Testing Software Modelling Tools Using Data Mutation

Lijun Shan
Dept. of Computer Sci, National Univ. of Defence Tech,
Changsha, 410073, China

Email: ljunshancn@yahoo.com

ABSTRACT

Modelling tools play a crucial role in model-driven software
development methods. A particular difficulty in testing such
software systems is the generation of adequate test cases because
the test data are structurally complicated. This paper proposes an
approach called data mutation to generating a large number of test
data from a few seed test cases. It is inspired in mutation testing
methods, but differs from them in the way that mutation operators
are defined and used. In our approach, mutation operators
transform the input data rather than the program under test or the
specification of the software. It is not a test adequacy
measurement. Instead, it generates test cases. The paper also
reports a case study with the method on testing a modelling tool
and illustrates the applicability of the proposed method.
Experiment data clearly demonstrated that the method can achieve
a high test adequacy. It has a high fault detecting ability and good
cost effectiveness.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging — Testing
tools

General Terms

Measurement, Experimentation, Verification

1. INTRODUCTION

With the rapid growth of research on model-driven software
development, modelling tools are developed to support various
model-based software development activities, such as model
construction, model-based validation and verification, model-
based testing, model transformation, etc. Such modelling tools
and software development environments take diagrams of a
graphical notation such as UML as input. A particular difficulty in
testing such software systems is the generation of adequate test
cases because the input data are complicated in their structures.

For example, a modelling tool that supports software engineers to
create, edit and analyse models in UML requires input data in the
form of a set of diagrams of various types, such as use case
diagrams, activity diagrams, sequence diagrams, etc. Each
diagram may contain a set of nodes of various types and a set of
edges of different types that link the nodes. Specific types of text
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and/or numeric values can be associated to the specific types of
nodes and edges. Consistency between the diagrams must also be
maintained. Generating adequate set of test cases to test a
modelling tool is very difficult, labour intensive and expensive.
Tremendous pressure has been placed on software testers to test
such systems adequately, yet few tool supports have been offered
to automate the testing activities.

In this paper, we address the problem in the generation of test
cases for testing modelling tools. We propose a method that
automatically generates a large number of test cases with a
reasonable effort to achieve high test adequacy.

1.1 Related Work

In the past a few years, a great amount of research has been
reported in the literature in the area of automatic generation of test
cases. Research on program-based test generation methods can be
back dated to 1970’s, e.g., [1, 2]. In addition to these static
methods, dynamic test generation methods have also been
advanced for both path-oriented test generation, which takes
certain selected paths in the program as input [3, 4], and goal-
oriented, which aims at achieving certain test goals, such as
executing certain elements in the program [5, 6] or kill a certain
mutant [7, 8]. Specification-based methods derive test cases from
formal specifications in various formalisms, such as first order
logic and set theory [ 9], logic programs [ 10 ], algebraic
specifications [11, 12, 13], finite state machines [14, 15, 16], Petri
nets [17, 18], etc. Model-based test generation derives test cases
from semi-formal models in diagrammatic notations. In [19], a
hierarchy of test criteria was defined on dataflow, entity
relationship and state transition diagrams. A testing tool was
developed to generate test cases to meet these adequacy criteria.
More recently, advances have been made in the derivation of test
cases from UML diagrams [20, 21], and extended finite state
machine or statecharts [22, 23, 24], etc. Both specification-based
and model-based test generation methods derive high level
descriptions of test suites, e.g. in the form of a set of constraints
on the inputs. Further generation of test data relies on heuristic
search and constraint satisfaction techniques, constraint logic
programming, deductive theorem proving and model checking,
etc. [25], which are the same techniques that program-based
methods rely on [26]. Although significant progress has been
made in the past decades, the capability of the test generators are
still very limited due to the expressiveness of constraints,
computational complexity of constraint solving and the
complexity of the software systems [27].

Random testing methods generate test cases through random
sampling over the input space. A simple method is to sample over
an existing software operation profile at random. More
sophisticated methods use various types of stochastic models of
software usages to represent the probabilistic distributions, such
as Markov chain [28, 29], stochastic automata networks [30, 31],



Bayesian networks [32], and so on. However, it is unclear if
random testing methods are capable of generating test cases that
are structurally complex, such as software models.

