Exploratory Datamorphic Testing of Classification Applications

Hong Zhu and Ian Bayley
Oxford Brookes University
Oxford OX33 1HX, UK
(hzhulibayley)@brookes.ac.uk

ABSTRACT

Testing has been widely recognised as difficult for AI applications.
This paper proposes a set of testing strategies for testing machine
learning applications in the framework of the datamorphism test-
ing methodology. In these strategies, testing aims at exploring the
data space of a classification or clustering application to discover
the boundaries between classes that the machine learning appli-
cation defines. This enables the tester to understand precisely the
behaviour and function of the software under test. In the paper,
three variants of exploratory strategies are presented with the algo-
rithms as implemented in the automated datamorphic testing tool
Morphy. The correctness of these algorithms are formally proved.
The paper also reports the results of some controlled experiments
with Morphy that study the factors that effect the test effectiveness
of the strategies.

CCS CONCEPTS

« Software and its engineering — Software notations and tools;
« Computing methodologies — Artificial intelligence; Ma-
chine learning,.

KEYWORDS

Artificial intelligence, Software testing, Automated software test-
ing, Test method, Testing tools, Datamorphic testing, Exploratory
testing, Test strategies

ACM Reference Format:

Hong Zhu and Ian Bayley. 2020. Exploratory Datamorphic Testing of Clas-
sification Applications. In Proceedings of AST ’20: The First International
Conference on Automation of Software Test (AST °20). ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/1122334.1122456

1 INTRODUCTION

It is widely recognised that the generation of test data for Al appli-
cations is prohibitively expensive [11]. Checking the correctness of
a test result is also notoriously difficult, if not completely impossible
[7, 15]. Moreover, existing testing techniques for measuring test
coverage and the automation of testing activities and processes
are not directly applicable [20]. Testing Al applications is therefore

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AST °20, May 23-29, 2020, Seoul, South Korean

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/20/05...$15.00
https://doi.org/10.1145/1122334.1122456

a grave challenge for software engineering [2]. Developing novel
approaches to test Al applications is highly desirable [4].

In [20, 21], we proposed a method called datamorphic testing for
testing Al applications and reported a case study with face recogni-
tion applications. The method is further developed in [17, 18], in
which the notion of test morphisms is introduced, an automated
testing tools called Morphy is reported and a set of test strategies
are formally defined and implemented. The case studies reported
in [17] shows that test strategies can significantly improve the au-
tomation for testing Al applications. This paper presents another
set of datamorphic test strategies specifically designed for testing
the classification and clustering type of Al applications, which clas-
sify objects and entities according to their features and attributes.
Classification and clustering are one of the largest categories of Al
applications, and many Al techniques such as machine learning
and data analytics generate applications of this category [1, 5, 8].

The proposed test strategies are based on the idea of exploratory
testing in which testers interact with the application and use the
information the application provides to change the course of testing
in order to explore the application’s functionality [12]. It is different
from testing for verification and validation, which aims to confirm
the correctness of the software under test with respect to a given
specification. In contrast, exploratory testing treats the software
under test as an object unknown and regards software testing as
a series of experiments with the software aimed at discovering its
functions and features. Moreover, the traditional verification and
validation testing methods regard test cases as independent from
each other. In contrast, exploratory testing uses the result of the
previous test cases to guide its choice of the next test case in order
to maximise its effectiveness in the process of searching for useful
information.

The paper is organised as follows. Section 2 briefly reviews the
datamorphic testing method, the automated testing tool Morphy,
and the basic concepts of classification applications. Section 3 de-
fines a set of three exploration strategies and illustrate their use
with an example. Section 4 reports the experiments with these
strategies on their performances. Section 5 concludes the paper
with a discussion of related work and future work.

2 PRELIMINARIES

In this section, we briefly review the datamorphic testing method
and the testing tool Morphy, and clustering and classification tech-
niques to set the context of the paper.

2.1 Overview of Datamorphic Testing Method

In the datamorphic software testing method [17], software arte-
facts involved in testing are classified into two types: entities and
morphisms.

https://doi.org/10.1145/1122334.1122456
https://doi.org/10.1145/1122334.1122456

AST ’20, May 23-29, 2020, Seoul, South Korean

Test entities are objects and data that are used and/or generated
in testing. These include test cases, test suites/sets, the programs
under test, and test reports, etc.

Test morphisms are mappings between entities. They generate
and transform test entities to achieve testing objectives. They can
be implemented as test code and invoked to perform test activities
and composed to form test processes. The following are the test
morphisms recognised by the datamorphic test tool Morphy.

o Test set creators create sets of test cases. They are called seed
test case makers in [16, 21]. A typical example is random test
case generators like fuzzers [10].

o Datamorphisms are mappings from existing test cases to new
test cases. They are called data mutation operators in [9].

e Metamorphisms are mappings from test cases to Boolean val-
ues that assert their correctness. They are test oracles. Formal
specifications and metamorphic relations in metamorphic
testing [3, 7] can also be used as metamorphisms.

o Test case metrics are mappings from test cases to real numbers.
They measure test cases giving, for example, the similarity
of a test case to the others in the test set.

o Test case filters are mappings from test cases to truth values.
They can be used, for example, to decide whether a test case
should be included in a test set.

o Test set metrics are mappings from test sets to real numbers.
They measure the test set quality, such as its code coverage
[19].

o Test set filters are mappings from test sets to test sets. For
example, they may remove some test cases from a test set
for regression testing.

o Test executers execute the program under test on test cases
and receive the outputs from the program. They are map-
pings from a piece of program to a mapping from input data
to output. That is, they are functors in category theory.

o Test analysers analyse test sets and generate test reports.
Thus, they are mappings from test sets to test reports.

A test system T = (&, .#') in datamorphic testing consists of a
set & of test entities and a set .# of test morphisms. In Morphy
[17], a test system is specified as a Java class that declares a set of
attributes as test entities and a set of methods as test morphisms.

Given a test specification, Morphy provides testing facilities to
automate testing at three different levels. At the lowest level, vari-
ous test activities can be performed by invoking test morphisms via
a click of buttons on Morphy’s GUIL At the medium level, Morphy
implements various test strategies to perform complex testing activ-
ities through combinations and compositions of test morphisms. At
the highest level, test processes are automated by recording, editing
and replaying test scripts that consist of a sequence of invocations
of test morphisms and strategies.

Test strategies are complex combinations of test morphisms
designed to achieve test automation. Three sets of test strategies
have been implemented in Morphy:

o Mutant combination: combining datamorphisms to generate
mutant test cases; see [17].

e Domain exploration: searching for the borders between clus-
ters/subdomains of the input space;

H. Zhu and I. Bayley

o Test set optimisation: optimising test sets by employing ge-
netic algorithms.
This paper focuses on domain exploration strategies, which will
be defined in Section 3. Those strategies that employ genetic algo-
rithms to optimise test sets will be reported in another paper.

