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ABSTRACT 
Modelling tools play a crucial role in model-driven software 
development methods. A particular difficulty in testing such 
software systems is the generation of adequate test cases because 
the test data are structurally complicated. This paper proposes an 
approach called data mutation to generating a large number of test 
data from a few seed test cases. It is inspired in mutation testing 
methods, but differs from them in the way that mutation operators 
are defined and used. In our approach, mutation operators 
transform the input data rather than the program under test or the 
specification of the software. It is not a test adequacy 
measurement. Instead, it generates test cases. The paper also 
reports a case study with the method on testing a modelling tool 
and illustrates the applicability of the proposed method. 
Experiment data clearly demonstrated that the method can achieve 
a high test adequacy. It has a high fault detecting ability and good 
cost effectiveness.  

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – Testing 
tools 

General Terms 

Measurement, Experimentation, Verification 

1. INTRODUCTION 
With the rapid growth of research on model-driven software 
development, modelling tools are developed to support various 
model-based software development activities, such as model 
construction, model-based validation and verification, model-
based testing, model transformation, etc. Such modelling tools 
and software development environments take diagrams of a 
graphical notation such as UML as input. A particular difficulty in 
testing such software systems is the generation of adequate test 
cases because the input data are complicated in their structures.  

For example, a modelling tool that supports software engineers to 
create, edit and analyse models in UML requires input data in the 
form of a set of diagrams of various types, such as use case 
diagrams, activity diagrams, sequence diagrams, etc. Each 
diagram may contain a set of nodes of various types and a set of 
edges of different types that link the nodes. Specific types of text 

and/or numeric values can be associated to the specific types of 
nodes and edges. Consistency between the diagrams must also be 
maintained. Generating adequate set of test cases to test a 
modelling tool is very difficult, labour intensive and expensive. 
Tremendous pressure has been placed on software testers to test 
such systems adequately, yet few tool supports have been offered 
to automate the testing activities. 

In this paper, we address the problem in the generation of test 
cases for testing modelling tools. We propose a method that 
automatically generates a large number of test cases with a 
reasonable effort to achieve high test adequacy.  

1.1 Related Work 
In the past a few years, a great amount of research has been 
reported in the literature in the area of automatic generation of test 
cases. Research on program-based test generation methods can be 
back dated to 1970’s, e.g., [1 , 2 ]. In addition to these static 
methods, dynamic test generation methods have also been 
advanced for both path-oriented test generation, which takes 
certain selected paths in the program as input [3, 4], and goal-
oriented, which aims at achieving certain test goals, such as 
executing certain elements in the program [5, 6] or kill a certain 
mutant [7, 8]. Specification-based methods derive test cases from 
formal specifications in various formalisms, such as first order 
logic and set theory [ 9 ], logic programs [ 10 ], algebraic 
specifications [11, 12, 13], finite state machines [14, 15, 16], Petri 
nets [17, 18], etc. Model-based test generation derives test cases 
from semi-formal models in diagrammatic notations. In [19], a 
hierarchy of test criteria was defined on dataflow, entity 
relationship and state transition diagrams. A testing tool was 
developed to generate test cases to meet these adequacy criteria. 
More recently, advances have been made in the derivation of test 
cases from UML diagrams [20, 21], and extended finite state 
machine or statecharts [22, 23, 24], etc. Both specification-based 
and model-based test generation methods derive high level 
descriptions of test suites, e.g. in the form of a set of constraints 
on the inputs. Further generation of test data relies on heuristic 
search and constraint satisfaction techniques, constraint logic 
programming, deductive theorem proving and model checking, 
etc. [ 25 ], which are the same techniques that program-based 
methods rely on [26]. Although significant progress has been 
made in the past decades, the capability of the test generators are 
still very limited due to the expressiveness of constraints, 
computational complexity of constraint solving and the 
complexity of the software systems [27]. 

Random testing methods generate test cases through random 
sampling over the input space. A simple method is to sample over 
an existing software operation profile at random. More 
sophisticated methods use various types of stochastic models of 
software usages to represent the probabilistic distributions, such 
as Markov chain [28, 29], stochastic automata networks [30, 31], 
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Bayesian networks [32], and so on. However, it is unclear if 
random testing methods are capable of generating test cases that 
are structurally complex, such as software models.  

In addition to the research on general test generation methods, 
works have been reported on test generation for specific types of 
software systems, such as database applications [33], spreadsheets 
[ 34 ], XML data schemas [ 35 ], XML-based web component 
interactions [ 36 ], etc. These methods address the specific 
requirements in the testing of such systems.  

The method proposed in this paper is inspired in mutation test 
methods, which were originally proposed in [37], investigated 
intensively in [38, 39, 40, 41]. It is also extended to specification-
based testing in [42, 43], and more recently applied to test XML 
schemas [35], etc. Our approach differs from these existing works 
in the way that our mutation operators are defined to transform the 
input data, rather than the program, or specifications, or XML 
schemes which define the format of the input data. The existing 
works do not actually generate test data. Instead, they are used to 
measure the adequacy of an existing set of test data. In contrast, 
our method is a test data generation method.  

