. While the
pilot intended to fly over the airport in the air show, the fly-by-
wire control software seems to have instructed the aircraft to land,
which was believed to be the cause of the accident. More than a
dozen of years has passed and autonomous agents have gained
much wider applications (see e.g. [6]), but open questions remain
about how to specify autonomous agents' behaviour and how to
verify and prove their properties so that such tragedy can be
prevented. Being autonomous, proactive and adaptive, an agent-
based system can be very complicated, and sometimes may
demonstrate emergent behaviours, which are neither designed by
the developers nor expected by the users of the system. The new
features of agent-based systems demand new methods for the
specification of agent behaviours and for the verification and
validation of their properties to enable software engineers to
develop reliable and trustworthy agent-based systems. It has been
recognised that the lack of rigour is one of the major factors
hampering the wide-scale adoption of agent technology [7].

The past few years have seen increasing research interests in
agent-oriented software development methodology. Existing work
can be classified into three main groups. The first is towards the
theoretical foundations for specifying and modelling agent-based
systems. Much work has been focused on modelling agents'
rational behaviour by introducing modalities for belief, desire and
intention, e.g. [8, 9, 10, 11]. Game theory has also found its
position in the formalisation of agent models, e.g. [12]. A great
number of formal models of agents have been proposed and
investigated in the literature, see e.g. [13, 14]. Most of them are
based on an internal mental state model of agents, yet some are
based on a model of the external social behaviours of
collaborative agents, e.g. [15]. As pointed out by Michael Fisher
[16], a specification method based on a specific model of agents
may result in the existence of certain agent theory and systems
that do not match the concept in the specification formalism.
Moreover, temporal logics, particularly when combined with
modalities for belief, desire, etc., can be very complex. The
second group of researches is on the development process and
development methods for engineering agent-based systems, see
e.g. [17, 18, 19, 20, 21]. These works mostly focused on
diagrammatic notations that support the analysis and design of
multi-agent systems. Some of the notations extend object-oriented
methods and notations such as UML. Some introduce new models
for agents and corresponding new diagrammatic notations as well.
How such diagrammatic notations are related to the logic and
formal models of agents remains as an open problem. The third

group consists of the researches on the language facilities and
features that support the formal specification and verification of
agent-based systems in a software engineering context, although
there is little such work reported in the literature [7, 22]. The use
of existing formal specification languages, such as Z, has also
been explored to specify agent architecture [23] and concepts [24].
Despite the large number of publications on agents in the
literature, we lack researches on language facilities that support
the development of large-scale complicated multi-agent systems.
In particular, we lack language facilities to explicitly specify the
environment of agents and agent-based systems although it is
widely recognised that an important characteristic of agents is that
they are entities situated (embedded) in a particular environment
[25]. We lack facilities that can clearly state how agents'
behaviours are related to the environment. The theme of this paper
is to search for such language facilities to support the specification
of agent-based systems in the context of software engineering. We
present a formal specification language called SLAB [26, 27].

The remainder of the paper is organised as follows. Section 2
defines the syntax and formal semantics of the specification
language SLAB. Section 3 illustrates SLAB's style of
specification by an example. Section 4 is the conclusion.

2. SLAB's SYNTAX AND SEMANTICS
In this section, we present the syntax and semantics of the SLAB
language. The meta-language to define the syntax is EBNF, which
is given in Table 1. In a syntax definition, the meta-symbols are in
bold font such as ::= . Terminals are in italic font such as Var. Non-
terminals are in normal font such as agent-description.

Table 1. The meta-symbols in EBNF
Name Symbol Means

Definition ::= A ::= B means that A is defined as B.
Concatenation AB means that A is followed by B.
Optional [] [A] means that A is optional.
Choice | A | B means either A or B.

Repetition { }
{ A } means that A may appear any
times including zero times or more
times.

Repetition
with separator { / }

{ A / B } means a sequence of A
separated by B, where the number of
A's can be zero or more. For example,
A B A B A.

Positive
repetition { }+ { A } means that A may appear at least

once.
Parenthesis () They are used to change preference.

2.1 Agents, Castes and Multi-Agent Systems
The specification of a multi-agent system in SLAB consists of a
set of specifications of agents and castes.

System ::= {Agent-description | caste-description}+

There is a most general caste, called AGENT, such that all castes
in SLAB are sub-castes of AGENT. The main body of a caste
specification in SLAB contains a description of the structure of its
states and actions, a description of its behaviour, and a description
of its environment. The following gives SLAB's syntax in EBNF
of specifications of castes.

caste-description ::=::=::=::=

Caste name [<= { caste-name / ,}]
[instantiation ;]
[environment-description ;]
[structure-description ;]
[behavior-description ;]

end name
It can also be equivalently represented as follows in a graphic
form similar to the schema in Z [28].

The clause 'Caste New_Caste <= Caste1, Caste2, ..., Casten'
specifies that the defined caste New_Caste is a sub-caste of
Caste1, Caste2, ..., Casten. That is, the defined caste inherits the
structure, behaviour and environment descriptions of existing
castes Caste1, Caste2, ..., Casten. When no inherited caste is given
in a caste specification, it is by default a sub-caste of the
predefined caste AGENT.