In addition to the research on general test generation methods,
works have been reported on test generation for specific types of
software systems, such as database applications [33], spreadsheets
[34], XML data schemas [35], XML-based web component
interactions [ 36 ], etc. These methods address the specific
requirements in the testing of such systems.

The method proposed in this paper is inspired in mutation test
methods, which were originally proposed in [37], investigated
intensively in [38, 39, 40, 41]. It is also extended to specification-
based testing in [42, 43], and more recently applied to test XML
schemas [35], etc. Our approach differs from these existing works
in the way that our mutation operators are defined to transform the
input data, rather than the program, or specifications, or XML
schemes which define the format of the input data. The existing
works do not actually generate test data. Instead, they are used to
measure the adequacy of an existing set of test data. In contrast,
our method is a test data generation method.

A closely related work is proposed in [44]. They use randomised
error seeding to evaluate the ability of language processors to
detect and report errors in source programs. Our method is for
testing diagrammatic modelling tools rather than textual
languages. The main idea of generating test data are quite similar,
namely to artificially insert errors into a seed test data so as to
obtain a set of mutant test data. Therefore, the methods have
similar advantages and disadvantages as stated in [44].

1.2 Organization of the Paper

The paper is organized as follows. Section 2 describes the
proposed method in detail. Section 3 presents a case study with
the proposed method in testing a modelling tool called CAMLE,
which stands for Caste-centric Agent-oriented Modelling
Language and Environment [45]. Section 4 concludes the paper
with a brief discussion of the advantages of the method and
directions for future work.

2. DATA MUTATION

The test method proposed in this paper is call data mutation,
because test data are generated through mutating input data of the
program under test. It is developed for testing modelling tools that
take graphic models as input.

2.1 Modelling Language

Modelling languages play a central role in software development
methodologies, especially in model-driven methods. A typical
modelling language like UML [46], CAMLE [45] and structured
modelling notations [47] usually has the following features.

o Multiple views. A model M consists of a set {D, ..., D,} of
diagrams of types T}, ..., T;. We write Type(D,) to denote the
type of diagram D, in a model M. Each diagram may have a
number of annotated values of various data types, such as the
title, version numbers, etc.

e Typed nodes and edges. Each diagram D; of type 7; may
consists of a set N; of nodes {n,;, n;», ..., n;,;} classified into
several node types tn; 1, tn;o, ..., th;y;, and a set E; of edges {e; |,
€in, ..., €, classified into edge types te; 1, t;,, ..., te;;. An edge
can be directed, bi-directed or undirected. An edge is usually

associated with two nodes in N;, but sometimes associated with
another edge in E;.
Typed annotations on nodes and edges. Each node n;, (and edge
e;,) can be annotated with a certain set of text and/or numeric
values, such as the name of the node or edge and its multiplicity.
Typed annotations on diagrams. Each diagram can be annotated
with a certain set of text and/or numeric values, such as the title
and author of the diagram.
Consistency constraints. A set of consistency constraints C={C|,
C,, ..., C,} may be defined on the models. A set of diagrams
must satisfy these constraints to be considered valid and
meaningful. A consistency constraint Ce C is usually a predicate
such that C(M) = true means that the model M is consistent with
respect to the constraint. There are several commonly used
taxonomies of consistency constraints, which include:

- Intra-diagram vs. inter-diagram constraints. A consistency
constraint is said to be inter-diagrams, if it is defined on two
or more diagrams. Otherwise, it is said to be intra-diagram.

- Intra-model vs. inter-model constraints. A consistency
constraint is said to be inter-model, if it is defined on diagrams
of more than one type; otherwise, it is said to be intra-model.

- Global vs. local consistency constraints. A consistency
constraint is called a global constraint, if it is defined on the
whole set of diagrams of a model. Otherwise, it is called a
local constraint.

