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Abstract—Tenant level checkpointing is a novel fault-
tolerance technique proposed in our previous work for large-
scale software-as-a-service applications. This paper evaluates
the technique by a theoretical analysis of the technique and
an empirical study using workload benchmarks of real large-
scale cluster systems. We propose the notion of accumulated
delay as a measurement of the performance of checkpointing
techniques. It reflects the effect of checkpointing on system
performance as experienced by the end users. Both theoretical
analysis and empirical study show that tenant level checkpoint-
ing significantly outperforms traditional bulk checkpointing as
measured by the amount of accumulated delays.

Keywords-Software-as-a-Service; Multi-tenancy; Fault Toler-
ance; Checkpoint-and-Rollback.

I. INTRODUCTION

Fault-tolerance is one of the most challenging issues of
cloud computing [1]. The past years have seen a rapid
growth of research in this area. However, little has been
reported on fault-tolerance of system scale failures. Such a
failure causes lost of services to a large number of users
and takes a long time to recover. For example, in two recent
incidents, Salesforce.com losted its services to 100,000+
clients for more than 10 hours.

Saleforce’s CRM is a typical multi-tenancy Software-as-a-
Service (SaaS) application. A SaaS application can be in one
of two types of system architectures [2], [3]: multi-instance
or multi-tenancy. The former employs virtual machines to in-
stall multiple instances of the software so that each instance
of the software only serves one tenant. In the latter, each
instance of the software delivers services to multiple tenants.
It is widely accepted in the industry that the multi-tenancy
architecture has advantages over multi-instance in terms of
cost reduction, scalability, maintainability, and usability [4].

However, the multi-tenancy architecture is vulnerable to
system scale failures. For this reason, Salesforce backs
up all data to a tape storage on a nightly basis. This
traditional checkpoint-and-rollback fault tolerance technique
is unsatisfactory for SaaS applications. In fact, Salesforce’s
tenants also use third party facilities for backing up their
own data. Addressing this problem, in [5], we proposed a
new approach called tenant-level checkpointing (TLCP) and
implemented a prototype called Tench. In this approach, in-
stead of saving the whole system’s state, each checkpointing
(CP) only saves a part of system state related to a specific

tenant. A number of experiments with the system have also
been conducted to evaluate its performance. In this paper,
we present an extended evaluation of the proposed approach
in order to prove its advantages over existing techniques, i.e.
the bulk checkpointing (BCP) techniques.

The main contributions of the paper are: (a) we propose
the notion of accumulated delay as a measurement of the per-
formances of SaaS CP techniques. We argue that it reflects
the effect of CP on system performances as experienced
by the end users and formally prove its properties. (b) We
compare TLCP against BCP using accumulated delays as
the performance measurement and theoretically prove that
TLCP outperforms BCP. (c) We conduct an empirical study
using the workload benchmark of five real large scale cluster
systems. This provides an empirical evidence of the validity
of TLCP as a solution to SaaS applications.

The remainder of the paper is organised as follows. Sec-
tion 2 briefly reviews related work on CP. Section 3 presents
a theoretical analysis of the TLCP technique. Section 4
reports on the empirical study. Section 5 concludes the paper
with a discussion of future work.

II. RELATED WORK

The existing works on CP in cloud computing have
targeted fault tolerance research in terms of resource [6],
infrastructure [7]–[10], platform [11], [12], and system levels
[13]–[21], etc. As Yang et al argued [22], with the increase
of system scale, system level CP will soon hit the so-
called reliability wall and become infeasible for exascale
supercomputing. An approach to overcome this problem is
to reduce the demand on CP operations and to improve their
effectiveness by taking into full consideration of application
architectures.

In this paper, we are concerned with CP for SaaS in
the multi-tenancy architecture. There exists limited work
in this area. In a wider context, Lu et al. [23] proposed
a technique for CP at application level. They introduced the
notion of virtual clusters, which consists of a set of virtual
machines deployed on a number of physical servers and
managed as a single entity. CP operations are performed on
virtual machines to achieve global optimization. They built
on top of existing works on VM CP, replication [24]–[26]
and live migration [27]. These facilities have been exploited
in balancing service work load [28], reducing system energy



consumption [29], and reducing users monetary cost [30].
These work all assume that a virtual machine is created
for each user and CP operations are performed on virtual
machines. Thus, they are only suitable for SaaS applications
in multi-instance architecture but not in multi-tenancy.