In SLAB, every agent must be an instance of a caste. When caste
name(s) are given in an agent specification, the agent is an
instance of the castes. If no caste name is given in an agent
specification, the caste of the agent is by default AGENT. If an
agent is an instance of a caste, it must have all the structural,
behaviour and environment descriptions given in the caste's
specification. Moreover, it may have additional structural,
behaviour and environment descriptions to extend its state space,
to enhance its ability to take actions and to widen its view of the
environment. The following gives the syntax of agent
specifications in SLAB.

agent-description ::= ::= ::= ::=
agent name [: { caste-name / , }]

[instantiation ;]
[environment-description;]
[structure-description;]
[behavior-description]

end name
It can also be equivalently represented as follows in a graphic
form.

If an agent is specified as an instance of a caste, all the parameters
in the specification of the caste must be instantiated in the
specification of the agent.

Formally, we define that a multi-agent system consists of a finite
set of agents {A1, A2, ...An}. These agents belong to a hierarchy of
castes C1, C2, ...Cm. A binary relation ≺ , called the inheritance
relation, is defined on the castes C1 and C2 if C1 is specified as a
sub-caste of C2. The inheritance relation is required to be a partial

Visible state-variables and actions

Invisible state-variables and actions

Behaviour-specification

Name <= castes (instantiation)

Environment
description

Visible state-variables and actions

Invisible state-variables and actions

Behaviour-specification

Name: castes (Instantiation)

Environment
description

ordering on castes. Let A C∈ denote that agent A belongs to caste
C. We also require that for all agents A and castes C and C',

 ' 'A C C C A C∈ ∧ ⇒ ∈≺ . (1)

2.2 Environment
The SLAB language enables software engineers to explicitly
specify the environment of an agent as a subset of the agents in
the system that may influence its behaviour. The syntax for the
description of environments is given below.

Environment-description ::=
ENVIRONMENT { (agent-name | All: caste-name

 | variable : caste-name) / , }+

where an agent name indicates a specific agent in the system. 'All'
means that all the agents of the caste have influence on its
behaviour. As a template of agents, a caste may have parameters.
The variables specified in the form of “identifier: class-name” in the
environment description are parameters. Such an identifier can be
used as an agent name in the behaviour description of the caste.
When instantiated, it indicates an agent in the caste. The
instantiation clause gives the details about how the parameters are
instantiated.
Instantiation ::= { variable := agent-name / , } +

Formally, we use 1 2{ , ,..., }A nEnv A A A⊆ to denote the environ-
ment of an agent A. Let "ENVIRONMENT EC1, EC2, ..., ECK; be
agent A's environment description. Then,

EnvA = a b1 2 , ,..., KENVRIONMENT EC EC EC = a b
1

K

i
i

EC
=
∪ ;

a b { }agent agent= ;

a b: { | }i iAll Caste A A Caste= ∈ ;

a b: { }kx Caste A= ,
where "x := Ak" is the instantiation of variable x given in the
specification of agent A.

2.3 State Space and Actions
In SLAB, the state space of an agent is described by a set of
variables with keyword VAR. The set of actions is described by a
set of identifiers with keyword ACTION. An action can have a
number of parameters. An asterisk before the identifier indicates
invisible variables and actions.

structure-description ::=::=::=::=
[Var { [*] identifier: type; }+]
[Action { [*] action-declaration / ; }+]

action-declaration ::=::=::=::= identifier
| identifier ({ [parameter:] type / , }+)

In a caste specification (and agent specification as well), the
additional state variables and actions should have no overlap with
the state variables, action identifiers and parameter variables
defined in the super-castes. Moreover, the castes Caste1, Caste2,
..., Casten that it inherits should have no common variables, no
common action identifiers, and no common parameters. However,
they can overlap with agent names in the environment
descriptions.

Formally, each agent A has its own state space, which is a non-
empty set AS . Each state consists of two disjoint parts, the
externally visible part and the internal part. The external part is
visible for all agents in the system, while the internal part is not

visible for any other agents in the system. Therefore, we have that
V I

A A AS S S= × , where V
AS is the externally visible part of state

space and I
AS is the internal part of state space. An agent is

capable of taking an action with various parameters at any
particular time when it decides to do so. The set of actions is a
finite non-empty set, denoted by AΣ . An action can also be either
externally visible or internal (hence externally invisible). We
assume that an agent cannot take two actions at the same time.
Thus, we have that V I

A A AΣ = Σ ∪ Σ , where V I
A AΣ ∩ Σ = ∅ , V

AΣ is

the subset of externally visible actions and I
AΣ is the subset of

internal actions.

2.4 Behaviour
Agents behave in real-time concurrently and autonomously. To
capture the real-time features, an agent's behaviour is modelled by
a set of sequences of events indexed by the time when the events
happen.

2.4.1 Runs and Time
A run r of a multi-agent system is a mapping from time T to the

set
1

i i

n

A A
i

S
=

× Σ∏ . The behaviour of a multi-agent system is defined

to be a set R of possible runs. Instead of defining a fixed set of
time moments, the set of time moments are characterised by a
collection of properties.

Definition 1.
Let T be a non-empty subset of real numbers. T is said to be a time
index set, or simply the time, if
1) Bounded in the past, i.e. 0 0. .()t T t T t t∃ ∈ ∀ ∈ ≤ ; (2)
2) Unbounded in the future, i.e. ∀r∈R.∃t∈T.(t > r); (3)
3) Uniformity, i.e. ∀ t1, t2, t3∈T. (t2 > t1 ⇒ t3 + t2 − t1 ∈ T). (4)

The following lemma states that a time index set T can be
characterised by two real numbers: the start time t0 and the time
resolution ρ, where ρ≥0.