A closely related work is proposed in [44]. They use randomised 
error seeding to evaluate the ability of language processors to 
detect and report errors in source programs. Our method is for 
testing diagrammatic modelling tools rather than textual 
languages. The main idea of generating test data are quite similar, 
namely to artificially insert errors into a seed test data so as to 
obtain a set of mutant test data. Therefore, the methods have 
similar advantages and disadvantages as stated in [44].  

1.2 Organization of the Paper 
The paper is organized as follows. Section 2 describes the 
proposed method in detail. Section 3 presents a case study with 
the proposed method in testing a modelling tool called CAMLE, 
which stands for Caste-centric Agent-oriented Modelling 
Language and Environment [45]. Section 4 concludes the paper 
with a brief discussion of the advantages of the method and 
directions for future work.  

2. DATA MUTATION  
The test method proposed in this paper is call data mutation, 
because test data are generated through mutating input data of the 
program under test. It is developed for testing modelling tools that 
take graphic models as input.  

2.1 Modelling Language  
Modelling languages play a central role in software development 
methodologies, especially in model-driven methods. A typical 
modelling language like UML [46], CAMLE [45] and structured 
modelling notations [47] usually has the following features. 

• Multiple views. A model M consists of a set {D1, …, Dn} of 
diagrams of types T1, …, Tk. We write Type(Dx) to denote the 
type of diagram Dx in a model M. Each diagram may have a 
number of annotated values of various data types, such as the 
title, version numbers, etc.  

• Typed nodes and edges. Each diagram Di of type Tj may 
consists of a set Ni of nodes {ni,1, ni,2, …, ni,ui} classified into 
several node types tnj,1, tnj,2, …, tnj,kj, and a set Ei of edges {ei,1, 
ei,2, …, ei,vi} classified into edge types tej,1, t j,2, …, tej,sj. An edge 
can be directed, bi-directed or undirected. An edge is usually 

associated with two nodes in Ni, but sometimes associated with 
another edge in Ei.  

• Typed annotations on nodes and edges. Each node ni,x (and edge 
ei,x) can be annotated with a certain set of text and/or numeric 
values, such as the name of the node or edge and its multiplicity. 

• Typed annotations on diagrams. Each diagram can be annotated 
with a certain set of text and/or numeric values, such as the title 
and author of the diagram.   

• Consistency constraints. A set of consistency constraints C={C1, 
C2, …, Cw} may be defined on the models. A set of diagrams 
must satisfy these constraints to be considered valid and 
meaningful. A consistency constraint C∈C is usually a predicate 
such that C(M) = true means that the model M is consistent with 
respect to the constraint. There are several commonly used 
taxonomies of consistency constraints, which include:  
- Intra-diagram vs. inter-diagram constraints. A consistency 

constraint is said to be inter-diagrams, if it is defined on two 
or more diagrams. Otherwise, it is said to be intra-diagram.  

- Intra-model vs. inter-model constraints. A consistency 
constraint is said to be inter-model, if it is defined on diagrams 
of more than one type; otherwise, it is said to be intra-model.  

- Global vs. local consistency constraints. A consistency 
constraint is called a global constraint, if it is defined on the 
whole set of diagrams of a model. Otherwise, it is called a 
local constraint.  

- Horizontal vs. vertical constraints. For modelling languages 
that supports hierarchical decomposition and refinement, a 
consistency constraint is a horizontal constraint if it is defined 
between diagrams of the same abstraction level. In contrast, a 
vertical consistency constraint is defined on diagrams that 
have refinement relationships between them. 

The readers are referred to [48] for more detailed discussion of the 
structure of modelling languages and consistency and 
completeness constraints.  

Consistency checkers are often implemented to ensure models are 
well-formed and consistent before they are further processed, say, 
to generate code. A consistency checker is correctly implemented 
with respect to consistency constraints C, if for all models M the 
checker reports an error if and only if there is a consistency 
constraint C in C such that C(M) = false.  

2.2 Data Mutation Operators 
The crucial step to generate test data in our method is to design 
data mutation operators, which are then applied on graphic models 
to generate test data. A data mutation operator ϕ is a 
transformation defined on the models so that when it is applied to 
a model M on a particular location l, a new model M’=ϕ(M, l) is 
generated, which is called a mutant of the original model M. The 
following types of data mutation operators are identified. 

• Add node. The operator adds a new node n of type tn into a 
diagram D∈M, where tn is a node type of Type(D), when it is 
applied to diagram D. This may also require values annotated on 
the node to be added, and sometimes to add edges to link the 
node to the diagram.  

• Delete node. The operator deletes a node n of type tn in diagram 
D∈M when applied to the node n in diagram D.  