- Horizontal vs. vertical constraints. For modelling languages
that supports hierarchical decomposition and refinement, a
consistency constraint is a horizontal constraint if it is defined
between diagrams of the same abstraction level. In contrast, a
vertical consistency constraint is defined on diagrams that
have refinement relationships between them.

The readers are referred to [48] for more detailed discussion of the
structure of modelling languages and consistency and
completeness constraints.

Consistency checkers are often implemented to ensure models are
well-formed and consistent before they are further processed, say,
to generate code. A consistency checker is correctly implemented
with respect to consistency constraints C, if for all models M the
checker reports an error if and only if there is a consistency
constraint C in C such that C(M) = false.

2.2 Data Mutation Operators

The crucial step to generate test data in our method is to design
data mutation operators, which are then applied on graphic models
to generate test data. A data mutation operator ¢ is a
transformation defined on the models so that when it is applied to
a model M on a particular location /, a new model M’=@(M, [) is
generated, which is called a mutant of the original model M. The
following types of data mutation operators are identified.

® Add node. The operator adds a new node n of type tn into a
diagram DeM, where tn is a node type of Type(D), when it is
applied to diagram D. This may also require values annotated on
the node to be added, and sometimes to add edges to link the
node to the diagram.

o Delete node. The operator deletes a node n of type ¢ in diagram
DeM when applied to the node 7 in diagram D.

e Change node type. The operator changes the node type tn of
node n into another node type fn’ when applied to the node » in
diagram D.

e Change node annotation. The operator changes the value v



annotated on a node n to another value v’ of the same type,
when it is applied to the node » in diagram D.

e Add edge. The operator adds a new edge e of type fe between
existing nodes into a diagram DeM, when it is applied to D.

o Delete edge. The operator deletes an edge e in a diagram DeM.
It will also delete the values annotated on the edge e, if any.

e Change edge type. The operator changes the type fe of an
existing edge e in a diagram DeM to another type fe’, when it is
applied to the edge e.

o Change edge annotation. The operator simply changes the value
annotated to an existing edge e in a diagram DeM.

e Change edge direction. The operator simply reverses the
direction of an existing edge e in a diagram DeM, if the type of
the edge allows directions.

o Change edge association. The operator changes the node(s) in a
diagram that the edge links.

o Delete diagram. The operator simply deletes a diagram D from
the model M when applied to the diagram D.

e Add diagram. The operator adds a diagram D of some type T to
the model M, when it is applied to M.

o Change diagram annotation. The operator simply changes a
field of the values annotated on the diagram according to its
data type.

Each application of a mutation operator on an original model
generates a mutant model. It is required that a mutation operator
will only generate mutants that are syntactically valid, provided
that the original model is syntactically valid. Therefore, with one
model as seed, a number of mutants can be generated. Such
mutants are appropriate to be taken as test data of modelling tools
because they represent varied forms of input data. As in all
mutation testing methods, it is assumed of the competent
developers hypothesis and coupling hypothesis [37, 39]. Each
mutation operator aims at simulating a typical type of errors that
competent software developers may make. The set of mutation
operators should provide an adequate coverage of all possible
changes at syntax level. Each mutation operator should be
implemented in the way so that when it is applied to a model, it
automatically recognizes the locations in the model that it can be
applied and then performs the transformations to the original
model on each location one by one. In general, the design of
mutation operators depends on the syntax and semantics of the
modelling language under investigation.

2.3 Test Process

The process of data mutation testing consists of an iterative
sequence of the following activities.

(1) Prepare seed test data.

A set of initial test cases must be prepared as the seed for the
generation of more test cases. Given the fact that the test cases
have complex structures, it is not easy to obtain a large set of such
original test cases. Fortunately, the method does not require the
existence of a large number of such test cases. A small number of
seeds that contains all possible types of elements of the input data
will be enough.

(2) Generate mutant test data.

Given a set of seed test data, the set of specifically designed
mutation operators are applied to each seed to generate a set of
mutants as described in the previous section. This step can be
automated by a software tool that implements the data mutation
operations. The number of mutants generated from a seed is

decided by two factors: the types and numbers of elements in the
seed and the designed data mutation operators. Given a seed, the
tool will generate all possible mutants. There is no additional
stopping criterion for the mutant generation process, since each
mutant contains a distinct defect in the model.