Lemma 1.
For all subsets T of real numbers that satisfy properties (2), (3)
and (4), we have that either T={tn | tn = t0 + nρ, n=0, 1, 2, ... } for
some positive real number ρ, or T={r | r∈R and r ≥ t0}. In the
former case, we say that the time index set T is discrete, and in the
latter case, we say that T is continuous.

Proof.
Let ρ(T) = inf {t−s | s, t∈T ∧ t>s}. By using properties (2)~(4), it
is easy to prove that when ρ > 0, T={tn | tn = t0 + nρ, n=0, 1, 2, ...
}. When ρ=0, T={r | r∈R and r ≥ t0}.

The real number ρ(T) defined above in the proof is called the
resolution of the time index set T.

On the other hand, it is easy to see that any discrete time index set
of the form T={tn | tn = t0 + nρ, n=0, 1, 2, ... } satisfies the
properties (2) ~ (4). Any subset T={r | r∈R and r ≥ t0} of real
numbers also satisfies the properties (2) ~ (4). Therefore, the
model defined below applies to both discrete time index and
continuous time index. Without loss of generality, subsequently,

we assume that t0 = 0.

For any given run r of the system, we say that a mapping h from T
to A AS × Σ is the run of agent A in the context of r, if

. () ()At T h t r t∀ ∈ = , where ()Ar t is the part of r(t) in A AS × Σ . Let
rA denote the run of agent A in the context of r, and RA ={rA |
r∈R} denote the behaviour of agent A in the system.

2.4.2 Assumptions
We assume a multi-agent system has the following properties.

Instantaneous actions. We assume that actions are instantaneous,
i.e. they take no time to complete.

Silent moments. We assume that an agent can take no action at a
time moment t. In such a case, we say that the agent is silent at
time t. For the sake of convenience, we treat silence as a special
action and use the symbol τ to denote silence. Therefore, we
assume that for all agents A, V

Aτ ∈ Σ .

Separatebility. We assume that the actions taken by an agent are
separable, i.e. for all runs r, and all agents A, there exists a real
number εr,A>0 such that ()C

Ar t τ≠ implies that for all x T∈ ,

()C
At x t r xε τ< ≤ + ⇒ = , where ()C

Ar t denotes the action taken
by agent A at time moment t in the run r. Consequently, an agent
can take at most a countable number of non-silent actions in its
lifetime.

Initial time and sleeping state. An agent can join the system at a
time, say tinit,A, later than the system's start time. We say that the
agent A is sleeping before time moment tinit,A. We use a special
symbol AS⊥∉ to indicate such a state of an agent. Of course, we
require that if an agent is sleeping, it will take no action but
silence, i.e. (). () ()S C

A At T r t r t τ∀ ∈ =⊥⇒ = , where ()S
Ar t denotes

agent A's state at time moment t in the run r. The initial time tinit,A
of an agent A in a run r can be formally defined as the time
moment t∈T that () .(())S S

A Ar t t T t t r t′ ′≠⊥ ∧∀ ∈ < ⇒ =⊥ .

2.4.3 Agent's View of the Environment
The global state of the system at any particular time moment

belongs to the set
1

i i

n

A A
i

S
=

× Σ∏ . However, each agent A can view

the externally visible states and actions of the agents in
1 2{ , ,..., }A nEnv A A A⊆ . In other words, an agent A can only view

the part
A

V V
X X

X Evn

S
∈

× Σ∏ of the state of the system. Agent A's view

of the system state is defined as a mapping ViewA from global

state
1

i i

n

A A
i

S
=

× Σ∏ to
A

V V
X X

X Evn

S
∈

× Σ∏ as follows:

()
1 2

1 1 1 2 2 2

1 2

, , , , , ,..., , ,

, , , ,..., , '
k k

A n n n

i i i i

View s s c s s c s s c

s c s c s c

′ ′ ′

′ ′=
(5)

where { }1 2
, ,...,

kA i i iEnv A A A= , ui v= implies that
ui vs s= ,

ui vc c′ = if
v

V
v Ac ∈ Σ , and

ui
c τ′ = if

v

I
v Ac ∈ Σ . Because an agent's

view is only a part of the system's global state, two different
global states become equivalent from its view. The following

formally defines the relation.

1

,
i i

n

A A
i

x y S
=

∀ ∈ × Σ∏ .(Ax y≈ ⇔ ViewA(x)=ViewA(y)). (6)

It is easy to see that the binary relation A≈ is an equivalence
relation.

2.4.4 Execution History
Although an agent may not be able to distinguish two global
states, the histories of the runs leading to states may be different.
An intelligent agent may decide to take different actions according
to the history rather than only depending on the visible global
state. Let t be any given time moment. The history of a run r up to
t, written as r↓t, is a mapping that is the restriction of r to the
subset { }x t x T≤ ∈ of T. The history of a run up to t in the view
of an agent A, denoted by ViewA(r↓t), is the mapping from the
subset { }x t x T≤ ∈ of time moments to its views of the system's
states in the run r. It can be defined as follows.