• Change node type. The operator changes the node type tn of 
node n into another node type tn’ when applied to the node n in 
diagram D.  

• Change node annotation. The operator changes the value v 



   

 

annotated on a node n to another value v’ of the same type, 
when it is applied to the node n in diagram D.  

• Add edge. The operator adds a new edge e of type te between 
existing nodes into a diagram D∈M, when it is applied to D.  

• Delete edge. The operator deletes an edge e in a diagram D∈M. 
It will also delete the values annotated on the edge e, if any.  

• Change edge type. The operator changes the type te of an 
existing edge e in a diagram D∈M to another type te’, when it is 
applied to the edge e.  

• Change edge annotation. The operator simply changes the value 
annotated to an existing edge e in a diagram D∈M.  

• Change edge direction. The operator simply reverses the 
direction of an existing edge e in a diagram D∈M, if the type of 
the edge allows directions.  

• Change edge association. The operator changes the node(s) in a 
diagram that the edge links.  

• Delete diagram. The operator simply deletes a diagram D from 
the model M when applied to the diagram D.  

• Add diagram. The operator adds a diagram D of some type T to 
the model M, when it is applied to M.  

• Change diagram annotation. The operator simply changes a 
field of the values annotated on the diagram according to its 
data type.  

Each application of a mutation operator on an original model 
generates a mutant model. It is required that a mutation operator 
will only generate mutants that are syntactically valid, provided 
that the original model is syntactically valid. Therefore, with one 
model as seed, a number of mutants can be generated. Such 
mutants are appropriate to be taken as test data of modelling tools 
because they represent varied forms of input data. As in all 
mutation testing methods, it is assumed of the competent 
developers hypothesis and coupling hypothesis [37, 39]. Each 
mutation operator aims at simulating a typical type of errors that 
competent software developers may make. The set of mutation 
operators should provide an adequate coverage of all possible 
changes at syntax level. Each mutation operator should be 
implemented in the way so that when it is applied to a model, it 
automatically recognizes the locations in the model that it can be 
applied and then performs the transformations to the original 
model on each location one by one.  In general, the design of 
mutation operators depends on the syntax and semantics of the 
modelling language under investigation. 

2.3 Test Process  
The process of data mutation testing consists of an iterative 
sequence of the following activities. 

(1) Prepare seed test data. 
A set of initial test cases must be prepared as the seed for the 
generation of more test cases. Given the fact that the test cases 
have complex structures, it is not easy to obtain a large set of such 
original test cases. Fortunately, the method does not require the 
existence of a large number of such test cases. A small number of 
seeds that contains all possible types of elements of the input data 
will be enough.  

(2) Generate mutant test data. 
Given a set of seed test data, the set of specifically designed 
mutation operators are applied to each seed to generate a set of 
mutants as described in the previous section. This step can be 
automated by a software tool that implements the data mutation 
operations. The number of mutants generated from a seed is 

decided by two factors: the types and numbers of elements in the 
seed and the designed data mutation operators. Given a seed, the 
tool will generate all possible mutants. There is no additional 
stopping criterion for the mutant generation process, since each 
mutant contains a distinct defect in the model.  

(3) Execute the software system on the seeds and their mutants. 
The software under test is executed on the seeds and mutant test 
data. The behaviours and outputs of the software on each test data 
are observed and recorded for further analysis. The proposed 
method does not depend on any specific method that the 
behaviour of the software is observed and recorded. In our 
experiments, the input/outputs of the software are observed and 
recorded. 

(4) Classify mutants.  
The mutants are classified into either dead or alive according to 
the recorded behaviours and outputs of the program under test. A 
mutant is classified as dead, if the execution of the software under 
test on the mutant is observed different from the execution on the 
seed test data. Otherwise, it is classified as alive.  

For example, when testing a model consistency checker,if the 
original model passes the consistency check, a mutant is dead if 
and only if the checker reports inconsistency of the mutant. 
Otherwise, it is alive.   

(5) Analyse test effectiveness. 
The effectiveness of a data mutation test can be analysed through 
various mutation scores. A mutant can be alive due to several 
reasons. First, the mutant can be equivalent to the original with 
respect to the functionality or property of the software under test. 
Therefore, such mutants cannot be distinguished from its original 
seed by the software, hence will remain alive in the testing. 
Because mutation operators is supposed to simulate the errors that 
software developers may make, a high equivalent mutant score 
EMS indicates that the mutation operators have not been well-
designed to achieve their purposes. Second, a mutant that is not 
equivalent to the original can also be alive because of the 
observations on the behaviour and output of the software under 
test is not sufficient to detect the differences. A high live mutant 
score LMS indicates that the behaviour observation is insufficient. 
Hence, a better testing method needs to be applied in order to 
observe the differences. Third, a mutant can remain alive because 
the software is incorrectly designed and/or implemented so that it 
is incapable to differentiate the mutants from the original though 
they are not equivalent. If the live mutant score LMSΦ of a 
particular type Φ of mutation operator is unusually high, it reveals 
that the program under test is not sensitive to the type of mutation, 
which may due to particular faults in the design or implementation 
of the software. The measurements are defined as follows.  

