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Abstract

Algebraic class testing is an object-oriented software testing method based on algebraic
specification. It tests if a class correctly implements an algebraic specification by checking if
the equations of the specification are satisfied. Each test case consists of two ground terms,
which corresponds to two sequences of method calls to the class, and a tag indicating if the
sequences should generate equivalent results according to the specification. One of the most
appealing advantages of algebraic testing is that formal specifications can be used to
automatically generate test cases and to determine if two values are equivalent, for example,
by using observation contexts. A basic validity requirement for test oracles is that it correctly
determines if the equivalence of the values of ground terms is consistent with the equivalence
required by the algebraic specification. Unfortunately, for initial algebra semantics, this
requirement is not satisfied by the observation contexts. This paper proves that the
observation context approach satisfies the validity requirements for the final algebra
semantics of algebraic specifications.

Keywords: Software testing, algebraic specification, initial algebra and final algebra, test
oracle, object-oriented software, specification-based testing, automated testing

1 Motivation

Algebraic class testing is an automated software testing method for testing object-oriented
programs at class level based on algebraic specifications [1, 2, 3, 4]. It is based on the
observation that each term of a given signature has two interpretations in the context of
software testing. First, it represents a sequence of calls to the methods that implement the
operators specified in the algebraic specification. When the variables in the term are replaced
with constants, such a sequence of calls represents a test execution of the program, where the
test case consists of the constants that are substituted for the variables. Second, a term also
represents a value, i.e. the result of the execution. Therefore, checking if an equation is
satisfied by an implementation on a test case means executing the operation sequences of two
terms on both sides of the equation and then comparing the results. If the results are
equivalent, the program is correct on this test case; otherwise the implementation has errors.
One of the most appealing features of algebraic testing is that formal specifications can be
used to automatically generate test cases and to determine if the program produces correct
output. A high degree of test automation can be achieved.

Algebraic specification emerged in the 1970s and developed through out the 80s and 90s as a
formal method for specifying abstract data types in an implementation-independent style; see,
e.g. [5, 6]. In late 1980s, Gaudel et al. developed a theory and a method of specification
based  software testing [7, 8]. Using a set of prototype tools, they demonstrated that algebraic
specifications could be used to solve both the problems of automatic test case generation and
automatic test oracle and test driver generation. Although it was not directly targeted to class
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testing of object-oriented software, their work laid the theoretical foundation of algebraic
testing in general. The approach received much attention recently in the context of class
testing. Frankl and Doong studied the effectiveness of testing object-oriented programs based
on algebraic specifications [1, 2]. They developed an algebraic specification language called
LOBAS and a tool called ASTOOT for testing object-oriented programs.  They conducted
two case studies to assess the practical usability of the method and technique. One of their
most important contributions to the method is the extension of test cases to include negative
test cases, which consists of two terms that are supposed to generate non-equivalent results.
More recently, Chen and Tse, et al. further developed the theory and method of automatic
derivation of test oracles based on observation contexts [3, 4]. They raised a number of subtle
and serious questions about the foundation of algebraic testing, including the validity
problem of the test oracles based on observation contexts.

In this paper, we answer the validity question raised in [4] based on the theory of algebraic
specifications. The remainder of the paper is organised as follows. Section 2 provides the
preliminaries of the theory of algebraic specifications. Section 3 introduces the basic concepts
of algebraic class testing and analyses the assumptions underlying the method. It then
discusses the oracle problem and summarises the main result of the paper. Section 4 proves
the main theorems of the paper. Section 5 is the conclusion.

2 Preliminaries of Algebraic Specification

The basic idea of algebraic specification is to treat an abstract data type as an algebra, which
consists of a collection of sets as the carriers of the algebra and a number of operations on the
sets. Each set corresponds to a type and is called a sort. An algebraic specification consists of
two main parts. The syntax part is called the signature, which defines the name of the
operations and sorts of their operands and result values. The semantics part defines the
meanings of the operations by a set of axioms represented in the form of equations, or
conditional equations. These axioms are the properties that the operations must satisfy. Each
equation consists of two terms. It means that the terms are equivalent for any values
substituted systematically into the variables on both sides of the equation. The order that the
axioms are listed is not important. The following defines the notions and notation as well as
the main results about algebraic specifications that are used in this paper. The proofs of the
results are omitted. Readers are referred to [9] for a textbook and [10, 11, 12, 13] for surveys.

A signature Σ consists of a nonempty set S whose elements are called sorts, and a finite
family <Σw,s> of disjoint finite sets indexed by S*×S. Σw,s is the set of operator symbols of type
<w, s>, i.e. w is the arity of the operator and s is its sort.

Given a signature Σ and disjoint sets Vs, s∈S, of Σ-variables1, the set of Σ-terms is inductively
defined as follows.

(1) For all constants σ∈Σλ,s, σ is a Σ-term of sort s;
(2) For all variables v∈Vs, v is a Σ-term of sort s;
(3) For all operators σ∈Σw,s, w = w1…wn, and terms τ1, …τn of sorts w1, …,wn, respectively,

σ(τ1, …τn) is a Σ-term of sort s.

A term is called a ground term, if it contains no variable. We write WΣ,s(V) to denote the set

                                                
1 The set of variables must be disjoint to the set of operator symbols, too.
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of Σ-Terms of a sort s with variables in V and WΣ(V) to denote the set of all Σ-terms with
variables in V. We write WΣ,s and WΣ to denote WΣ,s(∅) and WΣ(∅), which are ground terms.

A Σ-equation consists of two Σ-terms of the same sort and written in the form of τ1=τ2. A
conditional Σ-equation consists of a Σ-equation and a condition in the form of the
conjunction of a number of Σ-equations, such as

1 1',    ... k kifτ τ τ τ τ τ′ ′= = ∧ ∧ = .