()() (())A AView r t u View r u↓ = , for all u T∈ and u t≤ . (7)

Similarly, we define ViewA(r) to be an agent A's view of a run r,
and ViewA(rB) to be agent A's view of agent B's behaviour in a run
r. The equivalence relation defined on the state space can be
extended to histories and runs as follows.

1 2 1 2() ()A A Ar r View r View r≈ ⇔ = (8)

1 2 1 2() () () ()A A Ar t r t View r t View r t↓ ≈ ↓ ⇔ ↓ = ↓ (9)

Before we finish this section, we introduce some further notation.
Let A be any given agent in a multi-agent system. Let c1, ..., cn , ...
∈ { }A τΣ − be the sequence of non-silent actions taken by agent A
in a run r and t1, t2, ..., tn, ...∈T are the time moments when the
actions are taken place, i.e. ()C

A i ir t c= for all i =1, 2, ..., n, At a
time moment t∈T, we say that cn is agent A's current action, and
cn+1 the next action, if 1n nt t t +≤ < . We write Current(rA↓t)=<tn,
sn, cn> to denote that agent A's current action is cn which was
taken at time tn and its state was sn. Similarly, we write
Next(rA↓t)=<tn+1, sn+1, cn+1> to denote the next action taken by
agent A in a run r at time moment t is cn+1 at the time moment tn+1
with state sn+1. We also write Events(rA↓t)=<<t1, s1, c1>, ..., <tn, sn,
cn>> to denote the sequence of events taken by agent A in the run
r up to time moment t.

2.5 Specification of Behaviour
2.5.1 Patterns of Behaviours
A pattern describes the behaviour of an agent in the environment
by a sequence of observable state changes and observable actions.
A pattern is written in the form of [p1, p2, ..., pn] where n≥0. Table
2 gives the meanings of the patterns.

pattern ::=::=::=::= [{ event || [constraint] }]
event ::= [time-stamp:] [action] [! state-assertion]
action ::= ::= ::= ::= atomic-pattern [^ arithmetic-expression]
atomic-pattern ::=::=::=::= $ | ~

| action-variable
| action-identifier [({ arithmetic-expression })]

time-stamp ::= arithmetic-expression
where a constraint is a first order predicate.

Table 2. Meanings of the patterns
Pattern Meaning

$ The wild card, which matches with all
actions

∼ The silence event
Action variable It matches an action

P^k A sequence of k events that match pattern P
! Predicate The state of the agent satisfies the predicate

Act (a1, a2, ...ak)
An action Act that takes place with
parameters match (a1, a2, ...ak)

[p1,..., pn]
The previous sequence of events match the
patterns p1, ..., pn

Formally, Let p be a pattern. We write : |AB r t p↓ = to denote
that from agent B's viewpoint the behaviour of an agent A in a run
r matches the pattern p at time moment t. The relationship |= can
be defined inductively as follows.

Definition 2.
We write : |AB r t p↓ = , if there is an assignment α such that

: |AB r t pα↓ = , which is inductively defined as follows.

 B:rA↓t |=α [$], for all agents A, B, runs r and time moments t;

 B:rA↓t |=α [τ], if ViewB(rA↓t)(t) = τ,

 B:rA↓t |=α [x], if Current(ViewB(rA↓t)) = α(x);

 B:rA↓t |=α [tx: C(e1, e2, ...,en) ! pred(s) || Constraint], if
Current(ViewB(rA↓t)) = <tc, S, C(α(e1), α(e2),...,α(en))>, S
satisfies the predicate α(pred(s)), α(tx)=tc, and α(Constraint) is
true.

 B:rA↓t |=α [p^k], if Events(ViewB(rA↓t))=<...., <t1, s1, c1>, <t2,
s2, c2>, ..., <tv, sv, cv>>, where v = α(k), and for all i=1,2,..., v,
B:rA↓ti |= α [p];

 B:rA↓t |=α [p1, p2, ..., pv], if Events(ViewB(rA↓t))=<..., <t1, s1,
c1>, <t2, s2, c2>, ..., <tv, sv, cv>>, and for all i=1,2,..., v, B:rA↓ti |=
α [pi].

Informally, B:rA↓t |=α p means that agent A's behaviour in a run r
matches a pattern p at time moment t from an agent B's point of
view under assignment α. An assignment α for a set X of
variables is a mapping that assigns values to variables in X.

2.5.2 Scenarios of Environment
The use of scenarios in agent oriented analysis and design has
been proposed by a number of researchers, for example [29, 30,
31]. We define scenario as a set of typical combinations of the
behaviours of related agents in the system. In addition to the
pattern of individual agents' behaviour, SLAB also provides
facilities to describe global situations of the whole system. The
syntax of scenarios is given below.

Scenario ::= Agent-Name : pattern
| arithmetic-relation
| ∃ [arithmetic-exp] Agent-Var ∈ Caste-Name: Pattern
| ∀ Agent-Var ∈ Caste-Name: Pattern
| Scenario & Scenario
| Scenario ∨ Scenario
| ~ Scenario

where an arithmetic relation can contain an expression in the form
of µAgent-var∈Caste.Pattern. It is an expression whose value is the
number of agents in the caste whose behaviour matches the
pattern.

arithmetic-relation ::= expression relational-op expression
expression ::= atomic-expression

| (expression)
| expression numerical-op expression

atomic-expression ::= numerical-constants
| numerical-variable
| µ Agent-var∈Caste.Pattern

relational-op ::= < | > | ≤ | ≥ | = | ≠
numerical-op ::= + | - | / | *

The semantics of scenario descriptions are given in Table 3.

