
Software Testing as A Problem of Machine Learning:
Towards a Foundation on Computational Learning Theory

(Extended Abstract of Keynote Speech)
Hong Zhu

School of Engineering, Computing and Mathematics
Oxford Brookes University, Oxford OX33 1HX, UK. Tel. ++44 01865 484580

hzhu@brookes.ac.uk
In recent years, the application of machine learning techniques to
software testing has been an active research area. Among the most
notable work reported in the literature are those experiments on
the uses of supervised and semi-supervised learning techniques to
develop test oracles so that the correctness of software outputs and
behaviours on new test cases can be predicated [1]. Experiment
data show that it seems a promising approach to the test oracle
automation problem. In general, software testing is an inductive
inference in the course of which the tester attempts to deduce
general properties of a software system by observing the
behaviours of the system on a finite number of test cases [2].
Thus, there is a great potential for the application of machine
learning to software testing.

Since 1980s, researchers have studied the relationships between
software testing and inductive inferences. In this talk, I will brief
review the main results in this area from a theoretical perspective.
The existing work can be roughly classified into two categories.
The first is to define test adequacy criteria based on inductive
inference techniques. For example, Weyuker proposed an
adequacy criterion explicitly involving inductive inference [4]. In
particular, a test is defined to be adequate if the program under
test can be derived from test cases. More recently, Fraser and
Walkingshaw further developed Weyuker’s work by employing
Probably Approximately Correct inductive inference protocol to
define behavioral adequacy criterion, which requires an accurate
model of the software to be derivable from adequate test cases [5].

In general, an inductive inference device M is a function. It takes a
finite subset X of input/output pairs of a function f on a domain D,
as input and produces a function M(f) such that it is correct on the
set X of input/output pairs. An adequacy criteria CM(t, p) can then
be defined as 𝐶! 𝑡, 𝑝 ⟺ 𝑀 𝑝 ↓ 𝑡 = 𝑝, where t is a finite test
set, p is a function on D under test, 𝑝 ↓ 𝑡 is the subset of
input/output pairs of p with input from t. Employing the
identification in the limit protocol, the following were proved [3].

Theorem 1. A program p is correct w.r.t. specification s after
successfully tested on a finite test set t, if t is adequate according
to criterion CM(t, p), p is explanatorily learnable by M, s is
behaviourally learnable by M, and M converges to a function that
is consistent with s on t. ☐

Theorem 2. If both program p and specification s belong to a set
of functions that are learnable by identification in the limit, the
correctness of program p w.r.t. specification s can be determined
by testing on a finite number of test cases. ☐

The main conclusions that we can draw are two folds. First, a
function is learnable implies that it is testable. Thus, learning is a
more difficult computational problem than testing. Second, when
a machine learning technique is used for test automation, its
inductive inference power (i.e. the set of functions that is

learnable for the inference device) determines the set of functions
that are testable.

Similarly, given a Probably Approximately Correct (PAC)
inference machine M, we can define an test adequacy
measurement KM,δ(t, p), which is a function from test sets t and
programs p to real number adequacy scores in the range [0,1]. The
following theorem links test adequacy to software reliability.

Theorem 3. For a finite random test set t, the program p is correct
on t w.r.t a specification s which is in a set P of functions PAC
learnable by M, then the δ-probable reliability of p is KM,δ(t, p). ☐

A practical implication of Theorem 3 is that the complexity of the
software under test should be taken into consideration in
reliability estimation since the complexity of the function
determines learnability, and thus testability.

The second category is to analyze existing software testing
techniques and methods from an inductive inference point of
view. Considering testing as a process of inductive inference, the
question is whether the induction converges to a right conclusion
when testing stops. Because test adequacy criteria are used as stop
rules, the analysis of testing methods can be performed via
examining test adequacy criteria using various inductive inference
protocols. In [3], Weyuker’s axioms of test adequacy criteria were
studied with identification in the limit. It was proved that the
adequacy criterion CM(t, p) satisfies Weyuker’s axioms if the
inference machine M satisfies certain properties, such as
conservative. Zhu and Hall’s axioms of test adequacy
measurement were also examined, but using Valiant’s PAC
inference protocol. It was proved that the adequacy criterion
KM,δ(t, p) satisfies Zhu and Hall’s axioms. In other words, the
axiom systems of test adequacy do catch the key properties of
inductive inference nature underlying software testing techniques.

REFERENCES
[1] Almaghairbe, R. 2017. Formulating Test Oracles via

Anomaly Detection Techniques. PhD Thesis, University of
Strathclyde, UK.

[2] Zhu, H., Hall, P., and May, J. 1992. Inductive inference and
software testing. Journal of Software Testing, Verification,
and Reliability, 2:69-81.

[3] Zhu, H. 1996. A formal interpretation of software testing as
inductive inference. Journal of Software Testing, Verification
and Reliability, 6:3-31.

[4] Weyuker, E. J. 1983. Assessing test data adequacy through
program inference. ACM Transactions on Programming
Languages and Systems, 5(4), 641-655.

[5] Fraser, G and Neil Walkinshaw, N. 2015. Assessing and
generating test sets in terms of behavioural adequacy.
Software Testing, Verification And Reliability, 25:749–780.