2.2 Classification Applications

Clustering as a data mining and machine learning problem is the
partitioning of a given set of data points into groups containing
similar data points. However, clustering does not only partition
the data in the given data set, but also makes it possible to put
new data into the right groups. The key concept of clustering is
similarity between data points, which is defined formally in the
form of a similarity or distance function on the data space. Two
pieces of data that are similar to each other should be put into the
same group, while the data that are dissimilar should be placed
in different groups. Whereas clustering is unsupervised learning,
classification is supervised learning. Given a number of examples
of data points and their classifications, it learns how to assign data
to groups [1, 5, 8].

In both clustering and classification, the result is a program P
that maps from the data space D into a number of groups G. We say
that P is a classification application. We will write P(x) to denote
the output of P on an input x € D, and call P(x) the classification of
x by P. We also assume that there is a function dist : D X D — R*
measuring the distances between any two points x and y in the
data space D such that:

Vx € D(dist(x,x) = 0);

Vx,y € D(dist(x,y) = 0);

Vx,y € D(dist(x,y) = dist(y,x));

Vx,y,z € D(dist(x,y) + dist(y, z) > dist(x, z)).

The distance function measures the similarity between data
points in that the smaller the distance between two points the
more similar they are.

For a classification program, it is crucial to classify data into
correct classes. However, the borders between classes are often
unknown if the classification program is obtained through machine
learning and data mining. The goal of the exploration strategies
proposed in this paper is to find a set of data pairs that represents
the borders between classes. Thus, we introduce the notion of Pareto
front of the classification as defined by the program P under test.

DEFINITION 1. (Pareto Front of Classification)

Let P : D — G be a classification program, dist : DX D — R be a
distance metric defined on the input space D, and § > 0 be a given
real number. A set {< a;,b; > |a;,b; € D,i = 1,---,n} of data pairs
is a Pareto front of the classes of D according to P with respect to dist
and$, if foralli =1,--- ,n,P(a;) # P(b;) anddist(a;,b;) < 5. O

A Pareto front can show accurately the borders between the
classes, thus help testers to determine whether the classification is
correct or not.

2.3 Exploratory Test Systems

To apply an exploratory test strategy to a classification program
P : D — G with a distance function dist, we assume that the test
system .7 = (&, .#) has the following properties.

Exploratory Datamorphic Testing of Classification Applications

(1) The set .# of morphisms contains a test executer Exep(x)
that executes the program P under test on a test case x and
receives the output of P; thatis Exep(x) = P(x). In the sequel,
we will write P(x) for Exep(x) for the sake of simplicity.

(2) There is a set W C .# of unary datamorphisms defined
on D. Informally, for each w € W and x € D, w(x), wz(x),

-+, w"(x) generates a sequence of different data points
in D, where wl(x) = w(x), w"™1(x) = w(w"(x)). These
datamorphisms are called traversal methods.

(3) There is also a binary datamorphism m € .# such that for all
x,y € D, dist(x,z) < dist(x,y) and dist(y,z) < dist(x,y),
where z = m(x,y) € D. Informally, the datamorphism m
calculates a point between x and y. It is called the midpoint
method.

Note that, for all x,y € D and z = m(x, y), we have:
(P(x) # P(y)) = (P(x) # P(2)) V (P(y) # P(2)). ¢Y)

Informally, if the program P under test classifies x and y into dif-
ferent classes, the midpoint between x and y must be either not in
the same class as x or not in the same class as y.

2.4 The Running Example

In Section 3, we will use the following simple classification program
as a running example to illustrate the exploration strategies. It
classifies the points in a two-dimensional continuous space [0, 277] X
[-1, 1] into three classes: red, black and blue as illustrated in Figure
1. In this example, data points x and y is a pair of Pareto Front
between black and red classes, if x is red and y is black and they
are very close to each other. Such pairs can show accurately the
borders between the classes, thus help testers to determine whether
the classification is correct or not.

Figure 1: Data Space of the Running Example

The Figure 2 gives the traversal and midpoint methods in the
Morphy test specification. The midpoint method mid(x, y) calcu-
lates the geometric midpoint between x and y.

It is easy to see that the running example forms an exploratory
test system with the following distance function.

Bucl((xr.x2) (yny2) = (1 — 92 + (2~ 122 ()

3 EXPLORATION STRATEGIES

This section presents the algorithms for three different exploratory
strategies for testing clustering and classification applications. We
also prove their correctness and illustrate their behaviour by using
the running example given in the previous section.

AST ’20, May 23-29, 2020, Seoul, South Korean

@Datamorphism

public TestCase<TwoD, Colour> upward(TestCase<TwoD, Colour> seed){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD,Colour>();
TwoD point = new TwoD(seed.input.x, seed.input.y + 0.2);
mutant.input = point;
return mutant;

@Datamorphism

public TestCase<TwoD, Colour> downward(TestCase<TwoD, Colour> seed){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD,Colour>();
TwoD point = new TwoD(seed.input.x, seed.input.y - 0.2);
mutant.input = point;

return mutant;

@atamorphism

public TestCase<TwoD, Colour> leftward(TestCase<TwoD, Colour> seed){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD,Colour>();
TwoD point = new TwoD(seed.input.x-0.2, seed.input.y);
mutant.input = point;
return mutant;

}

@Datamorphism

public TestCase<TwoD, Colour> rightward(TestCase<TwoD, Colour> seed){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD,Colour>();
TwoD point = new TwoD(seed.input.x+0.2, seed.input.y);
mutant.input = point;
return mutant;

}

@Datamorphism
public TestCase<TwoD, Colour> mid(TestCase<TwoD, Colour> x1,
TestCase<TwoD, Colour> x2){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD, Colour>();
TwoD point = new TwoD((x1.input.x + x2.input.x)/2,
(x1.input.y + x2.input.y)/2);
mutant.input = point;
return mutant;

Figure 2: Datamorphisms of The Running Example

3.1 Random Target Strategy

Let’s start with a simple exploration strategy based on random
selection of known test cases in order to find the Pareto front of
the classification groups between these two test cases. We call this
strategy random target strategy.

The strategy starts by selecting a pair of two test cases x and y
at random. If the outputs of the program P under test on these test
cases are different, i.e. P(x) # P(y), then a point z; between x and
y are generated by using the binary datamorphism of the midpoint
method mid(x,y), i.e. z; = mid(x,y). The program P is executed
on this mutant test case z; to classify it. The classification of z;
must be different from one of the original pair of test cases; say
P(z1) # P(x). Thus, we can repeat the above steps with x and z;
as the pair of test cases, and a further mutant z; can be generated.
This process is iterated for a number of times to ensure the distance
between the final pair of points is small enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT(n) =
(a, b) to denote the results of executing Algorithm 1 with n as the
parameter steps and (a, b) as the output.

Assume that the exploratory test system has the following prop-
erties.