EMEMS
TM

= ,   LM EMLMS
TM EM

−
=

−
,   DMMS

TM EM
=

−
 

where TM is the total number of mutants; EM,  LM  and DM are 
the numbers of equivalent, live and dead mutants, respectively.  

If the effectiveness of the testing is unsatisfactory, revisions on 
the design and implementation of the mutation operators or the 
software under test should be made.  

(6) Analyse the correctness of the software under test. 
Test data mutation is a method of test case generation intended to 
discover faults in the software under test and gain confidence in 



   

 

the software. Therefore, for both dead and live mutants, 
software’s behaviour and output on each mutant should be 
analysed for validation and verification of the software under test.  

In comparison with other test case generation methods, one of the 
main advantages of data mutation testing is the existence of the 
behaviours and outputs of the software on both the original test 
data and the mutants. In our case studies, we find that the 
knowledge of the mutation operator applied on the seed and the 
location of the application greatly helps the tester to focus on the 
difference between the behaviour and outputs of the software on 
the seed and its mutant. With such knowledge, it becomes much 
easier to identify whether the behaviours of the software on the 
seed and the mutant are correct or not.  

(7) Analyse test adequacy. 
Test adequacy analysis intends to decide whether the testing itself 
is well performed and adequate. As discussed in [49], such an 
adequacy analysis can be based on the coverage of the program 
code of the software under test, based on the coverage of the 
functionality of the software according to its specification and/or 
design, or based on the coverage of the input/output data space 
according to the usage of the software system under test, or a 
combination of them. A great number of test adequacy criteria has 
been proposed and investigated in the literature; see e.g. [49] for a 
survey.  

It is worth noting that the adequacy of data mutation testing 
depends on two main factors: the set of seed test cases and the set 
of data mutation operators. The inadequacy of a data mutation 
testing could be due to the lack of certain elements or their 
combinations in the seed test cases so that certain elements in the 
program code or functionality or subset of the input/output data 
space cannot be exercised by the generated mutants. It could also 
be because the set of mutation operators is incapable of generating 
a certain type of mutants that are required to achieve adequate 
testing. Therefore, if the test adequacy is unsatisfactory, either 
new seed(s) should be used or new mutation operator(s) need to 
be developed.  

3. CASE STUDY  
A case study of data mutation is carried out with the testing of the 
consistency checker in our agent-oriented modelling environment 
CAMLE [45].  

3.1 The System under Test 
This subsection briefly reviews the modelling language and 
environment CAMLE to give the background of the case study.  

The CAMLE modelling language employs the multiple-view 
principle to model agent-based systems. It satisfies the features 
discussed in section 2. In particular, a model in CAMLE consists 
of three views: a caste model, a collaboration model and a 
behaviour model. Each view is composed of one or more types of 
diagrams, while each diagram may contain some types of nodes 
and edges, which are annotated with text and/or numeric values.  

A caste model, consisting of a caste diagram, specifies the 
architecture of the system. A caste diagram contains one type of 
nodes that denote the castes of agents that constitute the system, 
and six types of edges that represent various kinds of relationships 
between castes, such as the inheritance and whole-part relations. 
A collaboration model, consisting of a set of collaboration 
diagrams at various abstraction levels and hence various 

granularities, describes the communications between the agents in 
the system. If an agent is composed of a set of component agents, 
a collaboration diagram is associated to the agent to specify the 
communications between its component agents. This results in a 
hierarchical structure of collaboration diagrams. At the top of the 
hierarchy, the collaboration diagram describes the whole system 
as an agent and its interaction with the outside if any. A 
collaboration diagram consists of two types of nodes that denote 
specific agent and all agents in a caste, respectively, and one type 
of edge with optional annotation that represents the 
communication link between agents. A behaviour model, 
consisting of a set of behaviour diagrams and scenario diagrams, 
defines the behaviour rules for each caste of agents. Behaviour 
diagrams contain 8 types of nodes and 4 types of edges to specify 
the behaviour rules. Scenario diagrams define the scenarios that 
are referred to in behaviour diagrams.  

To ensure model’s quality, the CAMLE language defines a set of 
consistency constraints so that the diagrams that represent a 
system from various perspectives and different abstraction levels 
constitute a meaningful model. Table 1 summarises the number of 
CAMLE’s consistency constraints. A consistency checker has 
been implemented as a tool in the CAMLE environment to enable 
automated checking whether a model satisfies the constraints. If a 
consistency constraint is violated, the tool reports diagnostic 
information about the types and causes of inconsistencies in the 
model under check. Readers are referred to [45, 50] for the details 
of the consistency constraints and the implementation of the 
consistency checker in the CAMLE environment. 

