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Abstract

Software-as-a-Service (SaaS) is a model of cloud
computing in which software functions are delivered to the
users as services. The past few years have witnessed its
global  flourishing. In the foreseeable future, SaaS
applications will integrate with the Internet of Things,
Mobile Computing, Big Data, Wireless Sensor Networks,
and many other computing and communication technologies
to deliver customizable intelligent services to a vast
population.

This will give rise to an era of what we call Big SaaS
systems of unprecedented complexity and scale. They will
have huge numbers of tenants/users interrelated in complex
ways. The code will be complex too and require Big Data
but provide great value to the customer.

With these benefits come great societal risks, however,
and there are other drawbacks and challenges. For
example, it is difficult to ensure the quality of data and
metadata obtained from crowdsourcing and to maintain the
integrity of conceptual model. Big SaaS applications will
also need to evolve continuously. This paper will discuss
how to address these challenges at all stages of the software
lifecycle.

1 Introduction

Software-as-a-Service (SaaS) is a cloud computing model
in which computer applications are delivered to the users as
services [1, 2]. It contrasts with the hitherto more
conventional practice of selling applications as products to
be owned by the customer, and has led to a revolution in
what functions can be offered. Table 1 lists just some of the
many successful SaaS applications that have arisen over the
past few years.

There is, however, less research on SaaS than on other
related areas such as Big Data, Internet of Things (or Cyber-
Physical Systems), Wireless Sensor Networks etc. For this
reason, it is desired to assess the start of the art for both
research and applications. This paper does this and then
identifies future directions, recognizes the main challenges,
outlines our assumptions and approach, and finally recounts
recent progress.

The paper is organized as follows. Section 2 defines the
notion of Big SaaS applications. Section 3 identifies the

major challenges in their development. Section 4 discusses
approaches to solving these problems and reports our
preliminary work. Section 5 concludes the paper with a
summary.

Table 1 Examples of SaaS Applications

SaaS Application Area

Booking.com Hotel booking

EasyChair Conference management

Ebay Online shopping

Facebook Web portal and Social networking media
Gmail Message communication

Just Eat Online order for Take Away restaurants
Lastminute.com Travel agency

LinkedIn Social networking media for professionals
Moodle Online Learning Platform

ResearchGate Social networking media for researchers
Rightmove Estate Agency

SalesForce.com Customer Relationship Management
WhatsApp Instant message communication

2 The Growth of SaaS

Those SaaS applications well known to the public today
are mostly small, but our vision of the near future is that an
era of Big SaaS is emerging. Here, we define Big SaaS
applications as those SaaS applications with the following
characteristics.

(1) Big Tenancy. A Big SaaS application usually serves a
large number of tenants and users that may well be
interrelated in a complex way.

Examples of this include:

e Just Eat: 40,800 takeaway restaurants (in 13 countries)
and has 6 million users with active accounts.

*  Booking.com: 638,960 properties (in 211 countries)
with over 800,000 room-nights reserved per day.

* Rightmove (UK’s largest online estate property
advertisement portal): 19,304 agent and new homes
advertisers, for more than 1 million properties.

Examples of complex interrelationships include
hierarchies (e.g. a tenant may have sub-tenants etc.) and
users being associated with many tenants or no particular
tenants.

(2) Big Data. Large volumes of data will be processed
when the number of tenants and users is large.

For example, in January 2014, the Rightmove.com
website had a record 100 million visits viewing 1.5 billion



pages.
(3) Big Code. For a Big SaaS application, the software will
be typically large in size and high in complexity.

Already, SaaS applications are connected to social media
or even offer their own domain-specific social networking.
SalesForce and Moodle are examples of this. Many already
have mobile phone or tablet apps. Inevitably, in the near
future, this will extend to Internet of Things, Wireless
Sensor Networks, robots etc, making the size and
complexity of the code even greater.

(4) Big Value. SaaS applications already provide extra
services that were hitherto not possible.

For example, Booking.com provides two types of cross-
tenant services that individual hotel websites cannot: (a) for
the hotel customers, access to a network of over 8000
affiliate partners, (b) for property owners, personalized
account management to help to optimize revenue. Similarly,
Rightmove.com claims that property sellers are 5x more
likely to find a buyer here than any other website.

Because of this Big Value, SaaS applications generate
more revenue and profits with greater productivity than ever
before, and it seems likely that this trend will continue. For
example, Rightmove generated £167m revenue in 2014, up
19% from £140m in 2013, with a similar increase in profits.