(1) There is a constant ¢ > 1 such that

Vx,y € D, Max{dzst(x, z),dist(z,y)} <1/, 3)
dist(x,y)

where z = mid(x, y).
(2) There is a constant d,;, > 0 such that

Vx,y € D.(dist(x,y) < dm). 4)

Then, we have the following theorem about the correctness of
the random target strategy algorithm.

AST ’20, May 23-29, 2020, Seoul, South Korean

Algorithm 1 (Random Target Strategy)

Input:
testSet: Test Pool,;
steps: Integer;
mid(x,y): Binary datamorphism;
Output:
a, b: Test Case;
Begin
1: Select two different test cases x and y in testSet at random;
2: Execute program P on test cases x and y;
3: Check if a pair of Pareto front exits between x to y:
if (x.output = y.output) then return (null, null)
end if
4: Refinement:
for i < 1to steps do

z = mid(x,y);
if (x.output # z.ouptut) then y =z
else x = z;
end if
end for;
a=x;b=uy;
return (a, b);

End

THEOREM 1. IfRT(n) = (a,b) # (null, null), then (a, b) is a pair
of Pareto front according to P with respect to dist and 8, ifdpm [c™ < 6.

Proof.

If RT(n) = {a,b) # (null,null), then, the condition of the If-
statement in step (3) is false. Thus, the loop is executed. It is easy
to see that the For-loop in Step 4 in the algorithm terminates.

We now proof that the following is a loop invariant of the loop
by induction on the number i of iterations of the loop body.

d
dist(x,y) < —* A P(x) # P(y).
c
When entering the loop, by assumption (4), the distance between
the data points stored in variable x and y satisfies the following
inequality.
dist(x,y) < dm

Since the condition of the If-statement is false, we have that
P(x) = x.output # y.output = P(y).

Therefore, the loop invariant is true for i = 0.

Assume that the loop invariant is true for i = n > 0.

After the excution of the loop body one more time (i.e. i = n+1),
by applying the Hoare logic of the If-statements in the loop body,
the distance d, between the data points stored in variables x and y
will become either dist(x, z) or dist(z, y), where z = mid(x,y). By
assumption (3), in both cases we have that

d}. < Max{dist(x, z), dist(z,y)} < dist(x,y)/c < dm /L.

By the condition of the If-statement in the loop body and the prop-
erty (1), applying Hoare logic we have that, after the execution
of the loop body, the data points stored in variables x and y have
the property that P(x) # P(y). Therefore, the condition is a loop
invariant according to Hoare logic.

H. Zhu and I. Bayley

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = y, we have that

dist(a,b) < dm/c™ A P(a) # P(b).

Therefore, the theorem is true by Definition 1. O
The algorithm of random target strategy can be run multiple
times to generate a number of pairs for the Pareto front.

ExaMPpLE 1. For example, applying the random target strategy to
the running example, we can obtain a test set shown in Figure 3 when
1000 pairs of test cases are selected at random from a test set of 300
random test cases. A total of 641 pairs of Pareto front test cases were
generated. The success rate in generating a pair for the Pareto front
is 64.1%. The set of Pareto front pairs shows clearly the boundary
between the subdomains classified by the software.

Figure 3: Pareto Front Generated by Random Target

In this example, the number of steps n is 20. Since the data space
D = [0, 2] X [—1,1], if the distance function dist(x,y) is Eucl(x,y),
we have that dy, = 2N 2 + 1. By the definition of mid(x, y), we have
that Max({dist(x, z), dist(y, z)})
dist(x,y)
So, ¢ = 2. By Theorem 1, for the distance § between each pair in the
Pareto front, we have that

=1/2.

Note, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable in Figure 3. O

3.2 Directed Walk Strategy

A variation of the random target strategy is to start with one test
case (rather than a pair) and apply a unary datamorphism repeatedly
until a test case of different classification is found. Then, the Pareto
front between these two test cases is searched for in the same
way as for the random target strategy. In this strategy, the unary
datamorphism (i.e. a mutation operator) is the traversal method.
The repeated application of the mutation operator makes a ‘walk’
in one direction until a test case in a different class is found or gives
up the exploration if we have gone too far (i.e. too many iterations).

Note that, a walk in one direction may not be able to find a
data point in a different class. In that case, the algorithm returns
(null, null). Let m,n > 0 be any given natural numbers. We write
DW(m,n) = (a,b) to denote the results of executing Algorithm
2 with m as the walking distance and n as the number of steps
and (a, b) as the output. Assume that the exploratory test system
satisfies assumption (3) and has the following property.

Exploratory Datamorphic Testing of Classification Applications

Algorithm 2 (Directed Walk)

Input:
TestSet: test set;
walkDistance: integer;
steps: Integer;
d(x): Unary datamorphism;
mid(x,y): Binary datamorphism;
Output:
a, b: Test Case;
Begin
1: Select a test cases x in testSet at random;
2: Execute program P on test case x;
3: Walk in one direction as follows:
Bool found = false;
for i < 1 to walkingDistance do
y =d(x);
Execute software on test case y;
if (x.output # y.output) then
found = true; break;
else x = y;
end if
end for
4: Check if a Pareto front can be found:
if (= found) then return (null, null);
end if
5: Refinement
for i « 1to steps do

z = mid(x,y);
if (x.output # z.ouptut) then y = z;
else x = z;
end if;
end for
a=x;b=uy;
return (q, b);

End

There is a constant ds > 0 such that
Vx € D. (dist(x,d(x)) < ds). (5)

where d; is called the step size of the traversal method d(x). Then,
we have the following correctness theorem for the directed walk
algorithm.

THEOREM 2. IfDW(m, n) = (a, b) # (null, null), then, (a,b) is a
pair in the Pareto front according to P with respect to dist and d, if
dgs/c™ < 8, where n is the number of steps.

Proof. If DW (m, n) = {a, b) # (null, null), then the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Refinement in
the algorithm terminates.

Similar to the proof of Theorem 1, by the definiton of ds and
assumption (5), the following is a loop invariant of the loop by
induction on the number i of iterations of the loop body.

dist(x,y) < d—f A P(x) # P(y).
c

AST ’20, May 23-29, 2020, Seoul, South Korean

When the loop exits, i = steps = n. By Hoare logic, after execut-
ing the assignment statements a = x and b = y, we have that

dist(a,b) < ds/c™ A P(a) # P(D).
Therefore, the theorem is true by Definition 1. O

EXAMPLE 2. For example, starting from 1000 random test cases
using the directed walk strategy with the upward(x) datamorphism
as the unary traversal method, a set of 161 pairs of Pareto front were
generated; shown in Figure 4. The set of Pareto front pairs also shows
clearly parts of the boundaries between classes. The success rate of
finding a pair of Pareto front on one test case is 16.1%.