Table 3. Semantics of scenario descriptions
Scenario Meaning

A: P The situation when agent A's behaviour matches
pattern P

∀X∈C: P The situation when the behaviours of all agents in
caste C match pattern P

∃[m]X∈C: P
The situation when there exists at least m agents in
caste C whose behaviour matches pattern P where
the default value of the optional expression m is 1

µ X∈C: P The number of agents in caste C whose behaviour
matches pattern P

S1 & S2
The situation when both scenario S1 and scenario
S2 are true

S1 ∨ S2
The situation when either scenario S1 or scenario
S2 or both are true

¬ S The situation when scenario S is not true

The following are some examples of scenarios.
(1) ∃ p∈Parties: t2000: [nominate-president(Bush)] || t2000=(March/2000).
It describes the situation that at least one agent in the caste called
Parties took the action nominate-president(Bush) at the time of March
2000.
(2) (µ x∈ Voter: [vote(Bush)] > µ x∈ Voter: [vote(Gore)])
It describes the situation that there are more agents in the caste
Voter who took the action of vote(Bush) than those in the caste who
took the action of vote(Gore).

Let Sc be a scenario. We write : |A r t Sc↓ = to denote that from
agent A's point of view, the scenario Sc occurs at time moment t in
a run r.

Definition 3.
From an agent A's point of view, a scenario Sc occurs at time
moment t in a run r, iff : |A r t Sc↓ = , which is inductively
defined as follows.

 : | : : |BA r t B p A r t p↓ = ⇔ ↓ = ; (10)

 1 2 1 2: | : | and : |A r t Sc Sc A r t Sc A r t Sc↓ = ∧ ⇔ ↓ = ↓ = ; (11)

 : | : | is not trueA r t Sc A r t Sc↓ = ¬ ⇔ ↓ = ; (12)
 : | .(:) : | , for all xA r t x G x Sc A r t Sc x G↓ = ∀ ∈ ⇔ ↓ = ∈ ; (13)

 : | .(:) : | , for some xA r t x G x Sc A r t Sc x G↓ = ∃ ∈ ⇔ ↓ = ∈ (14)

2.5.3 Rules
In SLAB, an agent's behaviour is defined as its responses to
environment scenarios. It is specified by a set of rules.

Behaviour-rule ::=::=::=::=
[<rule-name>] pattern|[prob]−>event, [Scenario] [where pre-cond] ;

In a behaviour rule, the pattern on the left-hand-side of the −>
symbol describes the pattern of the agent's previous behaviour.
The scenario describes the situation in the environment, which
specifies the behaviours of the agents in its environment. The
where-clause is the pre-condition of the action to be taken by the
agent. The event on the right-hand-side of −> symbol is the action
to be taken when the scenario happens and if the pre-condition is
satisfied. The agent may have a non-deterministic behaviour. The
expression prob in a behaviour rule is an expression that defines
the probability for the agent to take the specified action on the
scenario. SLAB also allows specification of non-deterministic
behaviour without giving the probability distribution. In such
cases, the probability expression is omitted. It means that the
probability is greater than 0 and less than 1.

Let R be the set of runs in a formal model of agent-based system.
To define the semantics of rules, we first define a probabilistic
space as follows.

For each scenario Sc, agent A, and constraint Cn(r, t) → {tt, ff),
we define R↵(Sc, A, Cn) as a subset of histories H={r↓t | r∈R,
t∈T} such that

R↵(Sc, A, Cn) = { r↓t | r∈R, t∈T, : |A r t Sc↓ = , Cn(r, t) } (15)

Let *H be the set that contains H and all the subsets in the form
of R↵(Sc, A, Cn) and closed under set complementary, finite
intersections and countable unions. Therefore, *H constitutes a
σ−field. A probabilistic space can then be constructed over the
σ−field *H by associating a probabilistic distribution over *H .
Let Pr(R↵(Sc, A, Cn) be the probability that the scenario Sc with
constraint Cn occurs from agent A's point of view. Notice that
agent A's behaviour matches a pattern p can be expressed
equivalently as a scenario (A:p)A. The order pair <R, Pr> is called
the probabilistic model of the agent-based system.

Definition 4.
Let RA= 'p |(exp)→e if Sc where Cn' be a rule for agent A, where
Sc is a scenario and Cn is a constraint. We say that in a
probabilistic agent-based system <R, Pr> the agent A's behaviours
satisfy the rule RA and write <R, Pr>: A |= RA, if

Pr(R↵(A:p#e, A, True) | R↵(Sc ^ (A:p), A, Cn)) = exp, (16)
where p#e = [p1, p2, ..., pn, e], if p = [p1, p2, ..., pn].

3. EXAMPLE: ANTS
In this section, we give an example to illustrate SLAB's style of
formal specification of multi-agent systems. For the sake of space,
some details are omitted in this paper. More examples can be
found in [26, 27].