A Σ−algebra A consists of a family <As>s∈S of sets called the carriers of A, where As is the
carrier of sort s∈S; and for each <w,s>∈S*×S and σ∈Σw,s, there is an operation σA of type
<w,s>, i.e. σA:

1
...

nw w sA A A× × → , where w = w1…wn, and wi∈S for all i=1,2,...,n. An
operation σA of type <λ, s> is a constant of sort s, i.e. σA∈As, where λ∈S* is the empty string.
Such an algebra is a many-sorted algebra.

Let V= s
s S

V
∈
∪ be a set of Σ-variables, where V and Σ are disjoint. An assignment is a mapping

ϕ from V to A, such that for all v∈Vs, ϕ(v)∈As. The value of a Σ-term τ under an assignment
ϕ, written a bϕτ , is inductively defined as follows.

(1) For all constants σ∈Σλ,s, a b Aϕ
σ σ= ;

(2) For all variables v∈Vs, a b ( )v v
ϕ

ϕ= ;

(3) For all operators σ∈Σw,s, w = w1…wn, and terms τ1, …τn of sorts w1, …,wn, respectively,
a b a b a b1 n 1 n( ,..., ) ( ,..., )Aϕ ϕ ϕ
σ τ τ σ τ τ= .

Notice that, if a term τ is a ground term, we have that for all assignments ϕ and ϕ' in a Σ-
algebra A, a b a b 'ϕ ϕ

τ τ= . This means that a ground term has a fixed unique value in a Σ-

algebra A. This value in the algebra A is denoted by a bA
τ . When there is no risk of confusion,

we omit the subscript and simple write a bτ .

A Σ-algebra A satisfies a Σ-equation τ1=τ2, written 1 2| ( )A τ τ= = , if a b a b1 2ϕ ϕ
τ τ=  for all

assignments ϕ in A. A satisfies 1 1',    ... k kifτ τ τ τ τ τ′ ′= = ∧ ∧ = , written

1 1| ( ',    ... )k kA ifτ τ τ τ τ τ′ ′= = = ∧ ∧ = , if a b a bϕ ϕ
τ τ ′=  for all assignments ϕ in A that satisfy

the condition a b a bi iϕ ϕ
τ τ ′= , for all i = 1,2,…,k.

Let E be a set of Σ-equations or conditional Σ-equations. A Σ-algebra A is said to be a <Σ,
E>-algebra, written A |= E, if for all e∈E, A |= e.

Given a set E of equations, one can deduct if a pair of terms τ and τ' is equivalent or not by
using equational logic; see, e.g. [11]. If equation τ=τ' is derivable from the equations in E, we
write E|− τ=τ'.

A substitution µ is a mapping from the set WΣ(V) of Σ-terms to WΣ(V) that satisfies the
condition that

1 2 1 2( ( , ,..., )) ( ( ), ( ),..., ( ))n nµ σ τ τ τ σ µ τ µ τ µ τ= ,
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for all n-ary operator σ ∈ Σ. Therefore, a substitution is determined by its restriction to the set
of variables. If for all v∈Vs, µ(v) is a ground Σ-term, the substitution is called a ground term
substitution.

The equational logic is complete and consistent in the following sense. Let E|= τ=τ' to denote
the statement for all algebra A, (A|=E ⇒A|= τ=τ').

Proposition 2.1 The equational logic is consistent and complete, i.e. E|−τ = τ' ⇔ E|= τ = τ'.
,
However, equational logic is not decidable. There is no effectively computable algorithm that
can determine if a pair of terms can be deducted from a set of equations.

For certain specific types of equation sets, decidability can be achieved. One of the main
techniques for achieving decidability is term rewriting.

An abstract reduction system is a structure ,A< →> , where A is a non-empty set,  → is a
binary relation on A, called the reduction relation. The relation → is often defined as the
union of binary relations →α on A, i.e. 

I
α

α∈
→= →∪ . The transitive and reflexive closure of a

binary relation → is denoted by →*. The equivalent relation generated by →* is called the
convertibility relation generated by →, written *→

≈ . An element a∈A is a normal form, if
there is no b∈A such that a→b. An element a'∈A has a normal form if a'→*a for some
normal form a∈A. The reduction relation → is weakly normalising, if every a∈A has a
normal form. It is said strongly normalising, if every reduction sequence a0→a1→...
eventually must terminate. Strongly normalising is also called terminating, or Noetherian.
The reduction relation → has the unique normal form property, if for all a, b∈A, a ≈ b and a,
b are normal forms imply that a = b.  It is called confluent or has the Church-Rosser property,
if for all a, b, c∈A, a→*b and a→*c implies that there is d∈A such that b→*d and c→*d.  A
reduction system is said complete, or canonical, or uniquely terminating, if it is confluent and
terminating.

Given a signature Σ, a term rewriting system is a reduction system on the set of Σ-terms. The
collection of reduction relations is defined by a number of term rewriting rules, which are
ordered pairs (τ, τ') of terms in WΣ(V), usually written as τ→τ'. Two conditions are imposed
on the terms.

(1) The left-hand side τ is not a variable;
(2) The variables in the right-hand side τ' are already contained in τ.

A Context is a term containing one occurrence of a special symbol , , denoting an empty
place. It is generally denoted by C[ ]. If τ∈WΣ(V) and τ is substituted in , , the result is C[τ];
τ is said to be a subterm of C[τ].

A term rewriting rule r: τ→τ' determines a binary reduction relation →r on the set of Σ-terms
such that [ ( )] [ ( ')]rC Cµ τ µ τ→  for all context C[ ] and all substitutions µ. The sub-term µ(τ)
of left-hand side in the term C[µ(τ)] is called a redex (from 'reducible expression'). A redex
µ(τ) may be replaced by its 'contractum' µ(τ') inside the context C[ ]; this gives rise to a
reduction step, or one-step rewriting C[µ(τ)] →r C[µ(τ')].

Given an algebraic specification <Σ, E>, the set E of equations can be considered as a set of
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rewriting rules, where an equation τ = τ' is considered as a rule τ→τ'. A conditional equation

1 1',    ... k kifτ τ τ τ τ τ′ ′= = ∧ ∧ =

is considered as a conditional term rewriting rule:

1 1',    ... k kifτ τ τ τ τ τ′ ′→ ≈ ∧ ∧ ≈ .