In this example, the number n of steps is also 20. By the definition
of upward(x) traversal method, we have that ds = 0.2, if the distance
function dist(x,y) is Eucl(x,y). As in Example 1, by the definition
of mid(x,y), we have that ¢ = 2. By Theorem 2, for the distance §
between each pair of Pareto front, we have that

ds 1
d < L‘% =0.2X% 2%
Again, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable, so they appear
as one dot in Figure 4. O

Figure 4: Pareto Fronts Generated by Directed Walk

3.3 Random Walk Strategy

If multiple traversal methods are available, a random walk can be
performed by selecting the direction of the next step at random.
This is similar to the random walk testing in hyperlink/web GUI
test. The algorithm is given below.

We write RW (m, n) = (a, b) to denote the results of executing
Algorithm 3 with m as the walking distance and n as the steps
and (a, b) as the output. Assume that the exploratory test system
satisfies assumption (3) and has the following property. There is a
constant dg > 0 such that

Vx € D.Vd; € W.(dist(x,d;(x)) < dsm). (6)

where dgp, is called the maximal step size of the traversal methods
di(x) € W. Then, we have the following correctness theorem for
the algorithm of random walk strategy.

THEOREM 3. If RW(m,n) = {a,b) # (null,null), then, {a,b) is
a pair of Pareto front according to P with respect to dist and J, if
dsm/c" < 8, where n is the steps.

Proof. If RW (m, n) = (a, b) # (null, null), then, the condition of the
If-statement in step (4) is false. Thus, the For-loop of Step (5) is
executed. It is easy to see that the For-loop in Step 5 Refinement in
the algorithm terminates.

AST ’20, May 23-29, 2020, Seoul, South Korean

Algorithm 3 (Random Walk Strategy)

Input:
testSet: Test Set;
walkingDistance: Integer;
steps: Integer;
di(x),- - ,dg(x): Unary datamorphism; k > 1
mid(x,y): Binary datamorphism;
Output:
a, b: Test Case;
Begin
1: Select a test case x in testSet at random;
2: Execute program P on test case x;
3: Walking at random to search for test case in a different class:
Bool found = false;
for i < 1 to walkingDistance do
Get a random integer r in the range [1, k]
y = dr(x);
Execute program P on test case y;
if (x.output # y.output) then
found = true; break;
else x=y;
end if
end for
4: Check if a Pareto front can be found:
if (= found) then return (null, null);
end if
5: Refinement:
for i « 1to steps do
z = mid(x,y);
if (x.output # z.ouptut) then y = z;
else x = z;
end if
end for
a=x;b=uy;
return (a, b);
End

Similar to the proof of Theorem 1, by the definiton of ds,, and
assumption (6), we can prove that the following is a loop invariant
of the loop by induction on the number i of iterations of the loop
body.

d
dist(x,y) < S:n A P(x) # P(y).
c

When the loop exits, i = steps = n. After executing the assign-

ment statements a = x and b = y, the following is true by Hoare

logic.

dist(a,b) < dsm/c"™ A P(a) # P(b).
Therefore, the theorem is true by Definition 1.]

EXAMPLE 3. For example, by applying the random walk strategy
on a test set containing 300 random test cases, 1000 random walks
generated 805 pairs of Pareto front test cases shown in Figure 5, where
the walking distance was 20 steps.

In this example, the number n of steps is also 20. By the defini-
tion of upward(x), downward(x), le ftward(x) and rightward(x)
traversal methods, we have that ds = 0.2, if the distance function

H. Zhu and I. Bayley

Figure 5: The Pareto Fronts Generated by Random Walk

dist(x,y) is Eucl(x,y). As in Example 1 and 2, by the definition of
mid(x,y), we have that c = 2. By Theorem 3, the distance § between
each pair of Pareto front satisfies the following inequality.

1

ds
5Sc%=0.2><2%. m|

4 EXPERIMENTS

Controlled experiments with the exploratory test strategies have
been conducted using the automated datamorphic testing tool Mor-
phy to study their test effectiveness. This section report the results
of the experiments.

4.1 Design of the Experiments

4.1.1 Objectives of the Experiments. As discussed in the previous
sections, exploration strategies are designed to test classification
applications. They aim to find the borders between subdomains
of the classifications. The goal of the experiments is to study the
factors that have effect on the effectiveness of these test strategies
in terms to their capability of finding the Pareto fronts between
subdomains. The measurement of test effectiveness is the number
of test executions per border points found by the test strategy.

It is worth noting that the experiments are not for comparison
of the strategies, which each has its own suitable applications.

4.1.2 Subject applications. The experiments are carried out with
ten classification applications shown in Figure 6. These applications
are on the same input domain, i.e. two-dimensional real numbers
in the range of [0, 27] x [-1,1].

4.2 Experiment process and the results

For each subject application, three exploration strategies are used
with various parameters. Each test is repeated for 10 times using the
testing tool Morphy and the average of the data is used to analyse
the results.

4.2.1 Experiments with the directed walk strategy. The experiments
used various numbers of random test cases from 200 to 1200 as
shown in Table 1; here, the column #Seed TCs is the number of seed
test cases in the experiment. These seed test cases are generated at
random from the uniform distribution. From each seed test case, one
walk in one direction is made for up to 20 steps. The experiments
used the upward datamorphism. The column Avg #Runs in Table 1
gives the average number of test executions of the subject program
under test. The column Avg #mutant TC gives the average number
of mutant test cases generated; these are test cases on the borders
of the clusters.

Exploratory Datamorphic Testing of Classification Applications

(a) Box 1

(d) Circle 2

SN
(e) Line 1 (f) Line 2
(h) Triangle 2
(i) Sin 1
) \\\‘\
\\)

Figure 6: Illustration of the sample applications

Table 1: Experiments Date of The Directed Walk Strategy

subject | fseeds Avg Avg subject #Seeds Avg Avg Avg
(=#Walks) #Runs #Mutants | #Runs/Mutant (=#Walks) #Runs #Mutants | #Runs/Mutant

Box1 200 4205.70 11.40; 368.92 Box2 200 4223.40 46.80 90.24
400 8413.80| 27.60 304.85] 400 8442.20] 84.40 100.03]

600] 12620. 41.60 600] 12668.80 137.60 92.07

800| 16827. 55.20 304. 800] 16891.40] 182.80 92.40

1000| 21033.40 66.80| 314.87, 1000] 21108.00] 216.00 97.72

1200 25236.70) 73.40 343.82] 1200[25339.80 279.60 90.63

Circle 1 200 4207.50] 15.00 280.50|| Circle 2 200 421820 36.40 115.88)
400 8416.40) 32.80 256.60) 400 8442.20 84.40 100.03

600| 12624.50 49.00 257.64| 600| 12657.70, 115.40 109.69

800] 16835.60] 71.20 236.46] 800| 16883.90] 167.80 100.62,

1000 21046.90) 93.80 224.38] 1000[21102.50 205.00 102.94)

1200[25255.30] 110.60 223.34 1200 25319.70 239.40 105.76

Line 1 200 4221.20 42.40 99.56f Line 2 200 4237.80 75.60 56.06
400]_ 8437.00] 74.00 114.01) 400 8476.80] 153.60 55.19

600 12657.60] 115.20 109.88 600] 12712.00 224.00 56.75

800 16877.50] 155.00 108.89 800[16956.20) 312.40 54.28

1000| 21099.60 199.20 105.92f 1000| 21188.80 377.60 56.11

1200 25312.00] 224.00 113.00] 1200 25426.20 452.40 56.20

Sin1 200 4216.90] 33.80 12476 Sin2 200 423390 67.80 62.45
400 8435.00] 70.00 120.50| 400 8465.10) 130.20 65.02

600| 12651.70 103.40 122.36f 600| 12698.80 197.60 64.27

800| 16869.40| 138.80 121.54] 800| 16927.10] 254.20 66.59.