So, it seems likely that SaaS applications will advance
towards Big SaaS and Big Value in particular.

3 The Challenges

The development of Big SaaS applications poses three
types of challenges common to all socio-technical systems.
(1) Social challenges, for society as a whole, to accept the

changes to various business, finance, legal, ethical and
moral aspects;

(2) Technical challenges, for industry and researchers, to
develop new techniques and novel applications of
existing techniques; and finally,

(3) Engineering  challenges, for  engineers  and
methodologists, to develop new processes, methods and
tools to produce applications systematically, efficiently
and even automatically.

Recent effort has focused on enabling techniques for
SaaS applications. The engineering, on the other hand, is
still ad hoc so we will focus only on this. These are what we
recognize as the grand challenges to the advance of Big
SaaS.

3.1 Societal Risks

For a SaaS application, the risk Risks,,s of failure is:
RiSkSaaS:R x T % C,
where T is the number of tenants reside in the system; R is
the failure rate of the system; C is the average consequence
of a failure per tenant.
For a software application system that is owned by the
customers, the total risk Riskys of failure globally is:
Riskys=R’*x C’ % §,

where S is the number of copies of the system running at the
same time globally; R’ is the failure rate of the system, and
C’ is the average consequence of a failure to the customer
who runs a copy of the software.

Assume that each tenant runs one copy of the system (i.e.
T=S), and that the SaaS is of the same level of reliability as
the customer owned software (i.e. R = R’). Then, we have
that Risksaas = Riskys, if C=C".

From this one can conclude that the two modes of
software have equal risks of failure. However, the
calculation makes sense only for so-called individual risks.
There is, however, a concept of societal risks, borrowed
from safety engineering, where the risks from SaaS are
considered greater.

In general, individual risk is the risk for one person of
loss of property or life due to system failures. In safety
engineering, whether the risk is tolerable can be judged
relatively easily for individuals as people knowingly take
and accept risks all the time. Travelling in a car brings the
risk of an accident but a train crash that kills many people
causes an immense public reaction even many more die per
year on roads than on trains.

These situations are addressed by estimating societal risk,
expressed as the relationship between the probability of a
catastrophic incident and the number of users affected. It
can be represented as an F-N curve that plots the expected
frequency (F) of failure and the number (N or more) of users
affected by each failure. Figure 1 illustrates the difference
between societal risks for SaaS and those for customer-
owned software of similar reliability.

These risks are exacerbated if failure recovery is slow, as
with the two recent outages of Salesforce’s CRM system.
They each took more than 10 hours to recover, during which
users of more than 100,000 tenants were deprived of the
service.
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Figure 1 Illustration of the Difference in Societal Risks

Therefore, it is crucial for SaaS application developers to
reduce the societal risk significantly to an acceptable level.
3.2 Trustable Crowdsourcing

When there are a large number of tenants, it is highly
desirable that a SaaS application supports customization so



that the specific needs of the customers and their users can
be accommodated. However, for Big SaaS, such
customization cannot be done by the service provider
manually. A solution that adopted by almost all existing
successful SaaS applications is crowdsourcing. This means
that the customers perform customization themselves.

For example, Rightmove provides a facility for the estate
agents to upload themselves information on the properties
for sale or to let. Likewise, Booking.com enables property
owners to set room prices and room availabilities. Similarly,
EBay enables sellers to enter the information about the
goods for sale and the method of payment. Such facilities
are fairly simple, however, when compared to Salesforce’s
facility to let customers build their own applications. An
unsolved problem is how to ensure the quality of data and of
system configurations obtained by crowdsourcing. This is
the second grand challenge to Big SaaS.

3.3  Continuous Evolution

Continuous evolution has been applied to software
development practice for web-based systems, as a part of
agile methodologies. In this approach, a software system is
revised, tested and updated so frequently that the notion of
versions and releases no longer makes sense. Moreover,
continuous evolution also requires that such updates and
releases go live without any interruption to service. This is
of paramount importance for Big SaaS but the
unprecedented scale and complexity of Big SaaS presents a
challenge.

Imagine the situation where hundreds of thousands of
tenants each have their own customized version of the
system running simultaneously on a number of big clusters
distributed around the globe. At the same time numerous
new tenants are also performing customization and
configuration to join the system. As both of these are
happening, developers are committing multiple changes to
the system in parallel to fix bugs, to introduce new
functions, and to refactor system structure. These changes
will inevitably interact with each other while each change
may have devastating impact for a large number of users.