(3) Execute the software system on the seeds and their mutants.
The software under test is executed on the seeds and mutant test
data. The behaviours and outputs of the software on each test data
are observed and recorded for further analysis. The proposed
method does not depend on any specific method that the
behaviour of the software is observed and recorded. In our
experiments, the input/outputs of the software are observed and
recorded.

(4) Classify mutants.

The mutants are classified into either dead or alive according to
the recorded behaviours and outputs of the program under test. A
mutant is classified as dead, if the execution of the software under
test on the mutant is observed different from the execution on the
seed test data. Otherwise, it is classified as alive.

For example, when testing a model consistency checker,if the
original model passes the consistency check, a mutant is dead if
and only if the checker reports inconsistency of the mutant.
Otherwise, it is alive.

(5) Analyse test effectiveness.

The effectiveness of a data mutation test can be analysed through
various mutation scores. A mutant can be alive due to several
reasons. First, the mutant can be equivalent to the original with
respect to the functionality or property of the software under test.
Therefore, such mutants cannot be distinguished from its original
seed by the software, hence will remain alive in the testing.
Because mutation operators is supposed to simulate the errors that
software developers may make, a high equivalent mutant score
EMS indicates that the mutation operators have not been well-
designed to achieve their purposes. Second, a mutant that is not
equivalent to the original can also be alive because of the
observations on the behaviour and output of the software under
test is not sufficient to detect the differences. A high live mutant
score LMS indicates that the behaviour observation is insufficient.
Hence, a better testing method needs to be applied in order to
observe the differences. Third, a mutant can remain alive because
the software is incorrectly designed and/or implemented so that it
is incapable to differentiate the mutants from the original though
they are not equivalent. If the live mutant score LMS, of a
particular type @ of mutation operator is unusually high, it reveals
that the program under test is not sensitive to the type of mutation,
which may due to particular faults in the design or implementation
of the software. The measurements are defined as follows.

s EM e LM-EM o DM
™ ™ — EM ™™ — EM

where TM is the total number of mutants; EM, LM and DM are
the numbers of equivalent, live and dead mutants, respectively.

If the effectiveness of the testing is unsatisfactory, revisions on
the design and implementation of the mutation operators or the
software under test should be made.

(6) Analyse the correctness of the software under test.
Test data mutation is a method of test case generation intended to
discover faults in the software under test and gain confidence in



the software. Therefore, for both dead and live mutants,
software’s behaviour and output on each mutant should be
analysed for validation and verification of the software under test.

In comparison with other test case generation methods, one of the
main advantages of data mutation testing is the existence of the
behaviours and outputs of the software on both the original test
data and the mutants. In our case studies, we find that the
knowledge of the mutation operator applied on the seed and the
location of the application greatly helps the tester to focus on the
difference between the behaviour and outputs of the software on
the seed and its mutant. With such knowledge, it becomes much
easier to identify whether the behaviours of the software on the
seed and the mutant are correct or not.

(7) Analyse test adequacy.

Test adequacy analysis intends to decide whether the testing itself
is well performed and adequate. As discussed in [49], such an
adequacy analysis can be based on the coverage of the program
code of the software under test, based on the coverage of the
functionality of the software according to its specification and/or
design, or based on the coverage of the input/output data space
according to the usage of the software system under test, or a
combination of them. A great number of test adequacy criteria has
been proposed and investigated in the literature; see e.g. [49] for a
survey.

It is worth noting that the adequacy of data mutation testing
depends on two main factors: the set of seed test cases and the set
of data mutation operators. The inadequacy of a data mutation
testing could be due to the lack of certain elements or their
combinations in the seed test cases so that certain elements in the
program code or functionality or subset of the input/output data
space cannot be exercised by the generated mutants. It could also
be because the set of mutation operators is incapable of generating
a certain type of mutants that are required to achieve adequate
testing. Therefore, if the test adequacy is unsatisfactory, either
new seed(s) should be used or new mutation operator(s) need to
be developed.