The term rewriting system →E derived from an algebraic specification <Σ, E> as above has
the following property.

Proposition 2.2
(1) For all Σ-terms τ, τ'∈WΣ(V), (τ→∗τ’ )⇒ Ε  |− (τ = τ'). 
(2) For all Σ-terms τ, τ'∈WΣ(V), (τ ≈E τ') ⇒ Ε  |− (τ = τ').

The inverses of the above statements are not necessarily true. If the rewriting system has the
property that (τ ≈E τ') ⇔ Ε  |− (τ = τ'), the term rewriting system is complete. If the term
rewriting system derived from an algebraic specification is canonical, we say that the
specification is canonical.

Given an algebraic specification <Σ, E>, there may exist a collection of Σ-algebras that
satisfy the equations. Such an algebra is called a model of the specification. The semantics of
algebraic specification language determines which of the models or which subset of the
models is what we mean by correct implementation.

The loose semantics of a specification is the whole class of models satisfying the axioms. A
loose semantics may contain trivial implementations as 'correct' implementation. Such
models cannot be easily ruled out using pure or even conditional equations. A solution to this
problem is, therefore, to use a more powerful logic, such as inequations, in the specifications.

The initial algebra semantics defines the semantics of an algebraic specification to be the
initial algebra of the models. An algebra A is an initial algebra in a collection C of algebras, if
for all A’∈C, there is a unique homomorphism ϕ from A to A’, where a mapping from A to A’
is a homomorphism, if

(1) for all sa A∈ , s S∈ , we have that ( ) sa Aϕ ′∈ ; and
(2) for all ,w sσ ∈Σ , w = 1... nw w , and 1 2, ,..., na a a , 

ii wa A∈ , iw S∈ , i=1,2,…,n, we have that

1 ' 1( ( ,..., )) ( ( ),..., ( ))A n A na a a aϕ σ σ ϕ ϕ=

If an initial algebra exists in a collection of models, it is unique up to isomorphism. Initial
algebra is characterised by the fact that all elements of its carriers are the interpretation of a
ground term (known as the no junk property) and that it satisfies only those ground equations
that hold in all models of the algebraic specification (known as the no confusion property).
The initial algebra can be understood through the equality of terms in the algebra as follows
[14].

Proposition 2.3.  In the semantics of initial algebra, two ground terms denote different
objects unless it can be proved from the stated axioms that they denote the same object.
Formally, let <Σ, E> be an algebraic specification, and A be the initial Σ-algebra of the
specification E.

A|= (τ = τ') ⇔ E |− (τ =τ' ) ,
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Notice that, since equational logic is consistent and complete, Proposition 2.3 implies that A|=
(τ = τ') ⇔ E |= (τ =τ' ). This is the so called 'no confusion' property mentioned above.

Final algebra is another frequently used semantics of algebraic specifications. An algebra B is
a final algebra in a collection C of models, if B is not a unit algebra2 and for all models B’ in
the collection there is a unique homomorphism from B’ to B.  The final algebra can also be
understood through the inequality of terms as follows [14].

Proposition 2.4.  In the semantics of final algebra, two ground terms of the same sort denotes
the same object unless it can be proved from the stated axioms that they denote different
objects. Formally, let <Σ, E> be an algebraic specification, and A be the final algebra of the
specification.

A|= (τ = τ') ⇔ (τ =τ' ) is consistent with E.  ,
The difference between the initial algebra and final algebra can be illustrated by the bank
account example given later in Example 3.3 given in section 3.

3 Algebraic Class Testing And The Oracle Problem

In this section, we give a brief introduction to the basic ideas of algebraic class testing and
discuss the applicability of the method by analysing the assumptions underlying the method.
We then discuss the oracle problem in algebraic class testing.

3.1 Basics of algebraic class testing

Figure 3.1 below depicts a conceptual model of the testing activities involved in algebraic
class testing. Algebraic class testing is a specification-based method. Test cases are generated
from the formal algebraic specifications of the classes. These test cases are represented in
terms of the symbols defined in the algebraic specification. To understand these symbols in
the context of the implementation represented as a set of classes, the relationship between the
specification and its implementation must be obtained. In particular, we need a mapping
between the operations and sorts given in the specification and the class identifiers and the
names of the attributes and methods. The class interface can also be considered as a
signature. Such a mapping is then a signature morphism. To execute the classes on the test
cases and to automatically check the correctness of the test executions, test drivers and oracle
must be generated from the implementation. Finally, test cases, test drivers and test oracle
must be put together and executed to produce a test report.

                                                
2 A many-sorted algebra U is a unit algebra, if for all sorts s, the carrier Us is a singleton set.



H Zhu, Validating Algebraic Class Testing in Final Algebra January 16, 2002

7

Figure 3.1. A conceptual model of the activities in algebraic class testing
Although abstract data type is one of the fundamental concepts underlying object-orientation,
there are number of significant and subtle differences between algebras and classes.

(1) State variables and side effects

A class consists of a set of attributes and a set of methods. The attributes represent the state of
an object of the class. The methods change the state according to its current state. A method
may return values according to the parameters and the state as well. The involvement of
states in a method is fundamentally different from the functional nature of algebraic
operations. To resolve this difference, the set of all possible states of an object of the class is
regarded as the carriers of a sort. Here, a class in an object-oriented program corresponds to a
sort in an algebraic specification. When a method is executed, the state of the object before
the execution is considered as one of the operands of the corresponding operation and the
state of the object after executing the method is considered as the result of the operation. This
requires that every operation can have only one occurrence of the sort that represents the state
in the arity of the operation. If a method involves another object of the same class, its arity
does contain a second occurrence of the class' sort. However, it must be made clear in the
definition of the signature of the operation that which one stands for the state and which one
for other objects. Doong and Frankl proposed a very nice syntactic notation for this purpose
in their algebraic specification language LOBAS specially designed for algebraic class
testing. The notation assumes that the state sort is the first sort in the arity and uses a dot and
the method name as the delimiter between the first sort and the rest of the arity. For example,
for the put operator of natural number queues with arity

put : Queue × Nat → Queue;

its type declaration in LOBAS takes the first sort and the result sort Queue as the default and
omitted. Hence, it is declared as follows.

put(x:Nat).