After a few days of such frequent modifications, the
relations between the components could soon become a
spaghetti-like mess. No current software change impact
analysis tool could be used here and yet updates will have to
go live without interruption to the service. The pressure to
complete the testing, verification and validation of each
change within a short time with a high adequacy will be
several magnitudes higher than ever before.

To enable Big SaaS to be evolved continuously, we must
overcome the barriers in software engineering, especially
the methods and tools for change impact analysis, for
testing, verification and validation, and for on-line
refactoring of software structure.

3.4 Conceptual Integrity

Conceptual integrity is one of the key features of a good

software design. It means that there is a simple conceptual
model of the system in which its structure, functionality and
dynamic behavior can be understood.

It appears that the design of a good conceptual model for
a Big SaaS application and maintaining its integrity both
play a crucial role in development and maintenance. They
also play a role in the customization and continuous
evolution of the system. Currently, such a conceptual model
is rarely formally defined, and often not even documented
explicitly, but conveyed instead informally through
demonstrations, case studies, online training materials,
marketing articles, etc. The advantages of such an approach
is that it is user-oriented, but it leaves much scope for
ambiguity, incompleteness and misunderstanding.

On the other hand, most online documentation is too
developer-oriented, with technical details in place of
information about the conceptual model. Ontology and
semantic web services can provide user-understandable
descriptions of services at the conceptual model level.
However, a weakness of ontology based service descriptions
is that they are fragmented. Moreover, such documentation
and descriptions of services are not verifiable and testable.
A link seems missing from the conceptual model to low-
level system specification.

4 Research Directions

In this section, we seek for potential solutions to the
engineering problems raised in the previous section. We
focus on four phases of the software development lifecycle:
functional specification, architectural design,
implementation and testing. For each of these, we will
briefly review the existing work, outline our approach,
report the preliminary progresses we have made so far, and
point out directions for future research.

4.1 Design: Fault Tolerance Architectures

The societal risk must be addressed by appropriate
architectural design of SaaS applications. Chong and
Carraro asserted that “4 well-designed SaaS application is
scalable, multi-tenant-efficient, and configurable” [1].
These are the three key differentiators that separate it from a
poorly-designed SaaS application. Based on architectural
features, they proposed a 4-level maturity model of SaaS
applications shown in Figure 2.

Level 1 is ad-hoc, the least mature, and essentially the
same as the traditional application service provider (ASP)
model of software delivery. Each subsequent level adds one
of the three key features (configurability, multi-tenant
efficiency, scalable in that order). It is no surprise that
almost all successful SaaS applications nowadays employ an
architecture model of level 3 and 4, and it seems inevitable
that level 4 will be needed for Big SaaS, because, as Chong
and Carraro argued, “[such] a SaaS system is scalable to an
arbitrarily large number of customers ... without requiring
additional re-architecting of the application, and changes



or fixes can be rolled out to thousands of tenants as easily
as a single tenant” [1].

However, this architecture has not addressed the societal
risks caused by system level failures. Addressing this
problem, in [3] we suggested integrating the architecture
with a fault tolerance facility to reduce the consequences of
system-scale failures with reduced probability of failure and
quicker recovery from failure.
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Figure 2 Four-Level SaaS Maturity Model [1]

Fault-tolerance is one of the most challenging issues of
distributed and high performance computing [4]. The
extensive research in the past few years for cloud computing
in particular can be classified according to the fault to be
tolerated.

Resource-level fault tolerance aims to achieve high
reliability in individual computing resources, such as
processor, memory, I/O and network bandwidth, which are
lent to users as services, etc. [5,6].

Infrastructure-level fault tolerance techniques include
those for virtual machines (VM) or virtual clusters [7], with
required availability and reliability via tolerance of
underlying hardware failures [8, 9].

At platform level, fault tolerance facilities have been
provided in various parallel programming models, such as
MapReduce, in which a failed map or reduce task is
restarted and/or relocated to a new compute node. The
performances of two most commonly used checkpoint /
restart techniques for distributed systems, i.e. the
Distributed Multi-Threaded Checkpointing and Berkeley
Lab Checkpoint/Restart library, have been evaluated in
Amazon Elastic Compute Cloud EC2 environment [10].