3. CASE STUDY

A case study of data mutation is carried out with the testing of the
consistency checker in our agent-oriented modelling environment
CAMLE [45].

3.1 The System under Test

This subsection briefly reviews the modelling language and
environment CAMLE to give the background of the case study.

The CAMLE modelling language employs the multiple-view
principle to model agent-based systems. It satisfies the features
discussed in section 2. In particular, a model in CAMLE consists
of three views: a caste model, a collaboration model and a
behaviour model. Each view is composed of one or more types of
diagrams, while each diagram may contain some types of nodes
and edges, which are annotated with text and/or numeric values.

A caste model, consisting of a caste diagram, specifies the
architecture of the system. A caste diagram contains one type of
nodes that denote the castes of agents that constitute the system,
and six types of edges that represent various kinds of relationships
between castes, such as the inheritance and whole-part relations.
A collaboration model, consisting of a set of collaboration
diagrams at various abstraction levels and hence various

granularities, describes the communications between the agents in
the system. If an agent is composed of a set of component agents,
a collaboration diagram is associated to the agent to specify the
communications between its component agents. This results in a
hierarchical structure of collaboration diagrams. At the top of the
hierarchy, the collaboration diagram describes the whole system
as an agent and its interaction with the outside if any. A
collaboration diagram consists of two types of nodes that denote
specific agent and all agents in a caste, respectively, and one type
of edge with optional annotation that represents the
communication link between agents. A behaviour model,
consisting of a set of behaviour diagrams and scenario diagrams,
defines the behaviour rules for each caste of agents. Behaviour
diagrams contain 8§ types of nodes and 4 types of edges to specify
the behaviour rules. Scenario diagrams define the scenarios that
are referred to in behaviour diagrams.

To ensure model’s quality, the CAMLE language defines a set of
consistency constraints so that the diagrams that represent a
system from various perspectives and different abstraction levels
constitute a meaningful model. Table 1 summarises the number of
CAMLE’s consistency constraints. A consistency checker has
been implemented as a tool in the CAMLE environment to enable
automated checking whether a model satisfies the constraints. If a
consistency constraint is violated, the tool reports diagnostic
information about the types and causes of inconsistencies in the
model under check. Readers are referred to [45, 50] for the details
of the consistency constraints and the implementation of the
consistency checker in the CAMLE environment.

Table 1. Summary of CAMLE’s Consistency Constraints

Horizontal Vertical Consistency

Consistency Local Global
Intra- | Intra-diagram 10 - -
model Inter-diagram 8 8 -
Inter-model 4 1 4

3.2 The Mutation Operators

Based on the syntactic structure of CAMLE language, we defined
twenty- four types of mutation operators and developed a software
tool to generate mutants of CAMLE models, as shown in Table 2.
The tool also classifies mutants and reports statistic data for
evaluating the program under test and analysing test adequacy.

In Table 2, each operator type represents a set of mutation
operators of similar functions but applicable to various types of
diagrams. Mutation operators of the same type are grouped
together and implemented as one transformation procedure in the
mutation analysis tool in order to improve the efficiency of
automatic generation of mutants. Design of the mutation operators
ensured that their applications produce syntactically valid mutants.

3.3 The Seed Test Cases and Mutants

In the research on agent-oriented modelling, we have conducted a
number of case studies and constructed a number of CAMLE
models. We take four of these models as the seeds, which are the
evolutionary multi-agent Internet information retrieval system
Amalthaea [51, 52, 53], online auction web service [54], agent-
oriented modelling of the United Nation’s Security Council (see
http://www.auml.org/), and self-organised agent communities [55],
respectively. Table 3 summarises the scales of the seed models.