In comparison with existing CP techniques, TLCP reduces
the pressure of CP on system performance by only saving
a partial state of the system that is related to a tenant and
only when a CP is needed and is suitable to the tenant.

III. THEORETICAL ANALYSIS

In this section, we define a formal model of CP techniques
in the context of SaaS, and compare TLCP against BCP.

A. Notations and General Assumptions

A SaaS application in multi-tenancy architecture provides
services to a set Γ = {Ti|i ∈ 1, · · · , N} of tenants and each
tenant T ∈ Γ has a number of users. In general, Γ varies
from time to time as new tenants joins and existing tenant
quit. However, without lost of generality, we assume Γ to
be constant during each CP operation.

Each request r from a user belongs to one and only
one tenant. We use Tenant(r) to denote the tenant that
request r belongs to. We will use RecvT (r) and RespT (r)
to denote the time moments that a request r is received
and the response is sent to the user, respectively. We define
LenT (r) = RespT (r)−RecvT (r).

Given time moments t and t′ (t < t′), we use Req[t, t′]
to denote the set {r1, r2, · · · , rK} of all service requests
received between t and t′, and ReqT [t, t′] to denote the
subset of requests in Req[t, t′] from the users of a tenant
T . Since each request belongs to one and only one tenant,
we have that, for all time moments t and t′,

Req[t, t′] =
∪

T∈Γ

(
ReqT [t, t′]

)
(1)

ReqT [t, t′] ∩ReqT
′
[t, t′] = ∅, if T ̸= T ′. (2)

Let St(t) be the state of the system at the time moment
t. We assume that St(t) can be decomposed into a number
of sub-states StT (t) of the tenants T ∈ Γ plus a sub-state
StC(t) of system core. We use V ol(s) to denote the volume
or size of a state s. Here, we assume that a service request
from a tenant T only changes the sub-state of the tenant T .
It does not affect the sub-state of any other tenants, nor the
system’s core state. The system’s core state is only changed
due to (a) operations on the tenants, for example, adding
or removing a tenant from the system, and (b) operations
on system resources, such as adding or removing compute
nodes and storage spaces, etc. This assumption is based on
the fact that for all SaaS applications that we know, the
data from different tenants are separable from each other for
security reasons. This assumption can be formally expressed
in Equation (3). For all time moments t,

V ol(St(t)) = V ol(StC(t)) +
∑
T∈Γ

V ol(StT (t))) (3)

Note that, depending on the CP mechanism used, a CP
operation could save the whole state at that time or just a part
of the state modified since the previous CP operation if an
incremental CP is applied. Irrespective of the CP technique
being used, we use ChP (t), ChPT (t) and ChPC(t) to
denote the CP data at time moment t for the whole system,
for tenant T and for the system core, respectively. Since CP
data is either the state or a part of it, from (3) we have that

V ol(ChP (t)) = V ol(ChPC(t))+
∑
T∈Γ

V ol(ChPT (t)) (4)

Existing CP techniques all extract and save the state for all
tenants rather than tenant-by-tenant. In the sequel, we call
such a CP bulk checkpointing (BCP). We use StB(t) and
ChPB(t) to denote the state of all tenants and the BCP
data at a time moment t, respectively. Thus,

V ol(StB(t)) =
∑
T∈Γ

V ol(StT (t)) (5)

V ol(ChPB(t)) =
∑
T∈Γ

V ol(ChPT (t)) (6)

We assume that a synchronised CP technique is employed.
Note that, the time required to synchronise the processes in
a system is independent to the size of CP data but a factor
related to system complexity. In contrast, the time required
to extract CP data and save the data into a storage is usually
a function of the size of the CP data. We use Delay(s) to
denote the length of time required to CP state s. Thus,

Delay(s) = Latency(V ol(s)) + ∆ (7)

where ∆ and Latency(x) are the times required synchroni-
sation and for creating a CP data of size x.