However, there is no work at application level for SaaS.
Moreover, almost all research on fault tolerance in cloud
computing assumes that a set of virtual machines are
deployed on a number of physical servers and a virtual
machine is created for one tenant/user. Thus, they are only

applicable to those SaaS applications in the multi-instance
architecture of Chong and Carraro’s level 2, but not suitable
for those in the multi-tenancy architectures of level 3 and 4.

In summary, while some of the above techniques are
useful to reduce failure rate of lower level entities, they have
not addressed satisfactorily the problem of the high societal
risks of Big SaaS. The current practice still relies on
traditional periodical backup operations. For example,
Salesforce backs up all data to a tape storage on a nightly
basis. This traditional checkpoint-and-rollback fault
tolerance technique is unsatisfactory for Big SaaS
applications. In fact, Salesforce’s tenants also use third party
facilities for backing up their own data.

Addressing this problem, in [3], we proposed a new
approach called tenant-level checkpointing and implemented
a prototype called Tench. In this approach, instead of saving
the whole system’s state, each checkpointing only saves a
part of system state related to a specific tenant.

This is important because saving the state of the whole
system with one checkpointing operation will cause 1/O
contention and long delays, as all users of all tenants lose
access to the system.
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Figure 3 Integration of a fault tolerance facility with SaaS
Application Architecture

Figure 3 shows the architecture of such a fault tolerance
facility and how it is integrated with the service-oriented
SaaS application architecture [1].

In comparison with existing bulk checkpointing
techniques, our preliminary theoretical and empirical studies
demonstrated that tenant-level checkpointing increase the
performance by a factor of O(XN), where N is the number of
tenants [11]. It has the following advantages.

First, while a SaaS application runs continuously, tenant-
level checkpointing can target a specific tenant when the
users of the tenant are less active. Thus, a checkpoint can be
created without causing too much disruption to normal
operations of the system, as requests for services from other
tenants are not blocked.

Second, tenants with different quality of service



requirements (e.g., different reliability levels) can be treated
differently by having different checkpoint frequencies.

Third, tenant-level checkpointing can be implemented to
block only those users of the tenant being checkpointed
without affecting any other users. The experiments reported
in [3] have shown that the latency of creating a checkpoint
for a tenant only depends on the size of the tenant's state. It
is independent of the number of tenants.

Moreover, partial checkpointing enables different types
of data to be treated differently, with the more important
data being checkpointed more frequently. An example of
higher priority data would be metadata as it plays an
important role in SaaS applications.

Finally, but most importantly, recovery from a system-
scale failure can proceed tenant by tenant so that the most
important tenants are roll-backed first. This significantly
reduces the total outage time and hence the societal risk of
system-scale failures.

It is worth noting that VM checkpointing, replication and
live migration facilities [12] not only provide fault tolerant
solutions to reliability problems, but also balance service
work load [13], reduce system energy consumption of data
centers [14], and can even the cost of subscription per user
[15]. Similar benefits can be obtained from a tenant-level
checkpointing facility like Tench for SaaS applications that
do not run on virtual machines.

Therefore, tenant level checkpointing could be a viable
fault-tolerance solution to Big SaaS’ societal risk problem.

4.2 Specification: Algebraic Method

Formal methods have proved their value by their
successful applications in safety-critical systems. They can
significantly improve software reliability and ensure system
safety. Their application in the development of Big SaaS
can reduce their societal risk, too.

Although this is considered to be a myth [16, 17], formal
methods are widely regarded too expensive to be used.
However, the great value of Big SaaS applications makes
formal methods viable as its cost would then be justifiable.
They can also be easy to learn for ordinary software
engineers [18].

Moreover, we believe that formal methods can also
provide better solutions to the problems of maintaining
conceptual integrity, trustworthy crowdsourcing, and
continuous evolution. The following reports our preliminary
work on how formal methods address these issues.

4.2.1 Support for Crowdsourcing-Based Customization

As discussed in Section 2, it is highly desirable to include
a crowdsourcing-based customization facility in Big SaaS
applications. In this approach, services are discovered and
composed by the customers with little support from the
service provider. One approach to realize such
customization is to employ semantic descriptions of the
services as illustrated in Figure 4.
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Figure 4. Customization of a SaaS Application in SOA

The results of these customizations and compositions
must be of high reliability, due to our requirement to
minimize societal risks. To achieve this service semantics
need accurate descriptions, which should also be the
following:

*  Comprehensible: easy for users to understand even if
they have no IT professional knowledge or skills.