1000[21088.20] 176.40 119.55 1000[21160.00 320.00 66.13

1200[25300.90] 201.80 125.3j 1200[25398.20 396.40 64.07

Triangle 1 200 4205.20 10.40] 404.35| Triangle 2 200 4221.60 43.20 97.72
400[8411.70 23.40 359.47 400] 8444.20 88.40 9552

600] 12618.50| 37.00 341.04] 600] 12672.50 145.00 87.40

800| 16822.80| 45.60 368.92] 800 16888.70) 177.40 95.20

1000| 21028.90| 57.80 363.82| 1000| 21112.70 225.40 93.67

1200 25232.80] 65.60 384.65) 1200| 25341.40 282.80 89.61

The experimental data shows that the number of mutant test
cases (i.e. the pairs of test cases in the Pareto front) generated by
using the directed walk strategy increases linearly with the number
of walks; see Figure 7. Similarly, the number of test executions is
also linear with respect to the number of walks. In Figure 7, the X
axis is the number of random seed test cases, which equals number
of walks, and the Y axis of (a) and (b) are the average numbers of
mutant test cases and test executions, respectively. The average
numbers of test executions on various subject programs are so close
to each other that they are not visually separable in Figure 7(a).

The test effectiveness is measured in term of the number of test
executions per mutant test case generated. It is fairly invariant for
each subject while the number of random seed test cases varies

AST ’20, May 23-29, 2020, Seoul, South Korean

(b) Average Number of Mutants

(a) Average Number of Executions

(c) Average Test Executions Per Mutant (d) Overall Test Effectiveness

Figure 7: Results of The Directed Walk Strategy

from 200 to 1200; see Figure 7(c), where the Y axis is the average
test effectiveness. The experiment data also show that the test
effectiveness varies significantly for different subject programs; see
Figure 7(d), which gives the overall average effectiveness of testing
various subject programs.

4.2.2 Experiments with the random walk strategy. There are two
parameters in the random walk strategy: (1) the number of seed
test cases, and (2) the number of walks starting from the seed test
cases. Two sets of experiments were designed and conducted. The
first is with a fixed number of seed test cases (200 test cases) but
variable numbers of random walks (range from 200 to 1200). The
second is with a fixed number of random walks (800 walks) but
variable numbers of random seeds (range from 200 to 1200).
Table 2 gives the result data of the first set of experiments.

Table 2: Experiments Data of The Random Walk Strategy

) Avg Avg Avg) Avg Avg
Subject | #Walks | o uns | #Mutants | #Runs/Mutant || SuPiect | #Walks [Ave #Runs| oy onee | sruns/Mutant
Box 1 200| 4429.40 118.80 37.2_8" Box2 200 4704.40 247.60 19.00

200 8950.60] 323.00 27.71] 400 945720 561.00 16.86

600] 13526.00] __601.20 22.50| 600] 14067.60] __ 864.60 1627

800| 18126.60 858.00 21.13 800(18691.30] 1186.20 15.76

1000| 22706.50 1126.60 20.15) 1000| 23397.70 1523.40 15.36

1200] 27386.00] _1439.80 19.02 1200] 27900.20] _1850.60 15.08]

Circle 1 200| 4484.60 155.60 28.82| Circle 2 200 4735.40 236.00 20.07
400| 8976.00 376.00 23.87 400 9330.30 528.40 17.66

600] 13491.80] _681.00 19.81 600] 13939.40] _841.40 16.57

800| 18069.60 975.60 18.52) 800(18551.60] 1171.80 15.83

1000| 22567.20 1305.40 17.29 1000| 23094.90| 1517.80 15.22

1200[27152.80] _1622.20 16.74 1200] 27685.00] _1846.40 14.99

Line 1 200| 4677.00 213.20 21.94{ Line 2 200 4638.30 252.20 18.39
400| 9281.90 487.60 19.04 400 9074.50 564.40 16.08

600] 13860.30] _769.00 18.02 600] 13590.90] _ 891.60 15.24)

800| 18464.00 1090.40 16.93] 800(18017.30] 1218.20 14.79

1000| 22929.80 1388.20 15.# 1000 22466.60 1567.40 14.33

1200] 27491.00] _1711.80 16.06| 1200] 26891.00] _1917.80 14.02

Sin1 200| 4731.10 235.20 20A12" Sin2 200 4703.10 295.20 15.93
400| 9342.90 516.20 18.12" 400 9241.60 606.60 15.24

600] 13891.00] 82440 16.85 600] 13765.30] _ 950.60 14.48)

800] 18436.60] _1114.60 16.54] 800] 18346.50] _ 1303.00 14.08]

1000| 23084.50 1454.00 15.88] 1000 22946.20] 1674.00 13.71

1200| 27613.20 1772.20 15.58] 1200| 27440.00] 2006.80 13.67

Triangle 1| 200| 4380.70] _ 121.80 35.97|Triangle 2 200 _4694.60 242,60 19.35
400| 8728.70 328.60 26.56 400 9318.20 554.80 16.80

600| 13146.50 577.20 22.78 600| 13955.60] 854.20 16.34

800] 17561.20] 85940 2043 800] 18530.40] _ 1182.60 15.67

1000| 21984.90 1150.80 19A1q| 1000(23015.10| 1505.80 15.28

1200| 26387.20 1432.40 18.42) 1200| 27635.90| 1844.40 14.98

The results of the experiments show that the average number
of test executions and the average number of mutant test cases
generated is linear in the number of random walks; see Figure 8.

The test effectiveness increases with the number of walks; see
Figure 8. Although the overall average test effectiveness varies

AST 20, May 23-29, 2020, Seoul, South Korean

| -

(a) Average Number of Executions (b) Average Number of Mutants

o w0 wo e @ w0 we w0 i e mw ot | o2 Groed Groe2 teei | tmed | Smi | Sim2 Toanged Toanged

(d) Overall Test Effectiveness

(c) Average Executions Per Mutant

Figure 8: Results of The Random Walk Strategy

between subject programs, the differences on test effectiveness are
much smaller than the directed walk strategy. As shown in Figure
8(c) and (d), the test effectiveness for testing subject programs Box 1,
Triangle 1 and Circle 1 are poorer than those for the other subjects.