Our previous experiments with Tench [5] shows that the
time required to extract and save a CP data is linear to its
volume; see Figure 1. Thus,

Delay(x) = αx+ β (8)

where x is the size of the CP data, α and β are constants
determined by the particular CP technique.
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Figure 1. Latency of CP against Data Sizes



B. Measuring the Effect on System’s Performance

In the literature, the impact of CP operations on system
performance is mostly measured by the latency, i.e. the time
required to complete a CP operation. It is fair when used
to compare two CP techniques that affect the same set of
users, but unfair when used to compare TLCP against BCP,
because the latter affects all users while the former affects
only the users of one tenant. Therefore, here we propose an
alternative measure called accumulated delay.

Let t and t′ be the time moments that a CP operation starts
and finishes, respectively. Two types of service requests may
be affected by a CP operation.

First, for a service request r received during the time
period [t, t′], it may have to be queued and held until the CP
finishes, if it affects the part of state space being saved by
the CP. This set of queued requests depends on the particular
CP technique. For example, for BCP, all service requests that
are issued to the SaaS application during the CP period [t, t′]
must be blocked due to CP. So, the set of blocked service
requests for BCP is Req[t, t′]. But, for TLCP, only those
requests from the tenant will affect the part of state that
are extracted and saved. Thus, the set of blocked service
requests for a TLCP for tenant T is ReqT [t, t′], which is
only a subset of Req[t, t′].

Second, for a service request being processed in the
system at time moment t, it has to be paused during the
CP operation, if it affects the part of state space being saved
by the CP. Again, this set of paused requests depends on
the particular CP technique. For BCP, the set of paused
requests includes all service requests being processed at the
time moment t. But, for TLCP, we only need to pause those
requests that affect the part of state of the tenant.

Therefore, a CP operation Ch can be characterised by its
starting and finishing time moments t and t′, the CP data
ChP , the set of blocked requests Q and the set of paused re-
quests P . In the sequel, we denote Ch = ⟨t, t′, ChP,Q, P ⟩.

Now, we define the notion of the accumulated delay.
Definition 1: Let Ch = ⟨t, t′, ChP,Q, P ⟩ be a CP op-

eration. The accumulated delay caused by Ch, denoted by
AccDelay(Ch), is formally defined as follows.

AccDelay(Ch) = δCh × ||P ||+
∑
r∈Q

(t′ −RecvT (r)) (9)

where δCh = t′ − t, ||X|| is the size of set X .
Informally, accumulated delay is the total amount of delay

that users experience due to a CP operation.

C. Properties of Accumulated Delays

We now analyse the properties of accumulated delay. Due
to space limitation, the formal proofs of the lemmas and
theorems are omitted.

Let Ch = ⟨t, t′, ChP,Q, P ⟩ be any given CP operation.

1) Timing of CP operations: The following lemma gives
an estimation of accumulated delays.

Lemma 1: Assuming service requests are submitted
evenly during the period [t, t′], we have,

AccDelay(Ch) ≈ (
1

2
||Q||+ ||P ||)× (t′ − t) (10)

Note that, in Lemma 1, the time period [t, t′] is the period
of CP operation. As we will see in Section V, this assumption
is valid in the real world.

Let D(d) be the request submission density (or submis-
sion rate) at time moment t. Then, we have the following
theorem about the relationship between accumulated delay
and service request submission density.

Theorem 1: Assuming service requests are submitted
evenly during the CP period, we have that

AccDelay(Ch) ≈
(
1

2
δ2 + Ltδ

)
d(t,t′) (11)

where d(t,t′) is the average request submission density over
the CP period [t, t′], δ = t′ − t, Lt is the average job length
for processing service requests around t.