Algebraic specification
<Σ, E>

Implementation
(Classes)

Syntax
analysis

Signature morphism
from Σ to Class

Interface

Test case
generation

Test harness
generation

Run time
support

Test
cases

Test driver &
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Executable
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Test report
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An expression that involves the put operator, such as put(create, 1), is represented
in the LOBAS as follows.

create.put(1)

This notation actually is an extension of the surfix representation of expressions, hence the
sequence of method calls in an expression is the same as the writing order from left to right.

Side effects may occur in the implementation of a class in two forms. Firstly, methods in a
class are not functions by the nature that they have side effects on the states in addition to the
return values. For example, a class that implements queues may well contain a method that
returns the first value and deletes the element from the queue. Such a method cannot be
specified algebraically. A solution to this problem is to split the functionality of the method
into two operations, one for deleting the first element and one for returning the first element.
A consequence is that there are no one-one correspondences between the signature of the
algebraic specification and the class interface. It makes the mapping from a term in algebraic
specification into a sequence of method calls less straightforward. The researchers on
algebraic class testing assumed that such situations do not occur.

Secondly, side effects also occur in the form of changing the state of the method's argument
object. Such side effects cannot be specified by algebraic specifications. Therefore, algebraic
testing is not applicable to classes with such side effects.

(2) System structure

An object-oriented program usually consists of a number of classes. The class under test
cannot be executed in isolation without 'importing' its supporting classes, which may be the
classes of its attributes, the classes of the parameters of the methods, the result class of a
method, or a class used to implement the methods. Obviously, such importing/ supporting
relationship is a pre-order. At the lowest level, there are a number of pre-defined classes, such
as those support input/output facilities, and basic data types such as Boolean, Integer and
Real. The most important property of such importing/supporting relationship is that the
importing class does not modify the semantics of the supporting classes. This is the property
that distinguishes the relationship from inheritance.

By considering classes as sorts, one would expect that an algebraic specification should be
decomposed into units of similar relationship. Unfortunately, existing theories of algebraic
specification do not guarantee such a relationship.

In algebraic specifications, one of the most important system-building operations is
enrichment or extension; see e.g. [12, 13]. A unit of algebraic specification enriches or
extends other unit(s) to compose units together and to build new units on the base of existing
ones. The semantics of such an extension is to put all the sorts, operations and their axioms
together. The specification that extends another may have additional operations and/or
axioms defined for the sort(s) already defined in the existing specification units. Therefore,
enrichment is more like the inheritance relationship between classes. In order to simplify the
relationship between specification and implementation, an algebraic specification should be
decomposed into units that resemble the importing / supporting relationship between classes.
Therefore, each unit in the specification should have a main sort and a number of supporting
sorts. The axioms of the unit should not modify the semantics of the supporting sorts that are
defined in other units. In testing a class, only the axioms for the main sort need test rather
than the axioms of supporting sorts. Supporting classes are assumed to be correct or have
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been adequately tested. In particular, a basic class is assumed to have been correctly
implemented by the system, and correctly selected for the specification unit whose main sort
corresponds to the class. Such basic classes must be testable, i.e. observable, in the following
sense.

Definition 3.1 (Observable sort)

In an algebraic specification <Σ,E>, a sort s is called an observable sort, if there is an
operation _ == _ : s×s→Bool such that for all ground terms τ and τ’ of sort s,

E |−( (τ == τ’) = true) ⇔ E |− ( τ=τ’ )

An algebra A is a correct implementation of an observable sort s, if for all ground terms τ and
τ’ of sort s,

A |= (τ=τ’) ⇔ A|= ( (τ == τ’) = true)   ,
As we will show later, the distinction between a main sort and the supporting sorts not only
decides which axioms are to be checked, it also plays a significant role in the derivation of
test oracles. The importing/ supporting relation on the sorts / classes must have the following
properties.

(1) The importing / supporting relation on the sorts/classes is a pre-order ≺  on the sorts so
that 1 2s s≺  means that s1 is a sort that supports sort s2;

(2) For all sorts s∈Σ, s is an observable sort, if there is no sort 's s≺ ;
(3) For all sorts s, s’∈Σ, 's s≺  and s is an observable sort imply that s’ is also an observable

sort.

Having defined the notion of supporting sorts, classification of operators in a canonical
algebraic specification can be formally defined as follows.

Definition 3.2 (Creator, constructor, transformer, and observer)
An operator σ : w1×…× wn→ c is called a creator of sort c, if for all i=1, 2, …, n, wi≠c. In
particular, when n=0, σ : → c is a constant creator of sort c.

An operator σ : w1×…× wn→ c is called a constructor of sort c, if there is at least one i∈{1, 2,
…, n}, such that wi=c, and the operator σ  can appear in at least one normal form of ground
terms.3

An operator σ : w1×…× wn→ c is called a transformer of sort c, if there is at least one i∈{1,
2, …, n}, such that wi=c, and the operator σ  cannot appear in any normal form of ground
terms.

An operator σ : w1×…× wn→ s is called a observer of sort c, if there is at least one i∈{1,
2,…, n}, such that wi=c, s≠c and s c≺ . ,

Obviously, an operator in a canonical algebraic specification is a creator, or constructor, or
transformer, or observer. Moreover, it can be only one of these types.

The axioms of an algebraic specification should also preserve the pre-order of ‘support’
relation in the following sense.