Table 2. Mutation Operators

No. |Operator type |Description

1 |Add diagram Add a diagram into the model

2 |Delete diagram  |Delete a diagram from the model

3 |Rename diagram |Change the title of a diagram

4 |Add node Add a node of some type to the diagram

5 |Add node with ~ |Add a node with an edge that links to an
links existing node
Add edge Add an edge of some type to the diagram

Replicate node

Replicate an existing node in the diagram

Delete node

Delete a node from the diagram

O|oo(fn

Rename node

Rename a node in the diagram

(=3

Change node type

Replace a node with a new node of a different
type

Add sub diagram

Generate a sub-collaboration diagram from a
node

12 |Delete Delete an environment node in a sub-
environment node |collaboration diagram
13 |Rename Rename an environment node in a sub-

environment node

collaboration diagram

Delete node
annotation

Remove the annotation on a node

15

Replicate edge

Replicate a non-interaction link

the expected consistency status of the mutant, the tool is examined
to find the errors in the implementation or design of the software.
In addition to implementation errors, weaknesses in the
definitions of consistency constraints were also identified through
the analysis of the mutation scores. Consequently, 3 constraints
were modified and 13 new constraints were introduced.

To investigate the fault detecting ability of the test method, we
conducted another experiment using error seeding. A total number
of 118 errors in six types [56] were manually inserted into the
consistency checker. The consistency checker with inserted faults
(called faulty checker in the sequel) was tested on both the seed
models and the mutants. Its output on the test suites was compared
with the original checker’s output on the same test data. A
difference between the two outputs on a same test data indicates
there is a fault either in the faulty checker (inserted fault) or in the
original checker (indigenous fault). Then, the faulty checker is
examined to identify the fault. The results are given in Table 4.

The experiment demonstrated that the set of test data generated by
data mutation method, namely the mutant models, is capable of
revealing various types of program faults. As the statistics given
in Table 4 shows, mutant models as test data to detect faults are
much more effective than the original seed models. Testing on the

elete edge clete a link in the diagram mutants also revealed 5 indigenous faults in the program that the
16 [Delete ed Delete a link in the d tants al led 5 indig fault the prog that th
17 |Change edge Change the Start or End node of a link original seeds did not detect.
association
18 |Change edge Reverse the direction of a link Table 4. Results of Error Seeding Experiment
direction
19 |Change edge type |Replace a link with a new link of different type Fault Type # Inserted # Detected Faults
20 |Replicate Replicate an interaction link without the Faults By seeds | By mutants
interaction edge | ActionList annotation = . N N
21 |Replicate Replicate an interaction link with the ActionList g Missing path 12 > (42%) 12 (100%)
interaction annotation Do Path selection 17 8 (47%) 17 (100%)
22 Change_ edge Change Fhe ACtl.Ol‘lL.lSt annotation to that on - Incorrect variable 24 14 (58%) 21 (88%)
annotation another interaction link S —
23 |Delete edge Delete the ActionList of an interaction link g Omission of statements 31 13 (42%) | 31(100%)
annotation £|  Incorrect expression 15 9 (60%) 14 (93%)
24 |Change link to Change the Start or End node of a link to an 3 —
environment environment node Transposition of statements 19 12 (63%) | 19 (100%)
Four sets of mutants are generated from the seeds by the mutation Total 118 61 (52%) | 114 (97%)

analysis tool, respectively. The total numbers of mutants
generated from each seed are also given in Table 3. In the sequel,
we will use Amalthaea suite, Auction suite, Community suite and
UNSC suite to refer to their mutant sets, respectively.

Table 3. Scales of the seed test cases
Number of Diagrams Number
Seed  |Collaboration| Behaviour |Scenario| Caste of
Diagram Diagram |Diagram| Diagram | Mutants
Amalthaea 3 8 2 1 3466
Auction 5 6 1 1 3260
Community 4 5 0 1 3244
UNSC 4 2 0 1 1082
Total 16 21 3 4 11052

3.4 Fault Detecting Ability

The case study on data mutation testing of the checker was carried
out after the tool was fairly carefully tested and all know bugs
were fixed. During the case study, 14 new faults in the
implementation of the tools were detected. The faults were
identified through the analysis on the tools’ reports on the
consistency of the mutants. When a report does not comply with

The experiment also demonstrated that the data mutation test
method is capable of detecting faults not only in the
implementation of the program under test, but also the errors
made in early stages of software development such as
requirements analysis and design. Our case study resulted in the
revision on the definition of consistency constrains and thus a
better performance of the checker.