Note that given a CP technique, the latency δ of a CP
only depends on the size of CP data. If CP operations are
performed periodically, for example, once a week or once
a day, for a given CP technique, the value of δ is mostly
a constant. Therefore, Theorem 1 implies that, according to
the measurement of accumulated delays, CP is better to be
performed when the submission density d(t,t′) is minimal
and Lt is also minimal. This matches the common sense,
and also the current practice in industry, that CP operations
are best performed when the system is at the lowest demand
and the lowest workload.

2) Speed of CP: Let S be the speed of CP, i.e. the volume
of CP data saved per time unit. We have the following
theorem about the relationship between CP speed and the
accumulated delay.

Theorem 2: Assuming service requests are submitted
evenly during the CP period, we have that

AccDelay(Ch) ≈
d(t,t′)V

S
·
(

V

2S
+ Lt

)
(12)

where V = V ol(ChP ).
Theorem 2 implies that accumulated delay of a CP is

O(1/S). This means that the gain of increasing CP speed
diminishes rapidly as the speed increases. Given a CP
technique, the CP speed is determined by the hardware
and software processing power. Investment in hardware and
software to perform CP is not cost effective.

D. Comparing TLCP with BCP

Now, we compare TLCP against BCP.



We use Bulk(t) to denoted a BCP starting at time moment
t. Then, we have that

Bulk(t) =
⟨
t, t′, ChPB(t), QB(t, t′), PB(t)

⟩
, (13)

where

t′ − t = α(V ol(ChPB(t)) + β, (14)
QB(t, t′) = Req[t, t′], (15)

PB(t) = {r|RecvT (r) < t < RespT (r)} (16)

In the sequel, we write δB to denote t′ − t of the bulk CP.
For a TLCP for tenant T starting at time moment t,

denoted by TenChT (t), we have that

TenChT (t) =
⟨
t, t′, ChPT (t), QT (t, t′), PT (t)

⟩
, (17)

where

t′ − t = α(V ol(ChPT (t)) + β, (18)
QT (t, t′) = ReqT [t, t′], (19)

PT (t) = {r|RecvT (r) < t < RespT (r),

T enant(r) = T} (20)

Similarly, in the sequel we write δT to denote t′ − t of the
tenant CP TenChT (t) of tenant T .

Since PT (t) = {r|r ∈ PB(t), T enant(r) = T}, we have

PB(t) =
∪
T∈Γ

PT (t) (21)

and, if T ̸= T ′, we have that PT (t) ∩ PT ′
(t) = ∅.

By Equation (7), we have that

δB =
∑
T∈Γ

δT + ||Γ||∆. (22)

Because ||Γ||∆ is negligible in comparison with δB , Equa-
tion (22) means that the total time of performing CP for all
tenants once is approximately equal to the time to perform
a BCP.

Let C be a set of CP operations. We extend the notation
AccDelay(ch) to AccDelay(C) as follows.

AccDelay(C) =
∑
c∈C

AccDelay(c). (23)

Let TenCh∗(t) = {TenChT (t)|T ∈ Γ}, which
means to make a CP for every tenant once. The fol-
lowing theorem compares AccDelay(Bulk(t)) against
AccDelay(TenCh∗(t)), which is the sum of the accumu-
lated delays for CP every tenant once.

Theorem 3: Assuming service requests are submitted
evenly during the CP periods, we have that

AccDelay(Bulk(t))

AccDelay(TenCh∗(t))
= O(N), (24)

where N = ||Γ|| is the number of tenants in the system.
By Theorem 3, decomposing a large volume of CP data

into a number of smaller blocks is an effective way to reduce
the accumulated delay. This means that TLCP is a valid
solution to CP SaaS.

IV. EMPIRICAL STUDY

This section reports a set of simulation experiments
that validate the above theoretical analysis using workload
benchmarks of real world large-scale cluster systems.

A. Design of the Experiments

1) The Datasets: The benchmarks used in our experi-
ments are log files in the Parallel Workload Archive [31].
Each log file records the dynamic requests of services
submitted to a parallel cluster system in a consecutive period
of operation. The five most recent log files from the archive
are used; see Table I.