The second set of experiments were with fixed number of walks
but variable numbers of seed test cases. Table 3 shows the results of
the experiment in which 800 walks were run with variable number
of seeds.

Table 3: Experiments Data of Variable Number of Test Cases

N Av Av Avi . Av Av
Subject | #Seeds #Ruis #Mutagms #Runs/l\iutam Subject | #Seeds |Avg #Runs #Mutagnts #Runs/l\ﬁutam
Box 1 200[18204.30 860.20 2116 Box2 200[18733.40 1193.20 15.70]

400| 17946.90 669.40 26.81 400| 18831.90 1094.00 17.21

600[17833.10 582.00 30.64] 600 18979.10 1069.80 17.74

800[17775.10 494.40 35.95] 800| 18983.50 997.00 19.04]

1000| 17794.20 468.00 38.02 1000| 19067.10 972.20 19.61

1200 17761.10 437.80 40.57| 1200[19109.10 968.20 19.74

Circle 1 200[18034.30 957.20 18.84| Circle 2 200[18500.70 1168.80 15.83
400| 18007.00 794.20 22.67] 400| 18703.00 1067.80 17.52

600[18051.80 696.20 25.93] 600| 18786.90 1004.60 18.70!

800 18095.10 638.00 28.36 800| 18793.40 935.80 20.08

1000| 18101.30 622.80 29.06 1000| 18904.50 928.20 20.37

1200 18042.40 559.40 32.25] 1200[18972.40 900.60 21.07

Line 1 200[18440.20] 1095.20 16.84| Line 2 200| 18027.10 1225.20 14.71
400| 18536.10 963.00 19.25| 400| 18214.20 1125.60 16.18

600/ 18644.00 916.20 20.35) 600| 18445.90 1056.60 17.46

800 18691.70 874.60 21.37] 800| 18553.70 1012.00 18.33

1000] 18706.30 830.20 22.53| 1000[18574.90 973.00 19.09

1200| 18778.40 804.80 23.33 1200| 18622.20 967.80 19.24

Sin1 200[18497.70] 1125.00 16.44| sin2 200| 18360.40 1304.40 14.08
400[18712.90] 1044.60 17.91] 400[18483.70 1195.40 15.46]

600/ 18776.70 962.80 19.50 600| 18754.80 1166.20 16.08

800 18888.80 937.60 20.15]| 800| 18767.80 1124.00 16.70!

1000/ 18883.30 883.60 21.37| 1000[18848.20 1098.20 17.16]

1200| 18938.40 872.80 21.70] 1200| 18946.30 1075.40 17.62

Triangle 1 200[17582.10 840.40 20.92|fTriangle 2 200[18489.80 1212.80 15.25
400[17514.60 648.60 27.00] 400| 18644.30 1096.00 17.01

600| 17485.20 518.80 33.70] 600| 18705.20 1018.80 18.36

800[17446.70 449.80 38.79) 800| 18840.00 991.60 19.00!

1000 17490.80 428.40 40.83| 1000[18910.40 972.80 19.44]

1200| 17495.20 387.40 45.E| 1200| 18948.30 931.80 20.34

For the second set of experiments, as shown in Figure 9, the
number of test executions increases as the number of seed test
cases increases, while the number of mutant test cases generated
decreases. Therefore, the test effectiveness in terms of average
number of test executions per mutant generated decreases as the
number of seed test cases increases as shown in Figure 9(b).

Figure 9(c) also confirms the observations on test effectiveness
made in the first set of experiments. That is, the test effectiveness
for subject programs Triangle 1, Box 1 and Circle 1 are obviously
poorer than the other subjects. The reason for this phenomenon
will be discussed in Subsection 4.3.

H. Zhu and I. Bayley

(a) Average Number of Executions

(b) Average Number of Mutants

(c) Average Test Executions Per Mutant

Figure 9: Results of the Variable Number of Seeds

4.2.3 Experiments with the random target strategy. The random
target strategy only has one parameter: the number of pairs of test
cases selected at random. The experiments are conducted with this
parameter ranging from 200 to 1200. The experiment data are given
in Table 4 below.

Table 4: Experiments Data of The Random Target Strategy

- #Seeds Ave Avg Ave - #Seeds Avg Avg Avg
Sublect | ivalks)| #Runs | #Mutants | #Runs/Mutant| 5" | (cawalks) | #Runs | #Mutants | #Runs/Mutant
Box1 200 72870 55.60 1311 Bow 200] 224050] 20660 10.84
00| 1133.80 93.60 12.11] 400] 4203.60] 40080 10.49
600] 1755.20] 155.60 11.28 600] 6355.00] 61560 1032
800] 2083.50] 188.40| 11,cﬂ 800] 814590] 79460 10.25
1000] 279000] 259.00 10.77] 1000] 10146.00] 99460 10.20
1200] 3518.00] 33180 10.60 1200] _1237000] _ 1217.00 10.16
Gircle 1 200] 103710 86.40 12.00] Circle 2 200] 209080 191.80 10.90
400] 172430 152.80] 11.28 400] _ 3903.00] 37060 10.53
600] 2675.50] 247.60 10.81] 600] 589150] 56920 1035
800] 3444.00] 32440 10.6) 800] 7843.90] 76440 10.26
1000] 4436.00] 423.60 10.47] 1000] 9748.00] 95480 1021
1200] 5292.00] 509.20 10.39) 1200[1141200] 112120 1018
line 1 200] 208810] 19160 1090 tine2 200] 250650] 23360 10.73
a00] 4114.10] 39180 10.50 400] 4876.10] 468.00 1042
600] 6235.70] 603.60 10.33] 600] 7039.80] 68400 10.29
800] _ 8044.00] _ 784.40| mzﬁ 800] 932190] 91220 1022
1000] 10182.00] 99820 10.20] 1000] 12056.00] 118560 1017
1200] 11904.00] 1170.40 10.17| 1200] 14116.00] 139160 1014
Sin1 200] 2189.90] 20180 mvs_s" Sin2 200] 265130 _ 248.00 10.69
400] 4129.10] 393.20) 10.50 400] 5197.80] 50020 1039
600] 624350] 604.40 10.33] 600] 772760 75280 1027
800] 8394.00] 81940 10.24 800] 1017200 99720 10.20
1000[10186.00] 998.60 10.20) 1000[12596.00] 123960 10.16
1200] 1207600 1187.60 10.17] 1200[_15192.00] 149920 1013
Triangle 1 200 52270 34.80 15.02| Triangle 2 200 201630] 18440 10.93
00 830.20 63.40 13.09 400] 4147.10] 39500 10.50
00| 97140 77.20 12,5 600] 5783.60] 55840 10.36
800] 1403.80] 120.40| 11.66| 800] 7573.80] 73740 1027
1000] 183590] 163.60 1122 1000] 979190] 95920 1021
1200 187200] 167.20 11.20] 1200] 11170.00] _ 1097.00 1018

The data show that the average number of test executions and
the average number of mutant test cases generated are linear in the
number of walks for all subject programs as shown in Figure 10.