                                                
3 We also assume that the LOBAS notation is used, i.e. w1 = c for an operator to be a constructor, transformer, or
observer to indicate that the first operand is the state of the class.
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(4) For all sorts s, s’∈Σ, 's s≺  and s’ is directly support s (formally,
" .( ' " " )s s s s s¬∃ ∈Σ ∧≺ ≺ ), there is an observer σ of sort s such that σ : w1×…× wn→ s’;

(5) For all conditional equations ( 'τ τ= , if 1 1 ... k kτ τ τ τ′ ′= ∧ ∧ = ), for all i = 1, 2, ..., k, is s≺
or si is an observable sort, where si is the sort of τi and τi', s is the sort of τ and τ'.

Definition 3.3 (Well structured specification)

A specification <Σ, E> is well structured with respect to ≺ , if it satisfies properties (1) ~(5).
,

3.2 The oracle problem

A basic problem in algebraic testing is to decide if two values of an abstract data type are
equivalent. The following example shows that this is not a trivial problem.

Consider the circular array implementation of queues described in Example 3.1.

Example 3.1 (Circular array implementation of queues)
As depicted in Figure 3.2, a circular array implementation of queues contain an array A, two
integer type variables Head and Tail that give the indices of the head element in the queue
and the tail of the queue, i.e. first available cell in the array for next element.

Figure 3.2 Circular array implementation of queue
The operations on queues are implemented as follows.

Create: creates a new queue and initialises it with Head := 0, Tail:=0, and all the cells of
the array A to be 0.

Put(x): checks if (Tail+1) mod N = head; if yes, it means the queue is full,
otherwise, assign x to A[Tail] and then increase Tail by 1. Here, increase X by 1
means that X := (X + 1) Mod N.

Get: checks if Head = Tail; If yes, it returns an error message that the queue is empty,
otherwise increase Head by 1.

Front: returns the value in the cell A[Head].
Is_empty: returns true if Head=Tail; otherwise it returns false.
Length: returns the number of elements in the queue, i.e. if Tail ≥ Head then return
Tail – Head else return Tail + N – Head.

Now consider the terms Create and Create.Put(1).Get. They should be equivalent
because both of them are empty queues. However, as shown in Figure 3.3, their internal
representations are quite different, i.e. not identical. ,

Array A

Head Tail

0 1  2 3  4 5  6 7 N−1

X1 X2 X3 X4 ...
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(a) The internal representation after executing Create

(b) The internal representation after executing Create.Put(1).Get
Figure 3.3 Internal representations of circular array implementation of queues

This example shows that determining the equivalence of two values of an abstract data type
may not be so straightforward as comparing the values of the state variables of a class.

Let τ be any ground term, the value of the term in an implementation is denoted by a bτ . A
test oracle for algebraic testing can be defined as a binary relation ≈ on the values. There are
two validity requirements for any oracle of algebraic testing.

(A) For any correct implementation A of a specification E, for any two terms τ1 and τ2, τ1 is
equivalent to τ2 according to the specification E if and only if a b a b1 2τ τ≈ .

(B) For any incorrect implementation A of a specification E, there are at least two terms τ1
and τ2 such that:

(1) τ1 is equivalent to τ2 according to the specification E, but a b a b1 2τ τ≈  is not true; or

(2) τ1 is not equivalent to τ2 according to the specification E, but a b a b1 2τ τ≈  is true.

Notice that whether a given test oracle is valid depends on what does it mean by an
implementation is correct with respect to a specification. In other words, it depends on the
semantics of the specification.

Three approaches have been proposed in the literature to develop or to derive a test oracle
[2].

A.  Inclusion of ≈ in the Formal Specification.

It is often possible to produce a recursive definition of the ≈ by a binary operation _ == _ :
s×s→Bool in the algebraic specification such that x == y if and only if a b a bx y≈ . Therefore,
when the specification is canonical, the defining axioms of == can be considered as an
abstract definition of the algorithm for ≈. An oracle can be derived from the axioms
automatically. It should be noticed that such an oracle would inevitably use the
implementations of other operators defined in the class. Errors in the implementation of these
operators will propagate to the test oracle ≈. Such error propagation can help detecting the

Array A

Head Tail

0 1 2 3 4 5 6 7 N−1

0 0 0 0 ...01 0 0

Array A

Head Tail

0 1 2 3 4 5 6 7 N−1

0 0 0 0 ...00 0 0
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errors as well as masking the errors. In other words, the validity requirement B of such
oracles cannot be guaranteed although the validity requirements A can be satisfied provided
that the specification of the oracle is correct.

B.  Implementation of ≈ as a Part of the Class.

The approach A can be viewed as writing the oracle at specification level. Another approach
to the oracle problem is to write the code at implementation level. A method
EQN(x:S):Bool can be written for each class S that returns true if and only if the object
x's value is equivalent to the value of the object. Generally speaking, such a method can be
implemented correctly with high accuracy if sufficient attention is paid to the representation
of the abstract data type. However, like writing any program code, it could be error-prone no
matter if it is at specification level or at programming level. Therefore, whether the oracle
satisfies the validity requirements A and B depends on the correctness of the code that
implements the oracle.

C.  Reduction of ≈ to Preliminary Classes

Both of the above approaches involve manually writing code for the test oracle. Hence, they
are less automatic. The third approach can achieve a very high degree of automation. To
illustrate the basic idea of the approach, consider the following example.

Example 3.2 Two natural number queues q1 and q2 should be equivalent, if we apply the
following operations to them and generate equivalent results:

length(x):   length(q
1
) = length(q

2
);

front(x):   front(q
1
) = front(q

2
);

is_empty(x): is_empty(q
1
) = is_empty(q

2
);

front(pop(x)): front(get(q
1
)) = front(get(q

2
));

is_empty(pop(x)): is_empty(get(q
1
)) = is_empty(get(q

2
));

…
front(getk(x)): front(getk(q

1
))=front(getk(q

2
));

is_empty(getk(x)): is_empty(getk(q
1
)) = is_empty(getk(q

2
));

…

where get1(x) = get(x), getk+1(x)=get(getk(x)). ,

Notice that, the results of applying the operations given in Example 3.2 are natural numbers.
We should be able to determine the equivalence between two natural numbers if the natural
numbers are implemented by a basic class of the programming language and there is a correct
implementation of the = operation. By applying such operations, we actually reduced the
problem of determining the equivalence between two values of an abstract data type to the
equivalence of values in a basic data type. The equivalence between values of a basic type
can be easily and effectively decided. These operations are called observation contexts.