Table 1. Summary of CAMLE’s Consistency Constraints 

Vertical Consistency  Horizontal  
Consistency Local Global 

Intra-diagram 10 − − Intra-
model Inter-diagram 8 8 − 

Inter-model 4 1 4 

3.2 The Mutation Operators 
Based on the syntactic structure of CAMLE language, we defined 
twenty- four types of mutation operators and developed a software 
tool to generate mutants of CAMLE models, as shown in Table 2. 
The tool also classifies mutants and reports statistic data for 
evaluating the program under test and analysing test adequacy.     

In Table 2, each operator type represents a set of mutation 
operators of similar functions but applicable to various types of 
diagrams. Mutation operators of the same type are grouped 
together and implemented as one transformation procedure in the 
mutation analysis tool in order to improve the efficiency of 
automatic generation of mutants. Design of the mutation operators 
ensured that their applications produce syntactically valid mutants.  

3.3 The Seed Test Cases and Mutants 
In the research on agent-oriented modelling, we have conducted a 
number of case studies and constructed a number of CAMLE 
models. We take four of these models as the seeds, which are the 
evolutionary multi-agent Internet information retrieval system 
Amalthaea [51, 52, 53], online auction web service [54], agent-
oriented modelling of the United Nation’s Security Council (see 
http://www.auml.org/), and self-organised agent communities [55], 
respectively. Table 3 summarises the scales of the seed models.  



   

 

Four sets of mutants are generated from the seeds by the mutation 
analysis tool, respectively. The total numbers of mutants 
generated from each seed are also given in Table 3. In the sequel, 
we will use Amalthaea suite, Auction suite, Community suite and 
UNSC suite to refer to their mutant sets, respectively.  

Table 3. Scales of the seed test cases 

Number of Diagrams 
Seed Collaboration 

Diagram 
Behaviour 
Diagram 

Scenario 
Diagram 

Caste 
Diagram 

Number 
of 

Mutants 
Amalthaea 3 8 2 1 3466 

Auction 5 6 1 1 3260 
Community 4 5 0 1 3244 

UNSC 4 2 0 1 1082 
Total 16 21 3 4 11052 

3.4 Fault Detecting Ability 
The case study on data mutation testing of the checker was carried 
out after the tool was fairly carefully tested and all know bugs 
were fixed. During the case study, 14 new faults in the 
implementation of the tools were detected. The faults were 
identified through the analysis on the tools’ reports on the 
consistency of the mutants. When a report does not comply with 

the expected consistency status of the mutant, the tool is examined 
to find the errors in the implementation or design of the software. 
In addition to implementation errors, weaknesses in the 
definitions of consistency constraints were also identified through 
the analysis of the mutation scores. Consequently, 3 constraints 
were modified and 13 new constraints were introduced.  

To investigate the fault detecting ability of the test method, we 
conducted another experiment using error seeding. A total number 
of 118 errors in six types [56] were manually inserted into the 
consistency checker. The consistency checker with inserted faults 
(called faulty checker in the sequel) was tested on both the seed 
models and the mutants. Its output on the test suites was compared 
with the original checker’s output on the same test data. A 
difference between the two outputs on a same test data indicates 
there is a fault either in the faulty checker  (inserted fault) or in the 
original checker (indigenous fault). Then, the faulty checker is 
examined to identify the fault. The results are given in Table 4.  

The experiment demonstrated that the set of test data generated by 
data mutation method, namely the mutant models, is capable of 
revealing various types of program faults. As the statistics given 
in Table 4 shows, mutant models as test data to detect faults are 
much more effective than the original seed models. Testing on the 
mutants also revealed 5 indigenous faults in the program that the 
original seeds did not detect.  

Table 4. Results of Error Seeding Experiment 

# Detected Faults 
Fault Type # Inserted 

Faults By seeds By mutants

Missing path 12 5 (42%) 12 (100%) 

D
om

ai
n 

Path selection 17 8 (47%) 17 (100%) 

Incorrect variable 24 14 (58%) 21 (88%) 

Omission of statements 31 13 (42%) 31 (100%) 

Incorrect expression 15 9 (60%) 14 (93%) 

C
om

pu
ta

tio
n 

Transposition of statements 19 12 (63%) 19 (100%) 

Total 118 61 (52%) 114 (97%) 

The experiment also demonstrated that the data mutation test 
method is capable of detecting faults not only in the 
implementation of the program under test, but also the errors 
made in early stages of software development such as 
requirements analysis and design. Our case study resulted in the 
revision on the definition of consistency constrains and thus a 
better performance of the checker.  

3.5  Test Adequacy  
The proposed approach is based on the observation that it is 
difficult and expensive to produce an adequate set of test cases. 
The mutants are therefore generated to improve the test adequacy. 
Our experiments showed this goal can be achieved through data 
mutation. The following uses two criteria for evaluating the test 
adequacy.  