The multi-agent system of ants is a typical example of reactive
agent systems that may demonstrate emergent behaviours. In this
system, food is scattered in the field, and ants try to find food and
to move the food back to their home. When an ant walks across
the field, its hormone spreads on the path in the field. The density
of ant's hormone decreases as time ticks away. The food in the
field decreases when taken by the ants.

An ant can move around in the field searching for food. In such a
search mode, the ant's movement is rather random. Once it has
found some food, it takes a bite and carries it back home by
tracing the hormone it left behind its path. Once back home with
food, the ant comes back with other ants to the location to get
more food. In the specification of ants, each ant can be in one of
three mental states, which are search, way_back and way_out.
Here, way_back is the state when an ant has found some food in
the field and is carrying some food back home. An ant is in the
state of way_out when it goes to the field to get food after an ant
comes home with food. The following gives a specification of the
Ants.

In the above specification, we defined Home, Direction and the
function New(position, u) as follows.

Ants

VAR Position: N×N;
ACTION Move(Direction); Take_Food; Save_Food;

VAR State: {search, way_back, way_out};

[Move(u) ! State=search]
|(0.5)→ Move(u)!(position' = New(position, u)),

if field: [!Food(position)<ε];
[Move(u) ! State=search]

|(0.5)→ Move(v)!(position' = New(position, v)),
if field:[!Food(position)<ε]; where u≠v

[$] |→ Take_Food !State = Way_back,
if field: [!Food(position)≥ε];

[!State = Way_back & position ≠ home] |→ Move(u),
where u = arg Min'u∈Direction field:

Hormone(New(position, u));
[!State = Way_back & position = home]

|→ Save_Food ! State = Way_out;
[$] |(0.8)→ ! State = Way_out, if ∃x∈Ants:[Save_Food]
[!State = Way_out] |→ Move(u),

where u=arg Maxu∈Direction field:
Hormone(New(position, u));

Field; all: Ants

Field

VAR Hormone: N×N→N; Food: N×N→N;

[$] |→ Hormone'(n,m) = Hormone(n,m)−1 ,
if ¬∃x∈Ants:[!position=(n,m)] ;

[$] |→ Hormone'(n,m) = Hormone(n,m)+100,
if ∃x∈Ants:[!position=(n,m)]

[$] |→ Food'(n,m)=Food(n,m)−k,
if ∃[k]x∈Ants:[Take_Food ! position=(n,m)]

All: Ants

New((n, m), east) = (n+1, m);
New((n, m), west) = (n−1, m), if n > 0;
New((n, m), north) = (n, m+1);
New((n, m), south) = (n, m−1), if m > 0.

Home ≅ (0, 0)
Direction ≅ {east, west, north, south}
New: N×N× Direction → N×N

4. CONCLUSION
4.1 Summary
In this paper, we presented the formal specification language
SLAB for multi-agent systems. The SLAB language integrates a
number of novel language facilities that support the development
of agent-based systems, especially the specification of such
systems. Among these facilities, the notion of caste plays a crucial
role. A caste represents a set of agents in a multi-agent system that
have same capability of performing certain tasks and have same
behaviour characteristics. Such common capability and behaviour
can be the capability of speaking the same language, using the
same ontology, following the same communication and/or
collaboration protocols, and so on. Therefore, caste is a notion that
generalises the notion of types in data type and the notion of
classes in object-oriented paradigm. This notion is orthogonal to a
number of notions proposed in agent-oriented methodology
research, such as the notions of role, team and organisation, but it
can be naturally used to specify or implement these notions. A
caste can be the set of agents playing the same role in the system.
However, agents of the same caste can also play different roles
especially when agents form teams dynamically and determines
its role at run time. Using the caste facility, a number of other
facilities can be defined. For example, the environment of an
agent can be described as the agents of certain castes and/or some
particular agents. A global scenario of a multi-agent system can be
described as the patterns of the behaviours of the agents of a
certain caste. The example systems and features of agent-based
systems specified in SLAB show that these facilities are powerful
and useful for the formal specification of agents in various models
and theories.

4.2 Related Work
The model of software agents used in this paper is closely related
to the work by Lesperance et al [32], which also focused on the
actions of agents. However, there are two significant differences.
Firstly, they consider objects and agents are different types of
entities, while we consider them as the same type of encapsulated
computational entities. As a consequence of regarding objects as
deferent entities from agents, they allow an agent to change the
state of objects in the environment while we only allow an agent
to effect its own state. Secondly, the most important difference is,
of course, there is no notion of caste or any similar facility in their
system.

The notion of groups of agents have been used in a number of
researches on the multimodality logic of rationale agents, such as
in Wooldridge's work [33], etc. However, such notion of groups of
agents is significantly different from the notion of caste, because
there is neither inheritance relationships between the groups, nor
instance relationship between an agent and a group. Their only
relationship is the membership relationship.

Many agent development systems are based on object-oriented
programming. Hence, there is a natural form of castes as classes in
OO paradigm. However, although agents can be regarded as
evolved from object and caste as evolved from class, there are
significant differences between agents and objects, and thus
between caste and class. Therefore, the notion of caste deserves a
new name.

4.3 Further Work
There are a number of open problems that need further
investigation in the design of formal specification languages for
multi-agent systems. For example, in SLAB an agent's
membership to a caste is statically determined by agent
description. Static membership has a number of advantages,
especially its simplicity and easiness to prove the properties of
agents. A question is whether we need a dynamic membership
facility in order to specify and implement dynamic team
formation. Examples have shown that introducing some state
variables to represent the role that an agent is playing can specify
dynamic team formation. An alternative approach to the problem
of team formation is to define aggregate structures of agents and
castes. An advantage of this approach is that the organisational
structure of a team can be explicitly specified.