Researchers on algebraic testing are in favour of this approach because it can achieve a high
degree of automation in oracle derivation. However, similar to the first two approaches, the
correctness of such test oracles depends on the correctness of the implementation of the
operations. In other words, the errors in the implementation of the operations may propagate
to the oracle. Therefore, it may mask the errors as well as help detecting errors. An example
of error masking in an incorrect implementation of the natural number stacks is given by
Bernot, Gaudel and Marre [7]. In other words, the validity requirements B cannot be
guaranteed by this approach. One would expect that the observation context approach
satisfies the validity requirement A. Unfortunately, it is not true. Consider the following
counterexample, which originates from Chen, Tse, et al. [4].
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Example 3.3 (Bank accounts) Consider the following algebraic specification of bank
accounts.
Spec Account

Sorts: Account, Money, String;
Operations:

overdrawn: → Money;
new(_): String → Account;
_.name: Account → String;
_.addr: Account → String;
_.bal: Account → Money;
_.setAddr(_): Account × String → Account;
_.credit(_) : Account × Money → Account;
_.debit(_): Account × Money → Account;

Variables:
S: String; A: Account; M: Money;

Axioms:
A1: new(S).name = S
A2: new(S).addr = nil
A3: new(S).bal = 0
A4: A.credit(M).bal = A.bal + M
A5: A.debit(M).bal = A.bal - M, if A.bal≥M
A6: A.debit(M).bal=overdrawn, if A.bal<M
A7: A.setAddr(S).bal = A.bal
A8: A.credit(M).addr = A.addr
A9: A.debit(M).addr = A.addr
A10: A.setAddr(S).addr = S
A11: A.credit(M).name = A.name
A12: A.debit(M).name = A.name
A13: A.setAddr(S).name = A.name

end

Now consider the following two terms of the sort Account.

u1: new('John').setAddr('2 Univ Drive').credit(1000). debit(200)

u2: new('John').setAddr('2 Univ Drive').credit(800)

Chen and Tse et al. noticed that the equivalence of the terms u1 and u2 couldn’t be proved in
equational logic from the axioms. However, even if the implementation is correct, the
difference between the two terms cannot be detected by observation contexts for the
following reasons. There are three observers of the sort Account: _.name, _.addr, and
_.bal. It is easy to see that for all observable context oc of sort Account, u1.oc == u2.oc.
In other words, u1 ≈ u2. ,

Chen and Tse, et al. correctly pointed out that the conflict between u1 ≠ u2 and u1 ≈ u2 in the
above example is a fundamental problem of the observation context approach to test oracle.

3.3 Main contribution of the  paper

A clue to the problem is that whether two terms should be consider as equivalent depends on
the semantics of the specification. For the bank account example given in Example 3.3, in the
final algebra semantics, we have that u1 = u2 because the equation u1 = u2 is consistent with
the axioms. However, in the initial algebra semantics, we have that u1 ≠ u2 because we cannot
derive the equation from the axioms in equational logic. This difference between initial and
final semantics has a significant impact on the validity of test oracles. The above example
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actually shows that the test oracle based on observation contexts is invalid, hence not
suitable, for testing software against the initial semantics of algebraic specifications.

The main result of the paper to be proved in the next section is that the oracle based on
observation contexts is valid for testing object-oriented software against an algebraic
specification if and only if the semantics of the algebraic specification is the final algebra.

4 Validation of Observation Context Oracles

This section first review the notion of observation context proposed by Gaudel et al. [7, 8]
and further developed by Chen and Tse, et al. [4]. It then proves that test oracles based on
observation contexts are valid for testing final algebras.

4.1 Observable equivalence

Let <Σ,E> be an algebraic specification, and a Σ-algebra A be an implementation of the
specification. We assume that the specification is well structured and ≺  is the support
relation between the sorts.

Definition 4.1 (Observable context)
An observable context oc of sort c is a context oc[ ] whose ,  place is of sort c and the result
sort is s c≺ . To be consistent with our notation for operators, we write _.oc: c→s to denote
such an observable context oc[ ].

An observable context sequence of a sort c is the sequential composition _.oc1.oc2. ….ocn of
a sequence of observable contexts oc1, oc2, …, ocn , where _.oc1: c→s1, _.oci: si−1→si, for all
i =2,…,n . An observable context sequence is primitive, if the sn is an observable sort. ,

In other words, an observable context oc of sort c is either an observer of the sort c, or a
context whose top-most operator is an observer of the sort c. The general form of an
observable context oc is as follows:

_.f1(...).f2(...).....fk(...).obs(...)

where f1, ..., fk are constructors or transformers of sort sc and obs is an observer of sort c,
f1(...), ..., fk (...) are ground terms. A primitive observable context produces a value in an
observable sort.

It is worth noting that there are usually an infinite number of different observation contexts
for a given algebraic specification.

Obviously, for a well structured system, we have the following property.

Lemma 4.1 In a well structured system, we have that:
(1) For any sort c, all observable context sequences of sort c are of finite length.
(2) For all observable context sequences ocs, ocs can be extended to a primitive observable

context sequence.

Proof. It follows the facts that the set of sorts is finite and the support relation is a pre-order
on the sorts. ,

For example, assume that Nat is implemented by a pre-defined class integer and there is an
operation for test equivalence between two integer values. Nat is, then, an observable sort.
length(x), is_empty(x) and front(x) are observers of Queue. The operations
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length(x), front(x), is_empty(x), front(getk(x)) and is_empty(getk(x)),
for all k =1, 2, …, given in Example 3.2 are observable contexts of sort Queue. Since there
are only three sorts in the specification of natural number queues and Nat and Bool support
Queue, we have that the queue specification and its implementation is well structured.