Because each type of mutants represents a type of errors that a 
modeller can make, a quantitative measurement of a test suite’s 
adequate is the coverage of the types of mutants generated from 
the seeds. For example, as shown Figure 1, the mutants generated 
by applying the mutation operators on scenario diagrams in the 
Amalthaea model cover all types of mutants. However, not all 

Table 2. Mutation Operators 

No. Operator type Description 
1 Add diagram Add a diagram into the model 
2 Delete diagram  Delete a diagram from the model 
3 Rename diagram Change the title of a diagram  
4 Add node Add a node of some type to the diagram  
5 Add node with 

links 
Add a node with an edge that links to an 
existing node  

6 Add edge Add an edge of some type to the diagram 
7 Replicate node  Replicate an existing node in the diagram 
8 Delete node  Delete a node from the diagram 
9 Rename node Rename a node in the diagram 
10 Change node type Replace a node with a new node of a different 

type 
11 Add sub diagram Generate a sub-collaboration diagram from a 

node 
12 Delete 

environment node 
Delete an environment node in a sub-
collaboration diagram 

13 Rename 
environment node 

Rename an environment node in a sub-
collaboration diagram 

14 Delete node 
annotation 

Remove the annotation on a node 

15 Replicate edge Replicate a non-interaction link 
16 Delete edge Delete a link in the diagram 
17 Change edge 

association 
Change the Start or End node of a link 

18 Change edge 
direction 

Reverse the direction of a link 

19 Change edge type Replace a link with a new link of different type 
20 Replicate 

interaction edge 
Replicate an interaction link without the 
ActionList annotation 

21 Replicate 
interaction  

Replicate an interaction link with the ActionList 
annotation 

22 Change edge 
annotation 

Change the ActionList annotation to that on 
another interaction link 

23 Delete edge 
annotation 

Delete the ActionList of an interaction link 

24 Change link to 
environment 

Change the Start or End node of a link to an 
environment node 



   

 

seeds are capable of generating all types of mutants. For example, 
a test set that only contains Auction suite, Community suite and 
UNSC suite is inadequate. It is in lacking of mutants that are 
generated by applying operators 6 and 17 on scenario diagrams. 
Using such a test set will miss some of the program’s functions. 
When a set of seeds are found inadequate due to the lack of 
certain elements, additional seeds targeting at the absent elements 
can be made, until the mutants cover all types of mutants.  
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Figure 1. Distribution of Mutants of Scenario Diagrams 

The coverage of mutant types helps to evaluate, but does not 
guarantee, the adequate coverage of the program under test. The 
CAMLE modelling language defines each consistency constraint 
as a predicate. The checker examines the consistency of a model 
by checking if the model satisfies the constraints one by one and 
reports the error according to how the constraint is violated. 
Therefore, for each violation of constraint, the checker may report 
one or more error message. Each error message has a unique 
identifier and represents a type of inconsistency that the checker 
can detect. There are totally 19 different error messages that the 
early version of the checker can produce, and 21 errors messages 
and 10 warning messages the revised version of the checker can 
report.   
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Figure 2. Distribution of Error Messages in Mutant Sets 

If a consistency constraint is never violated by any mutant in a test, 
there are two possible reasons. (1) The set of mutants is not 
sufficient so that the type of inconsistency is absent in the test 
suite. Hence, the part of code in the checker that detects such 
inconsistency cannot be exercised in testing on these test cases. (2) 
The consistency constraint is not well defined or implemented so 
that it can never be violated. Therefore, the test adequacy of a test 
can be measured by the coverage of the types of inconsistency 

that the checker detects in the test. Figure 2 gives the distribution 
of mutants in terms of the error messages produced by the checker.  

The results shown in Figure 2 demonstrated that mutant test cases 
caused the checker to produce every type of error messages during 
testing. Therefore, the test data have achieved 100% coverage of 
the types of inconsistency. The case study clearly demonstrated 
that the test method can achieve a very high test adequacy.  

3.6 Test Cost 
The main cost of applying the test method includes (a) the design 
and implementation of mutation operators and the integration of 
them into the modelling tools, (b) the development of seed test 
cases, and (c) the analysis of the correctness of the software under 
test on each test case. In our case study, the seed test cases were 
already there in previous case studies of the modelling tool. The 
development of mutation operators and implementation of 
mutation analysis tool took about 1.5 man-month work. Due to the 
large number of mutants, the analysis of test results on the 
mutants is probably the most costly part of the testing method.   
An experiment was conducted to found out the cost of this task. 
Based on the experiment, it was estimated that checking the 
correctness of the software on all mutants manually would take 
about 2 man-month efforts to complete.  

Our experiment shows that the mutation operators and the applied 
locations can provide useful information on the expected output. 
This can significantly simplify the task of error detecting; hence 
improve the efficiency of testing. The test efficiency and 
effectiveness as measured by the achieved test adequacy (see 
section 3.5) and fault detecting ability (see section 3.4) over the 
cost can be relatively high.  