*  Abstract: the design and implementation details hidden
from the users for comprehensibility and also to protect
intellectual property.

*  Machine-Searchable for the discovery, composition and
configuration of services.

* Testable so that service providers and users can both
verify the service’s correctness with respect to semantic
descriptions.

However, no existing technique satisfies all of these
requirements. They tend to fall into two categories. The
majorities are based on ontology and use a vocabulary to
annotate services. The others are based on the mathematical
notations of formal methods.

Semantic Web Services are an example of the former
approach [19] and OWL-S was the first major ontology
definition language for this purpose [20]. It provides a set of
constructs for describing the properties and capabilities of
Web Services in a machine-readable format. Formal
methods were applied to provide a precise mathematical
meaning in a formal ontology. An alternative approach is
the Web Service Modelling Ontology (WSMO) [21], which
is a conceptual model that uses the Web Services Modelling
Language (WSML) [22]. As well as Big Web Services,
work has also been carried out on how to specify the
semantics of RESTful web services, such as, MicroWSMO/
hRESTS [23], WADL [24] and SA-REST [25].

The above works all take the same approach to specify
the semantics of services. That is, a vocabulary is defined by
ontology of its application domain to give the meanings of
the input and output parameters, as well as the functions of
the services. Such descriptions are easy for human
developers to understand and efficient for computers to
process. However, they cannot provide a verifiable and



testable definition of a service's function, because any
ontology is limited to stereotypes formed from the
relationship between the concepts and their instances.

Formal methods, as an alternative to the ontological
approach, have been developed over the past 40 years to
define the semantics of software systems in mathematical
notations. One such formal method, algebraic specification
was first proposed in the 1970s as an implementation-
independent specification technique for defining the
semantics of abstract data types. Over these years, it has
been advanced to specify concurrent systems, state-based
systems and software components, all based on solid
foundations of the mathematical theories of behavioural
algebras [26] and co-algebras [27]. We argue that it is
particularly suitable for the development of Big SaaS.

Algebraic specifications are at a very high level of
abstraction. They are independent of any implementation
details. One attractive feature they have is that they can be
used directly in automated software testing; see Section 4.4.
This feature is particularly important for SaaS engineering,
because, when services are customized and composed
together by the customer, testing must be performed
automatically without the developer’s support.

In [28], we investigated the application of the algebraic
specification method to service-oriented software by
extending and combining the behavioural algebra and co-
algebra techniques. The algebraic specification language
CASOCC, which originally designed for traditional
software entities, such as abstract data types, classes and
components, was extended to CASSOC-WS for the formal
specification of Big Web Services. A tool was developed to

automatically generate the signatures of algebraic
specifications from WSDL descriptions of Big Web
Services. CASOCC-WS was also applied to RESTful web
services [29]. A tool was developed to check syntax-level
consistency of formal specifications. A case study was
conducted applying CASOCC-WS to a real industrial
system, GoGrid. Based on these works, a new algebraic
formal specification language called SOFIA [43] was
proposed to improve the usability of algebraic specification
languages when applied to services.

However, algebraic specifications and other formal
methods do not directly support efficient searching of
services. To bridge the gap between algebraic specification
and ontological descriptions, we proposed in [30] to derive
the former from the latter, thereby augmenting algebraic
specification with the machine-readable and human-
understandable attributes of ontology. A software tool called
TrS20 (Translator from Specification o Ontology) has been
designed and implemented [30]. It translates formal
specifications in SOFIA to ontological descriptions of
services in OWL. Figure 6 shows the overall structure of the
TrS20 Tool.
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A case study of the RESTful web service interface of an
actual industrial system called GoGrid shows that the
approach is practically useful.

4.2.2 Formal Specification of Conceptual Models

One advantage of the algebraic method is that the
infrastructure, platform, application domain knowledge, and
the services of a SaaS application can all be formally
specified in the same language and decomposed into a
number of reusable specification packages.

For example, in the case study of GoGrid’s RESTful
API, we first specified the RESTful web service in a
package, then used that to specify the basic constructs of
computing infrastructure, and then used both packages to
specify the services that GoGrid provides. Figure 5 gives the
ontology generated from the SOFIA specification of
RESTful web services.

Therefore, the specification of domain concepts can be
used to serve as a formal specification of the conceptual
model of the system. This specification supports automated
testing and its internal consistency can be verified. This
enables it to support the maintenance of conceptual
integrity, too.