Another design decision that we faced in the design of SLAB was
whether we should allow redefinition of behaviour rules in the
specification of sub-castes. An advantage of disabling redefinition
is that provable properties of a supper caste are inherited by all
sub-caste.

Although the language facilities in SLAB, such as caste and
scenario, were first introduced as a specification facility, we
believe that they can be easily adopted in an agent-oriented
programming language for the implementation of multi-agent
systems. How to implement these facilities is an important issue in
the design and implementation of agent-oriented programming
languages. It also deserves further research. Moreover, although
the design of SLAB is aimed to support as many agent-oriented
methodologies as possible, how to link from such methodologies
to formal specifications in SLAB deserve further investigation.

ACKNOWLEDGEMENT
The author is most grateful to his colleagues at Oxford Brookes
University, especially Dr. Nick Wilson, Mr. Ken Brownsey, Ms.
Sue Greenwood, Prof. David Duce, Mr. John Nealon, Mr.
Qingning Huo, Mr. Yanglon Zhang, and Dr. Lu Zhang, Mr.
Jiangrong Chen, et al., for their comments on earlier drafts of the
paper and discussions on many related subjects. The author would
also like to thank Dr. Huaglory Tianfield for many invaluable
discussions.

REFERENCES
[1] Janca, P. C., Pragmatic application of information agents,

BIS Strategic Report. 1995.
[2] Sargent, P., Back to school for a brand new ABC, The

Guardian, 12 March, 1992, p28.
[3] Ovum Report, Intelligent Agents: The New Revolution in

Software, 1994.
[4] Webster, P., Smith, M., Murtagh, P., Four Killed as Airbus

Crashes, The Guardian, 27 June 1988, p1.
[5] ACM, The Risks Digest: Forum on Risks to the Public in

Computers and Related Systems, Vol. 7, Issues 10~12,
27~30 June, 1988. (Available online at
http://catless.ncl.ac.uk/Risks/ (7.10.html | 7.11.html |
7.12.html).

[6] Jennings, N. R., Wooldridge, M. J. (eds.), Agent
Technology: Foundations, Applications, And Markets.
Springer, Berlin, Heidelberg, New York, 1998.

[7] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R.,
Treur, J., DESIRE: Modelling Multi-Agent Systems in a

Compositional Formal Framework, in Int. Journal of
Cooperative Information Systems, Vol. 1, No. 6, 1997,
pp67~94.

[8] Rao, A. S., Georgreff, M. P., Modeling Rational Agents
within A BDI-Architecture. in Proc. of the International
Conference on Principles of Knowledge Representation and
Reasoning, 1991, pp473~484.

[9] Singh, M. P., Semantical considerations on some primitives
for agent specification, in Intelligent Agents: Agent
Theories, Architectures, and Languages, Wooldridge, M.,
Muller, J. & Tambe, M. (eds), LNAI, Vol. 1037, Springer,
1996, pp49~64.

[10] Chainbi, W., Jmaiel, M., Abdelmajid, B. H., Conception,
Behavioural Semantics and Formal Specification of Multi-
Agent Systems, in Multi-Agent Systems: Theories,
Languages, And Applications, 4th Australian Workshop on
Distributed Artificial Intelligence Selected Papers, Bristane,
QLD, Australia, July 1998. Zhang, C., Lukose, D. (eds),
LNAI Vol. 1544, Springer, Berlin, Heidelberg, New York,
1998, pp16~28.

[11] Wooldrighe, M., Reasoning About Rational Agents, The
MIT Press, 2000.

[12] Ambroszkiewicz, S. and Komar, J., A model of BDI-agent
in game-theoretic framework, in [13], 1999, pp8~19.

[13] Myer, J-J., Schobbens, P-Y. (eds.), Formal Models of
Agents - ESPRIT Project ModelAge Final Workshop
Selected Papers, LNAI Vol. 1760, Springer, Berlin,
Heidelberg, 1999.

[14] Wooldridge, M. J. and Jennings, N. R., Agent theories,
architectures, and languages: A survey, in Intelligent
Agents: Theories, Architectures, and Languages, LNAI Vol.
890, Springer-Verlag, 1995, pp1~32.

[15] Ossowski, S., and Garcia-Serrano, A., Social structure in
artificial agent societies: implications for autonomous
problem-solving agents, in Intelligent Agents V: Agent
Theories, Architectures, and Languages, Muller, J. P.,
Singh, M. P. and Rao, A. S. (eds.), LNCS Vol. 1555,
Springer, 1999, pp133~148.

[16] Fisher, M., If Z is the answer, what could the question
possibly be? On developing formal methods for agent-based
systems, in Intelligent Agents III: Agent Theories,
Architectures, and Languages, Muller, J., Wooldridge, M.,
Jennings, N. (eds.), LNAI, Vol. 1193, Springer, 1997,
pp65~66.

[17] Kinny, D., Georgeff, M., and Rao, A., A methodology and
modelling technology for systems of BDI agents, in Agents
Breaking Away: Proc. of MAAMAW'96, LNAI Vol. 1038,
Spriger-Verlag, 1996.