Table I
LOG FILES USED AS SIMULATION BENCHMARKS

Name System Location Start time End time
RICC RIKEN Japan 00:04:55,

1/5/2010
23:58:08,
30/9/2010

PoolA Intel Netbatch,
Cluster A

Israel 02:00:01,
1/11/2012

01:59:59,
1/12/ 2012

PoolB Intel Netbatch,
Cluster B

US west
coast

17:00:01,
31/10/2012

15:59:59,
30/11/2012

PoolC Intel Netbatch,
Cluster C

US west
coast

17:00:01,
31/10/2012

15:59:59,
30/11/2012

PoolD Intel Netbatch,
Cluster D

US west
coast

17:00:01,
31/10/2012

15:59:59,
30/11/2012

Table II
OVERALL PARAMETERS OF THE BENCHMARK

Parameter RICC PoolA PoolB PoolC PoolD
Tenants 121 31 20 33 20
Duration (days) 183 30 31 31 31
Valid reqs (K) 448 10,980 6,576 12,901 8,449
Reqs / day (K) 2.4 366.0 212.1 416.1 272.5
Reqs/day/tenant(K) 0.02 11.81 10.60 12.61 13.63

Each log file contains a sequence of jobs submitted to the
cluster. The following data in the log files are used:
- Job Number: A unique identifier of a request.
- Group ID: A unique tenant ID of a job.
- Submit Time: The time moment when the job is submitted.
- Run Time: The length of time used to process the job.
- Requested Memory: the required size of memory in KB.
- Number of processors: the number of processing units used.
- Memory used: the memory space used per processor.

Table II gives the information about the benchmarks.
Strictly speaking, these benchmarks are not log files of SaaS
applications, which are not available as far as we know.
However, they reflect the operations of large-scale cluster
systems and provide credible data to validate the theoretical
model.

2) Simulation Algorithm: The simulation program calcu-
lates the following data from the log file:
- CP volume: It is the sum of memory space used by service
requests between two consecutive CP operations.
- Length of CP time: For a given CP speed S, the CP time is
calculated from the volume of the CP according to Equation



(8), where α = 1/S and beta is set to be 0 since it is
negligible.
- Number of requests blocked: It is the number of requests
submitted during the CP operation.
- Submission time of requests blocked: The submission times
of those blocked requests are recorded together with their
tenant identifiers.
- Number of requests paused: It is the number of requests
submitted before a CP operation but unfinished when the CP
operation starts.
- Accumulated Delay: The accumulated delay of a CP is
calculated according to the definition of accumulated delay.

3) Simulation Parameters: The simulation program takes
a set of parameters as input, which include:
- CP Interval. In the simulations, both bulk and tenant
CP take place periodically. The CP Interval is the interval
between two consecutive CP operations.
- CP Start Time. It is the time when a CP operation starts. It
is set at the time when the system’s workload and demand
are relatively low.
- CP Speed. It is the speed that CP data are collected and
saved. For each simulation, it is set to allow a BCP to finish
within a few hours.

The simulation produced the data of BCP and tenant CP
operations. From these data, statistical analysis is performed.

B. Main Results of The Experiments

The results of the experiments demonstrate that the main
results of theoretical analysis are consistent with the empir-
ical data.

1) The Validity of the Assumption Underlying Lemma
1: For each CP operation, we compare the accumulated
delay obtained directly in simulation against the estimation
calculated using Equation (10). The differences between
them are calculated according to the formula (R − E)/R,
where R and E are the real and the estimated accumulated
delay, respectively. The results are summarised in Table III.

Table III
SUMMARY OF THE ANALYSIS OF HYPOTHESIS 1

Benchmark Type # ChPs Avg Diff (%) St Dev Diff
RICC Bulk 20 -0.19 0.0209
PoolA Bulk 28 3.07 0.0276
PoolB Bulk 28 0.15 0.0279
PoolC Bulk 28 -0.98 0.0492
PoolD Bulk 28 1.09 0.0298
RICC Tenant 164 0.24 0.0245
PoolA Tenant 334 -0.43 0.1417
PoolB Tenant 214 -0.20 0.0317
PoolC Tenant 238 0.01 0.0294
PoolD Tenant 345 0.05 0.0392

Table III shows that, for both BCP and TCP operations,
the average difference between real accumulated delays and
estimated accumulative delays are very small percentages.
Moreover, for each set of CP operations, the standard
deviation of the differences is also very small. This means

that a concentrated distribution of the differences occurs
around the centre as shown in Figure 2.