4.3 Implementation: New Paradigm of Programming

Currently, most web-based applications, including those
for SaaS, are implemented in many different programming
and scripting languages and even several different
paradigms. This complicates development and makes it
difficult to develop supporting tools. A desirable alternative
is to have a new single paradigm that is particularly suitable
for SaaS applications.

The agent-oriented paradigm has long been considered
suitable for dynamic environments such as the Internet [31],
and many research efforts have been reported in the
literature [32]. However, the IT industry has been slow to
adopt the approach. There are a number of possible reasons
for this. First, the notion of agents seems to be too strongly
linked to distributed artificial intelligence for software
engineers to accept it. Secondly, there are no efficient
implementations of agent-oriented programming languages.
We now report our work in progress that addresses these
problems.

4.3.1 Agent-Oriented Programming Language

To address the first problem, we proposed a simplified
model of agent [33, 34]. Agents are service providers that
consist of:

* actions that the agent can perform, representing the
services it provides or requests it can submit,

* variables, which represents its internal state of the agent,

* behaviour rules, forming the body of the service, that
determine how the requests are processed,

* collaborating agents, from which the service requests are
received. This set can be updated at runtime.

For example, the following is the Hello World example
of the language CAOPLE, which we are developing.

caste Peer;
action say(word: string);
init say("Hello world!")
end Peer

Caste is the classifier of agents so agents are instances of
castes. In the above example, the caste Peer is defined. It can
take the action of say(“Hello world!”) and it does this when
the agent is created. An agent is therefore an active
autonomous computational entity.

Castes can be extended to sub-castes just as classes in
object-orientation have subclasses. For example, the
following is a sub-caste of Peer.

caste GreetingPeer inherits Peer;
observes all in Peer;
body
when exists A in Peer: say("Hello world!") do
say("Welcome to the world!")
end
end GreetingPeer

An agent of GreetingPeer observes the actions taken by
all agents of Peer, as described in the observes clause, which
defines its collaborative agents. When there is an agent in
the caste Peer that takes the action say(“Hello world!”), it will
react with the action say("Welcome to the world!"). In general,
an agent communicates with other agents by taking
observable actions to send messages and it receives
messages by observing the observable actions of its
collaborative agents. An action can be targeted to one or a
set of specific agents. For example, if the say statement can
be changed to one of the following:

say("Welcome to the world!") to All in Peer;
say("Welcome to the world!") to A;

If the target receiver is omitted, the default is public.

In contrast to the notation of class in object-oriented
programming, an agent can be a member of multiple castes
at once and its membership can be changed dynamically at
runtime by executing one of the caste membership
statements:

* Join castelD: to become a member of castelD;

* Quit castelD: to quit the membership of castelD;

* Suspend castelD: to suspend the execution of the body of
castelD;

* Resume castelD: to resume the execution of the body of
castelD;

* MoveTo castelD: to quit from the current caste and
become a member of the named caste.

Using castes and the inheritance relationships between
them, one can encapsulate different behaviours in different
contexts together with a set of related state variables,
actions, and collaborative agents. The flexible casteship



enables agent to have adaptability and to be easy to
compose and configure. For example, the following shows
how agent can adapt its behaviour according to the context
by change its caste membership.

caste CheerfulPeer inherits Peer;
body
when exists A in Peer: say("Hello world!") do
say(“Hi, good morning.”);
end;
end CheerfulPeer
caste SmartPeer inherits Peer;
observes DateTime: Clock;
body
when DateTime: Tick() do
if DateTime.Day = Monday then Join FriendlyPeer
else Join CheerfulPeer
end;
end;
end SmartPeer

The above just a few key features of the agent-oriented
programming language CAOPLE. Readers are referred to
[34] for more details. In general, we believe that a new
programming paradigm such as agent-orientation will
enable the implementation of SaaS applications at a high
level of abstraction. Thus, it is worth pursuing.

4.3.2  Implementation of CAOPLE Language

Our approach to the implementation of the CAOPLE
programming language is to translate CAOPLE source code
into machine code for a virtual machine [35].