The test effectiveness increases with the number of walks since
the average number of test executions needed to generate a mutant
test cases decreases with the number of walks increases. The test
effectiveness of the random target strategy is given in Figure 10(b).
The data show that the test effectiveness for subjects Triangle 1,
Box 1 and Circle 1 are significantly poorer than those for the other
subjects. This is also shown clearly in Figure 10(d).

4.3 Discussion

From the experiments, we observed the following phenomena.

Exploratory Datamorphic Testing of Classification Applications

0 Py Py o0 00 20 M s o M0 w0 %o e uw mmw

(b) Average number of Mutants

@

Overall Test Effectiveness

(c) Average Test Executions Per Mutant

Figure 10: Results of the Random Target Strategy

4.3.1 Factors influencing Test Effectiveness. The test effectivgess
of the strategies on various subject programs are summarised in
Table 5 and depicted in Figure 11, where the larger the number, the
lower the test effectiveness.

Table 5: Summary of Test Effectiveness

Subject Directed Random Random
walk walk target
Box 1 323.45 24.63 11.49
Box 2 93.85 16.39 10.38
Circle 1 247.32 20.84 10.93
Circle 2 105.82 16.72 10.41
Line 1 105.82 18.08 10.41
Line 2 55.76 15.48 10.33
Sin 1 122.35 17.18 10.38
Sin 2 64.75 14.52 10.31
Triangle 1 370.38 23.88 12.46
Triangle 2 93.19 16.40 10.41
Avg 158.27 18.41 10.75

400.00

m Directed walk
Random walk
Random Target

350.00

300.00

250.00
200.00
150.00
100.00
~LLLLLeL oLl
0.00
~

‘/Q/ (}Q;L <2
[

Figure 11: Test Effectiveness on Subject Programs

The data show that for each strategy, the test effectiveness varies
significantly according to the different subject programs. However,
for each strategy, the experimental data show that the test effec-
tiveness for Box 1 is lower than that for Box 2. The effectiveness for
Circle 1 is lower than that for Circle 2, and so on. This phenomenon
is not an coincidence.

AST ’20, May 23-29, 2020, Seoul, South Korean

Theoretically speaking, the test effectiveness for the directed
walk strategy is determined by the probability that there is a border
between two subdomains in the right direction from a test case and
within the walking distance. For the random target strategy, the
test effectiveness is determined by the probability that two random
test cases fall in two different subdomains. For the random walk
strategy, the test effectiveness is determined by the probability that
there is a border nearby to a randomly selected test case. These
properties have a number of implications.

First, given a classification application, one should select the most
effective strategy to explore the Pareto fronts betweem subdomains
based on the understanding of the application. The data obtained
from our experiments are not sufficient to compare the strategies
on their effectiveness. This is because the probability of finding a
pair in the Pareto front heavily depends on the size and location
of the subdomains of the classification application. There is no
benchmark on such parameters in real applications as far as we
know. Our subjects in the experiments may not be representative
of the distribution of the parameters in real applications.

Second, it provides a good explanation of the observations made
in the previous sections that the number of pairs generated for the
Pareto front is a linear function of the number of seed test cases or
number of walks since they are independent.

Moreover, although the test effectiveness is mostly determined
by the size, shape and location of the subdomains that the program
classifies, for directly walk and random walk strategies, it is also
affected by the number of steps walked and the number of itera-
tions in the refinement. The number of steps walked influences the
probability of finding two points in different subdomains and also
the total number of test executions. The longer the walk, the more
likely one is to find two points in different subdomains, but this
requires more test executions. Thus, a balance between these two
contradictory factors of test effectiveness must be made to achieve
the best test effectiveness.

Finally, the number of iterations in the refinement loop controls
the distance betwen the pair of test cases in the Pareto fronts gener-
ated. It has no impact on the probablity of finding two data points
in different subdomains, but does have an affect on test effective-
ness. The shorter distance mutations requires more iterations, thus
more test executions, and therefore, is less effective. For random
walk and directed walk strategies, the number of iterations can
be selected for correctness theorems proved in this paper. For the
random target strategy, usually more iterations are required than
the other two strategies.

4.3.2 Validity of the Experiments. As pointed out at the beginning
of the section, the experiments are designed to determine which
factors have an effect on the test effectiveness of the strategies.
The subject programs used in the controlled experiments have
subdomains that are of typical shapes in data mining and machine
learning applications [1, 5, 8]. As discussed above, the conclusion
that we draw from the experiments are not depending on specific
features of subdomains such as the size and location. However, as
discussed above, they do provide insight on the factors that affect
test effectiveness. Therefore, we are confident that the conclusions
drawn from the experiments are valid.

AST ’20, May 23-29, 2020, Seoul, South Korean

5 CONCLUSION
5.1 Related Work

Exploratory testing was originally proposed for improving GUI-
based manual testing of web-based applications, which also often
lacks a clear definition of software correctness [12]. The name is
given to a common practice in industry that existed for many years
without guidance until recently. The notion of exploratory strategy
was first defined by Whittaker [12] as guidance on how to manually
explore the software in the most effective way.

Research on testing Al applications has been active in recent
years [2, 4, 6]. It is interesting to observe that datamorphisms are ac-
tually used to testing Al applications like driverless vehicles [11, 15].
Our case study with face recognition shows that test automation
can be improved by reusing datamorphisms if they are explicitly
defined and supported by a testing tool [17, 18, 21]. However, the
testing of classification applications has not been studied inten-
sively. An interesting work by Xie et. al. is the development of a
set of metamorphic relations as test oracles for the clustering and
classification applications [13]. In [14], a case study is reported
to use these metamorphic relations to test a clustering function
generated by the data mining tool Weka, in which datamorphisms
are also used although they are not explicitly defined.

5.2 Main Contributions

The main contribution of this paper is the adaptation of the no-
tion of exploratory strategy to the testing of Al applications. We
demonstrated that such strategies can be formally defined in the
datamorphic testing framework. They have also been implemented
in the automated datamorphic testing tool Morphy [17].

In this paper, we studied the theoretical properties of three ex-
ploratory strategies for the discovery of the Pareto front of clas-
sification applications. We formally proved the correctness of the
algorithms that implement the strategies.

We have also conducted controlled experiments with the ex-
ploration strategies. Experimental data demonstrated the factors
that have impact on test effectiveness of these strategies. The ob-
servations obtained from experiments provide a guidance to the
selection of the strategies for a given classification application and
the choices of parameters to apply the strategies.