4. CONCLUSION 
In this paper, we proposed the data mutation testing method as an 
automatic test case generation method for testing software 
modelling tools. The case study on the testing method clearly 
demonstrated that the method has a high ability to detect faults 
and to achieve high test adequacy. Generally speaking, the cost 
efficiency of the test method is satisfactory though there is space 
to further improve it.  

The testing method is presented for testing software modelling 
tools. However, we believe it is applicable to all software systems 
whose input data have complex structures. A direction of further 
work is to apply the method to other software systems and other 
application domains that have structurally complex inputs.  

REFERENCES  
[1] Howden, W. E., Methodology for the generation of program 

test data, IEEE Trans. on Computers, 24(5), 1975, 554-560. 
[2] Clarke, L., A system to generate test data and symbolically 

execute programs, IEEE TSE, 2(3), 1976, 215-222. 
[3] Korel, B., Automated software test data generation, IEEE TSE, 

16(8), 1990, 870-879. 
[4] Beydeda, S. & Gruhn, V., BINTEST - Binary Search-based 

Test Case Generation, COMPSAC’03, 28-33.  
[5] Gupta, N., Mathur, A.P. & Soffa, M.L., Generating Test Data 

for Branch Coverage, ASE’00, 219-227. 
[6] Pargas, R.P., Harrold, M.J. & Peck, R. R., Test data generation 

using genetic algorithms, STVR 9(4), 1999, 263-282. 
[7] DeMillo, R. A. & Offutt, A. J., Constraint-based automatic test  



   

 

 
data generation, IEEE TSE, 17(9), 1991, 900-909. 

[8] DeMillo,R.&Offutt, J., Experimental results from an automatic 
test case generator, ACM TOSEM, 2(2), 1993, 109-127. 

[9] Tai, K-C., Predicate-based test generation for computer 
programs, ICSE’93, 267-276. 

[10] Denney, R., Test-case generation from Prolog-based 
specifications, IEEE Software, March 1991, 49-57. 

[11] Bouge, L., Choquet, N., Fribourg, L. & Gaudel, M.-C., Test 
set generation from algebraic specifications using logic 
programming. JSS, 6, 1986, 343-360,  

[12] Doong R.K.&Frankl, P.G., The ASTOOT approach to testing 
object-oriented programs, ACM TOSEM, 3(2), 1994, 101-130. 

[13] Chen, H. Y. Tse, T. H. & Chen, T. Y., TACCLE: a 
methodology for object-oriented software testing at the class 
and cluster levels, ACM TOSEM, 10(1), 2001. 

[14] Fujiwara, S., Bochmann, G., Khendek, F., Amalou, M. & 
Ghedamsi, A., Test selection based on finite state models, 
IEEE TSE, 17(6), 1991, 591-603. 

[15] Lee, D. & Yannakakis, M., Principles and methods of testing 
finite state machines -- a survey, Proc. of the IEEE, 84, Aug 
1996, 1090-1123. 

[16] Hierons, R. M., Checking states and transitions of a set of 
communicating finite state machines, Microprocessors and 
Microsystems, 24(9), 2001, 443-452. 

[17] Morasca, S. & Pezze, M., Using high-level Petri nets for 
testing concurrent and real-time systems, Real-Time Systems, 
Theory and Applications, H. Zedan ed., North Holland, 1990. 

[18] Zhu, H. & He, X., A methodology of testing high-level Petri 
nets, IST, 44(8), 2002, 473-489. 

[19] Zhu, H., Jin, L., Diaper, D., Software requirements validation 
via task analysis, JSS, 61(2), 2002, 145-169. 

[20]Hartman, A. & Nagin, K.,  The AGEDIS tools for model 
based testing, ISSTA '04, 129-132.  

[21]Offutt, J.& Abdurazik,A., Using UML collaboration diagrams 
for static checking and test generation., UML’00, 383-395. 

[22] Tahat, L. H., Bader, A. J., Vaysburg, B., Korel, B., 
Requirement-Based Automated Black-Box Test Generation, 
COMPSAC'01, 489-495. 

[23] Vaysburg, B., Tahat, L., Korel, B., Dependence analysis in 
reduction of requirement based test suites, ISSTA’02, 107-111. 

[24] Li, S., Wang, J., Qi, Z-C., Property-oriented test generation 
from UML statecharts, ASE’04, 122-131. 

[25] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., 
Baumgartner, M., Sostawa, B., Zölch, R. & Stauner, T., One 
evaluation of model-based testing and its automation, ICSE’05, 
392-401. 

[26] McMinn, P., Search-based Software Test Data Generation:  
A Survey, STVR, 14(2), 2004, 105-156. 

[27] McMinn, P. & Holcombe, M., The state problem for 
evolutionary testing, GECCO’03, Springer-Verlag, 2488-2497. 