[18] Moulin, B. and Cloutier, L., Collaborative work based on
multiagent architectures: a methodological perspective, in
Soft Computing; Fuzzy Logic, Neural Networks and
Distributed Artificial Intelligence, Aminzadeh, F. and
Jamshidi, M. (eds.), Prentice-Hall, 1994, pp261~296.

[19] Moulin, B., and Brassard, M., A scenario-based design
method and an environment for the development of
multiagent systems, in First Australian Workshop on
Distributed Artificial Intelligence, Lukose, D. and Zhang C.
(eds.), LNAI Vol. 1087, Springer-Verlag, 1996, pp216~231.

[20] Wooldridge, M., Jennings, N., and Kinny, D., A
methodology for agent-oriented analysis and design, Proc.
of ACM Third International Conference on Autonomous
Agents, Seattle, WA, USA, 1999, pp69~76.

[21] Iglesias, C. A., Garijo, M. Gonzalez, J. C., A Survey of
Agent-Oriented Methodologies. in Intelligent Agents V:
Agent Theories, Architectures, and Languages, Muller, J. P.,
Singh, M. P., Rao, A., (eds.), LNAI Vol. 1555. Springer,
Berlin, Heidelberg, New York, 1999, pp317~330.

[22] Conrad, S., Saake, G., Turker, C., Towards an Agent-
Oriented Framework for Specification of Information
Systems, in [13], 1999, pp57~73.

[23] D'Inverno, M., Kinny, D., Luck, M., and Wooldridge, M., A
formal specification of dMARS, in Intelligent Agents IV:
Agent Theories, Architectures, and Languages, Singh, M.
P., Rao, A. Wooldridge, M. (eds.), LNAI Vol. 1365,
Springer, 1998, pp155~176.

[24] Luck, M. and d'Inverno, M., A formal framework for agency
and auotnomy, in Proc. of First International Conference on
Multi-agent Systems, AAAI Press / MIT Press, 1995,
pp254~260.

[25] Jennings, N. R., Agent-Oriented Software Engineering, in
Multi-Agent System Engineering, Proceedings of 9th
European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, Valencia, Spain, June/July 1999,
Garijo, F. J., Boman, M. (eds.), LNAI Vol. 1647, Springer,
Berlin, Heidelberg, New York, 1999, pp1~7.

[26] Zhu, H. Formal Specification of Agent Behaviour through
Environment Scenarios, Proc. of NASA First Workshop on
Formal Aspects of Agent-Based Systems, (to be published
by Springer in LNCS, Also available as Technical Report,
School of Computing and Mathematical Sciences, Oxford
Brookes University, 2000).

[27] Zhu, H., SLAB: A Formal Specification Language for
Agent-Based Systems, Technical Report, School of
Computing and Mathematical Sciences, Oxford Brookes
University, Feb. 2001. (Submitted to the International
Journal of Software Engineering and Knowledge
Engineering, Special issue on Multi-Agents and Mobile
Agents)

[28] Spivey, J. M., The Z Notation: A Reference Manual, (2nd
edition), Prentice Hall, 1992.

[29] Iglesias, C. A., Garijo, M. Gonzalez, J. C., A Survey of
Agent-Oriented Methodologies. in Intelligent Agents V:
Agent Theories, Architectures, and Languages, Muller, J. P.,
Singh, M. P., Rao, A., (eds.), LNAI Vol. 1555. Springer,
Berlin, Heidelberg, New York, 1999, pp317~330.

[30] Iglesias, C. A., Garijo, M., Gonzalez, J. C., Velasco, J. R.,
Analysis And Design of Multiagent Systems Using MAS-
Common KADS, in Intelligent Agents IV: Agent Theories,
Architectures, and Languages, Singh, M. P., Rao, A.,
Wooldridge, M. J. (eds.), LNAI Vol. 1356, Springer, Berlin,
Heidelberg, New York, 1998, pp313~327.

[31] Moulin, B. Brassard, M., A Scenario-Based Design Method
And Environment for Developing Multi-Agent Systems, in
Proc. of First Australian Workshop on DAI, Lukose, D.,
Zhang, C. (eds.), LNAI Vol. 1087, Springer Verlag, Berlin,
Heidelberg, New York, 1996, pp216~231.

[32] Lesperance, Y., levesque, H. J., Lin, F., Marcu, D., Reiter,
R. and Scherl, R., Foundations of logical approach to agent
programming, in Intelligent Agents II, Eds. Wooldridge, M.,
Muller, J., and Tambe, M., LNAI, Vol. 1037, Springer-
Verlag, 1996, pp331~346.

[33] Wooldrighe, M., Reasoning About Rational Agents, The
MIT Press, 2000.

	ABSTRACT
	INTRODUCTION
	SLAB's SYNTAX AND SEMANTICS
	Agents, Castes and Multi-Agent Systems
	Environment
	State Space and Actions
	Behaviour
	Runs and Time
	Assumptions
	Agent's View of the Environment
	Execution History

	Specification of Behaviour
	Patterns of Behaviours
	Scenarios of Environment
	Rules

	EXAMPLE: ANTS
	CONCLUSION
	Summary
	Related Work
	Further Work

	ACKNOWLEDGEMENT
	REFERENCES