0"

10"

20"

30"

40"

50"

(50" (40" (30" (20" (10" 0" 10" 20" 30" 40" 50"N
um

be
r o

f C
he

ck
po

in
tin

gs
 

Interval of Difference: Interval N = [0.25%(N-1), 0.25%N] 

Figure 2. Distribution of the Diffs between Real and Estimated AccDelays

2) Validity of The Power Law of CP Speed: Theorem 2
predicted a power law of the effect of CP speed on accumu-
lated delays. In the experiments, we simulated CP operations
with various CP speeds using the Intel Netbatch Pool-A
benchmark. The observed changes in the accumulated delay
are shown in Figure 3.
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• Accumulated Delay: The accumulated delay of a 
checkpointing is calculated according to the definition of 
accumulated delay.  

3) Simulation Parameters 
There are a number of parameters of the simulation process.  
• Checkpoint interval. In the simulation experiments, both 

bulk and tenant checkpointing take place periodically 
regularly, for example, once per week or once a day. The 
interval between two consecutive checkpointing operations 
is determined according to the request density. For systems 
of low request density, i.e. the RICC, the interval is once a 
week, while for systems with a high request density, i.e. the 
Intel Netbtach Grid, the interval is once a day.  

• Checkpointing start time. We have chosen the start time of 
checkpointing to be the time when the system’s workload 
and demand are relatively low, i.e. at the weekend for 
weekly checkpoint interval or at night for daily checkpoint 
interval.  

• Checkpointing speed. Note that, only RICC gives the 
hardware specification of the system. Thus, we cannot work 
out the speed of checkpointing from the log files. 
Therefore, we conducted simulation with a number of 
different speeds and then have chosen a speed that can 
finish bulk checkpointing within a few hours to validate the 
theoretical model.  
The simulation program takes a set of parameters from a 

simulation specification file and runs the simulation process to 
produce three files of the simulation results: the data of bulk 
checkpointing, the data of tenant checkpointing, and a 
summary of tenant checkpointing. From these output, statistical 
analysis is performed.  

B. Validation of the Theoretical Model 
Now, we use the results of simulations to validate our 
theoretical model. In particular we validate the theoretical 
model, in particular the following hypothesis. 
• Hypothesis 1: The accumulated delay of a bulk or tenant 

checkpointing can be accurately estimated from the number 
of blocked and paused service requests and checkpointing 
time length using Equation (13).  

• Hypothesis 2: The accumulated delay is related to the speed 
of checkpointing with a power law, i.e. the accumulated 
delay is Ω(1/S), where S is the speed of checkpointing.  

• Hypothesis 3: The accumulated delay of a bulk 
checkpointing is O(N) times of the sum of the accumulated 
delay of tenant checkpointings, where N is the number of 
tenants.  
However, our benchmark contains fixed number of tenants. 

Thus, Hypothesis 3 cannot be validated by our simulation data 
directly. Therefore, we will validate the following relationship 
between bulk and tenant level checkpointing instead: 
 !""#$%&'! !, ! ≥ ! ∙ !""#$%&'!∈!

! !, ! , 
where C > 2.  

1) Validation of Hypothesis 1  

We validate this hypothesis by comparing the accumulated 
delay obtained in our simulation against the estimation 
calculated using Equation (13).  The difference between these 
two are calculated according to the formula (R – E)/R, where R 
and E are the real and the estimated accumulated delay, 
respectively. The results are summarized in Table 3. 