Our virtual machine, called CAVM, differs from other
language specific virtual machines like JVM in that it
consists of two parts: a local execution engine LEE and a
communication engine CE. The LEE executes the program’s
computational code, while the CE realises communication
between agents distributed over a computer network.
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Figure 7 Compiling, deploying and executing CAOPLE code

As illustrated in Figure 7, the castes in a CAOPLE
program are compiled so that one Object Code module is
generated from each caste Source Code. It is deployed to a
Computer node that runs a communication engine. An agent
of a caste can be created on any Computer node that runs an
execution engine. It will load the object code module of the
caste and execute the code on the machine. For cross-
machine communications between agents, the messages are

send to the communication engine where the caste resides
and further distributed to execution engines where the target
agents executes. They may be passed through one or more
other communication engine. The reader is referred to [35]
for more details of the design, implementation and
experiment results of CAVM.

4.4 Testing: Specification-Based Test Automation

Automated testing can play at least two roles in the
development of Big SaaS: it supports continuous evolution
and it ensures the quality of crowdsourcing in service
customization.

There are a number of approaches to automated testing
for software in general and for service-oriented systems in
particular. In [36], we proposed a collaborative approach
that realizes automated testing of composite web services
through composition of test services, as illustrated in Figure
8. In this approach, each web service is accompanied by a
testing service, and the framework of automated testing
contains a number of general test services for test case
generation, test adequacy measurement, test result
correctness checking, etc. A test request for the composition
of services is submitted to a test broker, which decomposes
the testing task into subtasks if needed and if so, searches
for and invokes appropriate test services for each sub-task.
The searching and invocation of test services (and the initial
registration) employs ontologies both of software testing
and of the application domain.
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Figure 8. Collaborative Automated Testing of Web Services [36]

This approach was devised for web services and should
be applicable to Big SaaS, but we believe a formal
specification language like SOFIA would make the test
automation efficient without developing various test
services.
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Figure 10. Interface of the ASSAT tool.

Techniques of software test automation based on
algebraic specifications have been investigated since 1980s
for procedural languages [37, 38], OO software [39, 40],
and component-based systems [41], etc. More recently, we
have been developing an automated testing tool called
ASSAT [42] for testing web services based on formal
specification written in SOFIA [43]. Figure 9 shows the
architecture of the tool and Figure 10 shows its GUIL. Such
testing tools can achieve complete automation of the whole
testing process including test case generations, test
invocation and test result correctness checking.

Although SOFIA and ASSAT were originally developed
for web services, the principles underlying the language and
the implementation of the tool are applicable to Big SaaS. It
is worth further research to adapt them to Big SaaS and
evaluate their effectiveness.

It is worth noting that there are two approaches to the
quality assurance of customization. The first is brutal force
approach. In this approach, all possible compositions of
services and all possible configurations of the SaaS
application are tested up to a certain level of combination
adequacy, say the coverage of all 2-way or 3-way
combinations, before the system is released to the users.
This approach is viable only when the number of possible
service compositions and configurations is small.
Unfortunately, even for a SaaS application of modest scale,
there could be a huge number of test cases even to cover 2-
way or 3-way combinations of services and configurations.

The second is the automated online testing approach.
During the development process, testing focus at the
individual services to ensure each service is correct with
respect to its specification. The most popular and important
combinations and configurations of the services are also

tested. When a user builds his or her own customized
version of the system, the customization, which is a
composition and configuration of the services, it is then
tested automatically against the specification. In this
approach, automated testing plays a crucial role to support
customization of services. It requires testing to be performed
with little human involvement because crowdsourcing-based
customization is conducted by the users.

5 Conclusion

In this paper we argue that an era of Big SaaS is
emerging. It differs from existing SaaS applications in the
number of tenants/users and the complexity of their
relationships, as well as in the size and complexity of the
program code. They will possess and utilize Big Data to
provide great added value to their services. Developing Big
SaaS applications will impose grave challenges to software
and service engineering to reduce the societal risks to an
acceptable level, to enable trustable crowdsourcing-based
customization, to maintain conceptual integrity of the
system and to support continuous evolution. We argued that
these challenges must be met in all stages of the software
development lifecycle.

In particular, in the specification phase, an algebraic
specification language can support formal development of
service-oriented systems to improve reliability. It also helps
to maintain conceptual integrity by providing a formal
definition of the conceptual model. It supports
crowdsourcing-based customization by linking formal
specification to the ontological description of services.
Moreover, testing can be automated based on algebraic
specifications. This also helps with continuous evolution.

Also, for the architectural design phase, a tenant-level



checkpointing facility could play a significant role in
reducing societal risks. In the implementation phase, a new
paradigm of programming is desirable and we are exploring
the potential of an agent-oriented programming language. In
the testing phase, automation is essential and formal
specification will make this possible.
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