Definition 4.2 (Observational equivalence of terms)
Given a canonical specification <Σ, E>, two ground Σ-terms u1 and u2 are said to be
observational equivalent (denoted by 'u1~obs u2') if and only if the following condition is
satisfied.

(1) The normal forms of u1 and u2 are identical, if the sort s of u1 and u2 is observable;
otherwise,

(2) for all observation contexts oc of sort s, u1.oc and u2.oc are observationally equivalent.
,

The following two lemmas are from Chen, Tse, et al. Their proofs can be found in [4].

Lemma 4.2 Given a canonical specification <Σ, E>.

(1) Two ground Σ-terms u1 and u2 of an observable sort s are observationally equivalent, if
and only if their normal forms are identical.

(2) Two ground Σ-terms u1 and u2 of a non-observable sort s are observationally equivalent, if
and only if for all primitive observable context sequence ocs, the normal forms of u1.ocs and
u2.ocs are identical. ,
Lemma 4.3 (Subsume relationship theorem)

Given a canonical specification <Σ, E>, for all ground terms τ and τ' of same sort, we have
that E|− τ=τ' implies that τ ~obs τ'; but the converse is not always true. ,

The specification of bank account given in Example 3.3 is a counterexample of the converse
of Lemma 4.3.

4.2 Characteristic theorem

The importance of Lemma 4.3 is that it proves that observational equivalence is not always
the same as the equivalence relation in the initial algebra; see Proposition 2.3. We now prove
that observational equivalence is the same as the equivalence relation in the final algebra.

Lemma 4.4 The relation ~obs is an equivalence relation on the set WΣ of ground Σ-terms.

Proof. The statement follows Lemma 4.2. The proof is straightforward. ,
Theorem 4.1 (Congruence theorem of observationally equivalence)
For a well structured canonical specification <Σ, E>, the observational equivalence relation
~obs is congruent with the operations in the specification <Σ, E>.

Proof. We only need to prove that for all context C[ ], u1 ~obs u2 implies that C[u1] ~obs C[u2].

If the context C[ ] itself is a primitive observable context sequence, then by Definition 4.2,
we have that C[u1] and C[u2] have identical normal form. Being a primitive observable
context sequence, the sort of C[...] is observable. By Definition 4.2, we have that C[u1] ~obs
C[u2].
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If the context C[ ] is not a primitive observable context sequence, by the definition of well
structured systems, the context can be extended to primitive observable context sequences
ocs. For all such primitive sequences ocs, C[u1].ocs can be written in the form of u1.C.ocs. By
Lemma 4.2, since u1 ~obs u2 , the normal form of u1.C.ocs is identical to the normal form of
u2.C.ocs. By Lemma 4.2, we have that u1.C ~obs u2.C. That is C[u1] ~obs C[u2]. ,

From the proof of Theorem 4.1, it is easy to see the attribute equivalent relation ~att defined in
[4] is not congruent to the operations in the specification <Σ, E>, because the context C[...]
can be a constructor rather than an observer.

Definition 4.3 (E-congruence)
A congruence ~ on algebra A is said to be an E-congruence, if for each conditional equation
in E,

'τ τ= , if 1 1 2 2( ) ( ) ... ( )k kτ τ τ τ τ τ′ ′ ′= ∧ = ∧ ∧ =

and for all assignments ϕ in the algebra A, a b a b~ '
ϕ ϕ

τ τ , if

a b a b a b a b a b a b1 1 2 2( ~ ) ( ~ ) ... ( ~ )k kϕ ϕ ϕ ϕ ϕ ϕ
τ τ τ τ τ τ′ ′ ′∧ ∧ ∧ .

Theorem 4.2 (E-congruence theorem)

Given a well structured specification <Σ, E>. The observational equivalence relation ~obs
defined on ground terms is E-congruence.

Proof. We prove by structured induction on the sort s of the terms τ and τ’ in the equation

'τ τ= , if 1 1 2 2( ) ( ) ... ( )k kτ τ τ τ τ τ′ ′ ′= ∧ = ∧ ∧ =

Let si be the sort of the terms τi and τ’i in the above equation. Let µ be any ground
substitution.

(1) If the sort s is observable, by Definition 3.3, for all i = 1, 2, …, k, si is observable.
Therefore, by Lemma 4.2, ( ) ~ ( ' )i obs iµ τ µ τ ⇔E|− ( ) ( )i iµ τ µ τ ′= . Thus, we have that
E|− ( ) ( )µ τ µ τ ′= . Since s is observable, we have that ( ) ~ ( ')obsµ τ µ τ .

(2) Suppose that for all sorts s’ that 's s≺  or s’ is observable, we have that for all terms τ1

and τ2 of sort s’, 1 2( ) ~ ( )obsµ τ µ τ ⇒ E|− 1 2( ) ( )µ τ µ τ= . Then, we have that

1 1( ) ~ ( ) ... ( ) ~ ( )obs k obs kµ τ µ τ µ τ µ τ′ ′∧ ∧  ⇒ 1 1| ( ) ( )E µ τ µ τ ′− = ... | ( ) ( )k kE µ τ µ τ ′∧ ∧ − = .

Therefore, in equational logic, we have that E|− ( ) ( )µ τ µ τ ′= . By Lemma 4.3, we have that
( ) ~ ( ')obsµ τ µ τ . ,

Corollary of Theorem 4.2.

Given a well structured canonical specification <Σ, E> and its final algebra B, for all ground
terms τ and τ', τ ~obs τ' imply that B|=τ=τ'.

Proof. Let B be the final algebra of all <Σ, E>-alengras. By the property of final algebra [14],
we have that, for all E-congruence relation ~ on WΣ which is not a unit algebra, τ ~ τ' imply
that B|=τ=τ'. The statement immediately follows the fact that ~obs is an E-congruence and not
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unit as proved in Theorem 4.2. ,
Theorem 4.3 (Characteristic theorem)

The term algebra WΣ/~obs is the final E-algebra.