Table 3. Summary of The Analysis of Hypothesis 1 
Bench&
Mark&

Type&
of&ChP&

Num&
of&ChPs&

Avg&of&
Diff&(%)&

St&Dev&
of&Diff&

RICC$ Bulk$ 20$ +0.19$ 0.0209$
PoolA$ Bulk$ 28$ 3.07$ 0.0276$
PoolB$ Bulk$ 28$ 0.15$ 0.0279$
PoolC$ Bulk$ 28$ +0.98$ 0.0492$
PoolD$ Bulk$ 28$ 1.09$ 0.0298$
RICC$ Tenant$ 164$ 0.24$ 0.0245$
PoolA$ Tenant$ 334$ +0.43$ 0.1417$
PoolB$ Tenant$ 214$ +0.20$ 0.0317$
PoolC$ Tenant$ 238$ 0.01$ 0.0294$
PoolD$ Tenant$ 345$ 0.05$ 0.0392$

As shown in Table 3, for both of bulk and tenant 
checkpointings, the average difference between real 
accumulated delays and estimated accumulative delays are 
very small percentages. The standard deviations of the 
differences for each set of checkpointings are also very small. 
This means that a concentrated distribution of the differences 
around the center, as show in Figure 4.  

 
Figure 4. Distribution of the Differences between Real and Estimated 

Accumulated Delays 

2) Validation of Hypothesis 2 
To validate hypothesis, we conducted simulation of 

checkpointing operations using various different speeds, and 
observed the accumulated delays of checkpointings. The Intel 
Netbatch Pool-A benchmark was used in the simulation and the 
first 11 daily bulk checkpointing operations were observed. 
The speed of checkpointing varies from 20 GB/Second to 200 
GB/Second with the increment of 20GB/Second.  

 
Figure 5. Power Law of Accumulated Delay w.r.t. Speed 
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120 473536943 387902747 306556149 323125207 546588245
140 356756092 299998048 239043098 257196745 413864983
160 226141616 199951791 160930386 176746332 267389788
180 226141616 199951791 160930386 176746332 267389788
200 187171076 169236033 136905165 150002400 224224386
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Figure 3. Power Law of Accumulated Delay w.r.t. Speed

The simulation data clearly shows that the relationship
between CP speed and the accumulated delay follows a
power law, where the trend line in Figure 3 is a function
f(x) = 7× 109x−1.765 with R = 0.99557.

3) Comparison of TCP with BCP: Theorem 3 predicted
that TCP outperforms BCP in the order of O(N). Our bench-
mark contains fixed numbers of tenants. Thus, Theorem 3
cannot be validated directly. Therefore, we calculated the
following ratio for each CP:

AccDelay(Bulk(t))

AccDelay(TenCh∗(t))
. (25)

The results are summarised in Table 4, where column
“#A.T.” is the average number of active tenants. Columns
“Min” and “Max” are the minimal and maximal values of
the ratios. Columns “Avg” and “St Dev” are the average
values of the ratios and their standard deviations.

Table IV
RATIOS OF BULK OVER TENANT CP ACCDELAYS

Benchmark #A.T. Min Max Avg St Dev
RICC 49.35 2.38 380.65 47.3 84.86
PoolA 21.11 3.64 9.9 6.85 1.49
PoolB 13.68 2.89 6.25 4.00 0.71
PoolC 15.11 2.65 20.59 4.37 3.53
PoolD 15.21 2.9 16.89 10.6 3.29

Table IV shows that the ratios vary in a wide range. In
general, TLCP significantly reduces the impact of CP on sys-
tem’s performance. It has not achieved its best performance



on these benchmarks because the benchmarks are not from
a real SaaS application.

V. CONCLUSION

This paper presents a theoretical analysis and empirical
study for the evaluation of TLCP. Both results clearly
demonstrated the advantages of TLCP over traditional BCP
as a fault tolerant facility for SaaS applications. In partic-
ular, TLCP can significantly reduce the interruption to the
operation of a SaaS application.

The simulation experiments generated a large volume of
data that enable us to observe the performances of CP with-
out actually owning the hardware and software systems of
large scale. It also enables us to explore various parameters
of the system to observe their impacts on various aspects of
performances. More details of the observations that we have
made in the experiments will be reported separately.

As a future work, we are studying the mechanisms to
optimise the timing of CP so that every tenant can perform
TLCP operations with minimal accumulated delays.
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