3.5 Test Adequacy

The proposed approach is based on the observation that it is
difficult and expensive to produce an adequate set of test cases.
The mutants are therefore generated to improve the test adequacy.
Our experiments showed this goal can be achieved through data
mutation. The following uses two criteria for evaluating the test
adequacy.

Because each type of mutants represents a type of errors that a
modeller can make, a quantitative measurement of a test suite’s
adequate is the coverage of the types of mutants generated from
the seeds. For example, as shown Figure 1, the mutants generated
by applying the mutation operators on scenario diagrams in the
Amalthaea model cover all types of mutants. However, not all



seeds are capable of generating all types of mutants. For example,
a test set that only contains Auction suite, Community suite and
UNSC suite is inadequate. It is in lacking of mutants that are
generated by applying operators 6 and 17 on scenario diagrams.
Using such a test set will miss some of the program’s functions.
When a set of seeds are found inadequate due to the lack of
certain elements, additional seeds targeting at the absent elements
can be made, until the mutants cover all types of mutants.
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Figure 1. Distribution of Mutants of Scenario Diagrams

The coverage of mutant types helps to evaluate, but does not
guarantee, the adequate coverage of the program under test. The
CAMLE modelling language defines each consistency constraint
as a predicate. The checker examines the consistency of a model
by checking if the model satisfies the constraints one by one and
reports the error according to how the constraint is violated.
Therefore, for each violation of constraint, the checker may report
one or more error message. Each error message has a unique
identifier and represents a type of inconsistency that the checker
can detect. There are totally 19 different error messages that the
early version of the checker can produce, and 21 errors messages
and 10 warning messages the revised version of the checker can
report.
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Figure 2. Distribution of Error Messages in Mutant Sets

If a consistency constraint is never violated by any mutant in a test,
there are two possible reasons. (1) The set of mutants is not
sufficient so that the type of inconsistency is absent in the test
suite. Hence, the part of code in the checker that detects such
inconsistency cannot be exercised in testing on these test cases. (2)
The consistency constraint is not well defined or implemented so
that it can never be violated. Therefore, the test adequacy of a test
can be measured by the coverage of the types of inconsistency

that the checker detects in the test. Figure 2 gives the distribution
of mutants in terms of the error messages produced by the checker.

The results shown in Figure 2 demonstrated that mutant test cases
caused the checker to produce every type of error messages during
testing. Therefore, the test data have achieved 100% coverage of
the types of inconsistency. The case study clearly demonstrated
that the test method can achieve a very high test adequacy.

3.6 Test Cost

The main cost of applying the test method includes (a) the design
and implementation of mutation operators and the integration of
them into the modelling tools, (b) the development of seed test
cases, and (c) the analysis of the correctness of the software under
test on each test case. In our case study, the seed test cases were
already there in previous case studies of the modelling tool. The
development of mutation operators and implementation of
mutation analysis tool took about 1.5 man-month work. Due to the
large number of mutants, the analysis of test results on the
mutants is probably the most costly part of the testing method.
An experiment was conducted to found out the cost of this task.
Based on the experiment, it was estimated that checking the
correctness of the software on all mutants manually would take
about 2 man-month efforts to complete.

Our experiment shows that the mutation operators and the applied
locations can provide useful information on the expected output.
This can significantly simplify the task of error detecting; hence
improve the efficiency of testing. The test efficiency and
effectiveness as measured by the achieved test adequacy (see
section 3.5) and fault detecting ability (see section 3.4) over the
cost can be relatively high.

4. CONCLUSION

In this paper, we proposed the data mutation testing method as an
automatic test case generation method for testing software
modelling tools. The case study on the testing method clearly
demonstrated that the method has a high ability to detect faults
and to achieve high test adequacy. Generally speaking, the cost
efficiency of the test method is satisfactory though there is space
to further improve it.

The testing method is presented for testing software modelling
tools. However, we believe it is applicable to all software systems
whose input data have complex structures. A direction of further
work is to apply the method to other software systems and other
application domains that have structurally complex inputs.
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