Proof. Let <Σ, E> be a well structured canonical specification. Let B be the final algebra of
<Σ, E>.

By the corollary of Theorem 4.2, τ ~obs τ' implies B|=τ=τ'. The following proves that for all
ground terms τ and τ', B|=τ=τ' implies that τ ~obs τ'. Let τ , τ' ∈WΣ,s and B|=τ=τ'.

(1) If the sort s is observable, by Definition 3.1, we have that B|=τ=τ' if and only if E|−τ=τ'.
Since the specification is canonical, we have that the normal forms of τ and τ' are identical.

(2) If the sort s is not observable, the statement B|=τ=τ' is equivalent to the statement that
a b a b'B B
τ τ= . Let _.ocs be any primitive observable context sequence. We have that

a b a b a b a b. ' .
B B B B

ocs ocsτ τ= . Thus, a b a b. '.
B B

ocs ocsτ τ= , or equivalently, B|= τ.ocs=τ'.ocs.
Since the sort of the terms τ.ocs and τ'.ocs are observable, by the proof (1) above, we have
that τ.ocs and τ'.ocs have the identical normal forms.

Therefore, by Lemma 4.2, in both cases, τ ~obs τ'. ,

4.3 Testing Final Algebras

To understand how observational equivalence can be applied to testing final algebras, we
need to know if two observationally equivalent terms will be observationally equivalent
objects.

Definition 4.4 (Observably equivalent objects)

Two objects a1 and a2 of sort s are observably equivalent, written a1≈obs a2, if they satisfy the
following conditions.

(1) a1 == a2, if s is an observable sort;
(2) for all observable contexts oc of the sort s, a1.oc ≈obs a2.oc, if s is not an observable sort.

,

Let τ and τ' be any given ground terms. The validity requirements require that, first,
a b a b. '.obsA A

oc ocτ τ≈ , for all observable context oc, if the semantics of the algebraic
specification <Σ, E> requires that a correct implementation A|=τ=τ'. Second, for some
observable context oc, a b a b. '.obsA A

oc ocτ τ≈/ , if the semantics of the algebraic specification
<Σ, E> requires that a correct implementation A|= τ≠τ'. The following theorem formally
proves these properties for final algebra semantics.

Theorem 4.4 (Validity theorem)

Let <Σ, E> be a well structured canonical specification. An algebra A of the specification is
the final algebra, implies that A satisfies the following conditions.

(1) Equivalence criterion: For all ground terms τ and τ’, τ ~obs τ’ implies that
a b a b, 'obs AA A
τ τ≈ ;
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(2) Nonequivalence criterion: For all ground terms τ and τ’, not (τ ∼obs τ’) implies that
a b a b, 'obs AA A
τ τ≈/ ;

Proof.  We only need to prove that A is the final algebra implies that for all ground terms τ
and τ’, τ ~obs τ’ ⇔ a b a b, 'obs AA A

τ τ≈ .

First, note that A is isomorphic to WΣ/~obs. Let θ be the isomorphism between these two
algebras. Second, note that for all ground terms τ, a b ~([ ] )

A
τ θ τ= , where [τ]~ is the

equivalence class of t under the relation ~obs.

For all ground terms τ and τ’, we have that τ ~obs τ’ ⇔ [τ]~=[τ’]~ ⇔ θ( [τ]~) = θ([τ’]~) ⇔
a b a b'A A
τ τ= ⇔ A|= τ=τ’ ⇒ a b a b, 'obs AA A

τ τ≈ . Thus, τ ~obs τ’ ⇒ a b a b, 'obs AA A
τ τ≈ .

To prove that a b a b, 'obs AA
τ τ≈ ⇒ τ ~obs τ’, consider the sort s of the terms τ and τ’. If s is

observable, by Definition 3.1 and Definition 4.4, we have that a b a b, 'obs AA
τ τ≈ ⇒ A|= τ=τ’. By

Definition 3.1 and Definition 4.2, we have that τ ~obs τ’. If the sort s is not observable, by
Definition 4.4, a b a b, 'obs AA

τ τ≈ implies that that for all primitive observable context sequences
ocs, A|= τ.ocs = τ’.ocs. Since the sort of the terms τ.ocs and τ’.ocs is observable, we have that
E|− τ.ocs = τ’.ocs. By Definition 4.2, we have that τ ~obs τ’.  ,

This theorem formally proves that the observation context oracle satisfies the validity
requirements A for the final algebra semantics. It states that to test a final algebra
implementation A against a well structured canonical specification <Σ, E>, we need to check
for all ground terms τ and τ’ of the same sort so that we can conclude that A is a correct
implementation, if the following conditions are true.

(1) if τ ~obs τ’ is required by the specification, the test oracle reports that a b a b, 'obs AA A
τ τ≈ ;

(2) if τ /∼ obs τ’ is required by the specification, the test oracle reports that a b a b, 'obs AA A
τ τ≈/ .

How to check these conditions has been discussed in [1~4]. This paper proves that the
conclusions one can draw are only valid in final algebra semantics.

5 Conclusion

In this paper, we formally proved that the test oracle ≈obs based on observation contexts
satisfies the validity requirements for correct implementations of well-structured canonical
algebraic specifications if only if the semantics of the specification is the final algebra.
Otherwise, the validity requirement is not necessarily satisfied.

A problem for further research is how to determine if the observation context oracle is valid
when given an algebraic specification. By the characteristic theorem proved in this paper, it is
obvious that if the initial algebra of the specification is isomorphic to the final algebra, the
observation context oracle is valid. Such a specification is semantically complete in the sense
that for all pairs of ground terms τ1 and τ2, equation τ1 = τ2 is consistent with the specification
if and only if it can be derived from the axioms in equational logic. Therefore, the problem
can be transformed into the problem how to determine the semantic completeness of
algebraic specifications. The following questions are of particular importance from practical
point of view. Firstly, is semantic completeness decidable? Secondly, is there a systematic
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(ideally computable) method that enables us to derive a semantically complete specification
from any given specification?
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