[28] Whittaker, J. A. & Poore, J. H., Markov analysis of software 
specifications, ACM TOSEM, 2(1), 1993, 93-106. 

[29]Prowell, S. J., Using Markov Chain Usage Models to Test 
Complex Systems, HICSS'05, p318.  

[30]Bertolini, C., Farina, A. G.., Fernandes, P. & Oliveira F. M., 
Test Case Generation Using Stochastic Automata Networks: 
Quantitative Analysis, SEFM'04, 251-260.  

[31] Farina,A.G., Fernandes, P.&Oliveira,F.M., Measurement and 
empirical software engineering: Representing software usage 
models with stochastic automata networks, SEKE’02,401-406. 

[32] Shai Fine, S. & Ziv, A., Coverage directed test generation for 
functional verification using Bayesian networks, DA’03, 286- 

 
291. 

[33] Zhang, J., Xu, C., & Cheung, S.C., Automatic Generation of 
Database Instances for White-box Testing, COMPSAC’01, 
161-165. 

[34] Fisher, M., Cao, M., Rothermel, G., Cook, C., & Burnett, M., 
Automated test case generation for spreadsheets, ICSE’02, 
141-151. 

[35] Li, J. B., & Miller, J., Testing the Semantics of W3C XML 
Schema, COMPSAC’05, 443-448 

[36] Lee, S.C. & Offutt, J., Generating Test Cases for XML-Based 
Web Component Interactions Using Mutation Analysis, 
ISSRE'01, 200-209. 

[37] DeMillo, R.A., Lipton, R.J. & Sayward, F.G., Hints on test 
data selection: Help for the practising programmer, Computer, 
11, April 1978, 34-41. 

[38] King, K.N. & Offutt, A.J., A FORTRAN language system for 
mutation-based software testing, SPE, 21(7), 1991, 685-718. 

[39] Budd, T. A., Mutation analysis: Ideas, examples, problems 
and prospects, Computer Program Testing, Chandrasekaran, 
B., & Radicchi, S., (eds), North- Holland, 1981, 129-148. 

[40] Howden, W.E., Weak mutation testing and completeness of 
test sets, IEEE TSE, 8(4), 1982, 371-379. 

[41] Woodward, M. R. & Halewood, K., From weak to strong -- 
Dead or alive? An analysis of some mutation testing issues, 
TAV-2, July 1988, 152-158. 

[42] Gopal, A. & Budd, T., Program testing by specification 
mutation, Technical report TR 83-17, University of Arizona, 
November 1983. 

[43] Woodward, M.R., Errors in algebraic specifications and an 
experimental mutation testing tool, SEJ, July 1993, 211-224. 

[44] Meek B., & Siu, K.K., The effective of error seeding. 
SIGPLAN Notices, 24(6), 1989, 81-89. 

[45] Zhu, H. & Shan, L., Caste-Centric Modelling of Multi-Agent 
Systems: The CAMLE Modelling Language and Automated 
Tools, Model-driven Software Development, Beydeda, S. & 
Gruhn, V. (eds.), Springer, 2005, 57-89.   

[46] Fowler, M., UML Distilled: A Brief Guide to the Standard 
Object Modeling Language, 3rd Edt., Addison Wesley, 2004.  

[47] Yourdon E., Modern structured analysis, Prentice-Hall, 
Englewood Cliffs, NJ, 1989 

[48] Zhu, H. & Shan, L., Well-formedness, Consistency and 
Completeness of Graphic Models. UKSIM’06, in press.  

[49] Zhu, H., Hall, P. & May, J., Software unit test coverage and 
adequacy, ACM Computing Survey, 29(4), 1997, 366~427. 

[50] Shan, L. & Zhu, H., Consistency Check in Modeling Multi-
Agent Systems, COMPSAC’04, 114-121. 

[51]Moukas, A., Amalthaea: Information discovery and filtering 
using a multi-agent evolving ecosystem, J. Applied AI, 11(5), 
1997, 437-457. 

[52] Zhu, H., Formal Specification of Evolutionary Software 
Agents, ICFEM’02, Springer LNCS 2495, 249-261. 

[53] Shan, L., & Zhu, H., Modelling and specification of scenarios 
and agent behaviour, IAT’03, 32-38. 

[54] Zhu, H. & Shan, L., Agent-Oriented Modelling and 
Specification of Web Services, WORDS’05, 152-159. 

[55] Zhu, H. & Wang, F., Formal Analysis of Emergent 
Behaviours of Autonomous Agent Communities in Scenario 
Calculus, Sept. 2005. (Submitted to the Journal of 
Autonomous Agents and Multi-Agent Systems)  

[56] Harrold, M. J, Offutt, J, A. & Tewary, K., An approach to 
fault modeling and fault seeding using the program 
dependence graph, JSS, 1997(3), 273-296. 