5.3 Future Work

The data spaces of the running example and the subjects of the
experiments have fixed dimensions on continuous values. This is
for the purpose of easily visualising the results. The strategies are
independent to the continuity and dimensions of the data space,
thus they are also applicable to other types of classification appli-
cations. The proofs of their correctness are also independent to
these features, thus the correctness theorems also hold for such
data spaces. It is interesting to conduct experiments using different
types of data spaces, such as image, audio, video and text values. We
are conducting case studies with real machine learning applications
to evaluate the practical usability of the strategies.

There are also many possible variations of the strategies pro-
posed and studied in this paper. In particular, the algorithms in this
paper do not need a test morphisms that measure the distances

H. Zhu and I. Bayley

between two test cases. If such a test morphism is available, the ter-
mination of the refinement loop can be determined by the distances
between the pair of test cases.

The analysis of the phenomena observed in the experiments
suggested that the test effectiveness depended on the probability of
finding two test cases that are in different classification subdomains.
A formal proof of this property will give a solid foundation for
understanding these strategies and providing precise guidance to
the selection of the parameters of the strategies. Thus, it is worth
further research.

REFERENCES

[1] C. Aggarwal. 2015. Data Mining: The Textbook. Springer.

[2] X. Bai, J. Li, and A. Ulrich (Eds.). 2018. Proc. of IEEE/ACM 13th International
Workshop on Automation of Software Test (AST 2018),. IEEE Computer Society,
Gothenburg, Sweden.

[3] T.Y. Chen, F-C. Kuo, H. Liu, P-L. Poon, D. Towey, T. H. Tse, and Z. Q. Zhou. 2018.
Metamorphic testing: A review of challenges and opportunities. ACM Comput.
Surv. 51, 1, Article 4 (Jan 2018), 27 pages. https://doi.org/10.1145/3143561

[4] A. Gotlieb, M. Roper, and P Zhang (Eds.). 2019. Proc. of The First IEEE International
Conference on Artificial Intelligence Testing (AlTest 2019). IEEE Computer Society,
Los Alamitos, CA, USA. https://doi.org/10.1109/AlTest.2019

[5] M. Mohri, A. Rostamizadeh, and A. Talwalkar. 2012. Foundations of Machine
Learning. The MIT Press.

[6] M. Roper and Z. Q. Zhou (Eds.). 2020. Proc. of The Second IEEE International
Conference on Artificial Intelligence Testing (AlTest 2020). IEEE Computer Society,
Los Alamitos, CA, USA. (In Press) pages.

[7] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen. 2018. Metamorphic testing:

testing the untestable. IEEE Software (2018), 1-1. https://doi.org/10.1109/MS.

2018.2875968

S. Shalev-Shwartz and S. Ben-David. 2014. Understanding Machine Learning:

From Theory to Algorithms. Cambridge University Press.

[9] L. Shan and H. Zhu. 2009. Generating structurally complex test cases by data
mutation: A case study of testing an automated modelling tool. Comput. J. 52, 5
(Aug 2009), 571-588.

[10] M. Sutton, A. Greene, and P. Amini. 2007. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley.

[11] Y. Tian, K. Pei, S. Jana, and B Ray. 2018. DeepTest: Automated testing of deep-
neural-network-driven autonomous cars. In Proc. of The 40th IEEE/ACM Int’l
Conf. on Software Engineering (ICSE 2018). IEEE Computer Society, Gothenburg,
Sweden, 303-314.

[12] J. A. Whittaker. 2009. Exploratory Software Testing: Tips, Tricks, Tours, and Tech-

niques to Guide Test Design. Pearson Education. https://books.google.co.uk/

books?id=BsBONpkedgIC

X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen. 2011. Testing

and validating machine learning classifiers by metamorphic testing. Journal of

Systems and Software 84 (2011), 544-558.

S. Yang, D. Towey, and Z. Zhou. 2019. Metamorphic exploration of an unsuper-

vised clustering program. In Proc. of IEEE/ACM 4th International Workshop on

Metamorphic Testing (MET 2019). IEEE Computer Society, 48-54.

[15] Z. Q. Zhou and L. Sun. 2019. Metamorphic testing of driverless cars. Commun.

ACM 62, 3 (March 2019), 61-67.

H. Zhu. 2015. JFuzz: A tool for automated Java unit testing based on data mutation

and metamorphic testing methods. In Proc. of The 2nd Int’l Conf. on Trustworthy

Systems and Their Applications (TSA 2015). 8-15.

[17] H. Zhu, I Bayley, D. Liu, and X. Zheng. 2019. Morphy: A Datamorphic Software
Test Automation Tool. Technical Report OBU-ECM-AFM-2019-01. School of
Engineering, Computing and Mathematics, Oxford Brookes University, Oxford,
UK. http://arxiv.org/abs/1912.09881

[18] H. Zhu, I Bayley, D. Liu, and X. Zheng. 2020. Automation of Datamorphic

Testing. In Proc. of 2nd IEEE International Conference on Artificial Intelligence

Testing (AlTest 2020). In Press.

H. Zhu, P. Hall, and J. May. 1997. Software unit test coverage and adequacy. ACM

Computing Survey 29, 4 (Dec. 1997), 366—-427.

H. Zhu, D. Liu, L. Bayley, R. Harrison, and F. Cuzzolin. 2018. Datamorphic Testing:

A Methodology for Testing AI Applications. Technical Report OBU-ECM-AFM-

2018-02. School of Engineering, Computing and Mathematics, Oxford Brookes

University, Oxford OX33 1HX, UK. http://arxiv.org/abs/1912.04900

[21] H. Zhu, D. Liu, I Bayley, R. Harrison, and F. Cuzzolin. 2019. Datamorphic
Testing: A Method for Testing Intelligent Applications. In Proc. of The First
IEEE International Conference on Artificial Intelligence Testing (AlTest 2019). IEEE
Computer Society, Los Alamitos, CA, USA, 149-156. https://doi.org/10.1109/
AlTest.2019.00018

—_
&

[13

[14

[16

[19

[20

https://doi.org/10.1145/3143561
https://doi.org/10.1109/AITest.2019
https://doi.org/10.1109/MS.2018.2875968
https://doi.org/10.1109/MS.2018.2875968
https://books.google.co.uk/books?id=BsB0NpkcdgIC
https://books.google.co.uk/books?id=BsB0NpkcdgIC
http://arxiv.org/abs/1912.09881
http://arxiv.org/abs/1912.04900
https://doi.org/10.1109/AITest.2019.00018
https://doi.org/10.1109/AITest.2019.00018

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Overview of Datamorphic Testing Method
	2.2 Classification Applications
	2.3 Exploratory Test Systems
	2.4 The Running Example

	3 Exploration Strategies
	3.1 Random Target Strategy
	3.2 Directed Walk Strategy
	3.3 Random Walk Strategy

	4 Experiments
	4.1 Design of the Experiments
	4.2 Experiment process and the results
	4.3 Discussion

	5 Conclusion
	5.1 Related Work
	5.2 Main Contributions
	5.3 Future Work

	References

