POSITION STATEMENT
Can Software Design Benefit from Creative Computing?

Hong Zhu
Department of Computing and Communication Technologies
Oxford Brookes University, Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk

I. INTRODUCTION

Design is one of the most elusive tasks in any engineering
or creative activity. Design problems have been recognized
as wicked [1] or ill-structured [2]. Software design is even
more difficult because software is the most complicated
man-made artifact and system. One of the key characteristics
of design is its creativeness. The question is, therefore, can
design benefit from creative computing? In other words, can
software design be a successful subject of the research on
creative computing?

For a long time, people have been search for design
methodologies so that design can be mastered through
education and learning, even become mechanical and auto-
mated. Researchers in the subject area of Computer Aided
Design (CAD) have developed software tools to support
various design activities in design process but the creativity,
which still relies on human beings.

The research on software design in the past decades has
made some breakthroughs that may lead to a revolutionary
new type of software design tools so that software developers
can benefit from creative computing. These research results
combined with the general theory of design methodologies
may make creativity in software design benefit from au-
tomation. The following briefly examine such theories and
research results in the light of creative computing.

II. DESIGN SPACE

A design space for a particular subject area is a space in
which design decisions can be made. Each concrete design
of an object in the subject domain is then a point in this
space. Therefore, design can be regarded as navigation in
this space. Understanding the design space of a particular
domain plays a significant role in design. In a recent article
[3], Shaw demonstrated the differences between designs
without aware of the design space and designs with explicitly
and systematically exploring a design space. Here, we assert
that design space is also the key to the quest of design as a
subject of creative computing.

A design space can be represented in three forms:

o Multi-dimensional discrete Cartesian space, where
each dimension represents a design decision and its

values are the choices of the decision. However, in
practice, most interesting design spaces are too rich to
represent directly in such a way. Design dimensions
are not independent, so choosing an alternative for one
decision might preclude alternatives for other decisions
or make them irrelevant, as Shaw pointed out [3].

o Instance list, where a number of representative in-
stances of the domain are listed with their design
decisions.

o Tree structure: where nodes represent a design decision
and alternative values of the decision are the branches,
which could also be dependent design sub-decisions
[4].

Since 1970s, computer science has used design spaces
to organize software design knowledge to describe software
architectural components and connectors as well as software
architectural styles.

III. GENERAL DESIGN THEORY

The General Design Theory was proposed by Yoshikawa
in 1980 [5], [6]. It generalizes the notion of design space
in order to achieve design automation. Yoshikawa further
divides a design space into two views: one for the ob-
servable/structural features of the designs, and the other
for functional properties of the designs. These two views
are linked together by the instances of the domain, which
show which combination of properties in structural view is
associated to the combination of properties in the functional
view. By doing so, Yoshikawa demonstrated that two types
of design problems could be solved automatically:

o Synthesis problem: when a set of functional features is
given as requirements, the synthesis problem is to find
a set of the structural features as a solution that meets
the requirements.

o Analysis problem: when an objects structural properties
are given, the analysis problem is to find out its
functional properties.

In computer science, researchers have developed knowl-
edge on how software architectural styles are related to
software quality so that the structural design decisions can
be made to achieve required quality attributes. These can



be understood in the framework of General Design Theory
[7]. Here, the architectural styles are a kind of abstract
representation of design instances and the two views of
design spaces are: the structural features are embodied
in architectural style, while the functional properties are
actually quality attributes. Such knowledge can be easily
transformed into a design space and to apply the General
Design Theory to achieve computational creativity.

However, many other aspects of software design are still
in lack of systematic understanding of the design space.

IV. DESIGN PATTERNS

Design pattern is again a notion borrowed from the
research on general design methodologies, which stems from
architectural design.

A design pattern contains encoded knowledge of design
solutions to recurring design problems. Since 1990, much
work has been reported in the literature on object-oriented
design. Its success in improving OO code design has fostered
research of design patterns in interface design, software ar-
chitecture, security, requirements analysis, software process,
fault tolerant design, etc. However, most of the design pat-
terns are represented informally in the so-called Alexander
format and thus suffering from ambiguity in interpretation
and difficulty to apply.

In the past decade, much research effort has been reported
in the literature on formalization of OO design patterns.
More recently, we have proposed a set of operators on design
patterns for pattern composition [8] and a complete set of
algebraic laws that these operators obey [9]. In these oper-
ators, pattern oriented design decisions can be represented
formally and the result of design decisions can be worked
out automatically. Moreover, with the algebraic laws, the
equivalence between different pattern expressions can be
proven formally and automatically through a normalization
process. This sheds a new light to the automation of pattern-
oriented software design.

However, there is still a huge gulf to achieve software
design as a successful subject of creative computing. First,
existing formalization of design patterns has focused on the
solutions of patterns. How to formalize the intensions of
design patterns is still an open problem. Only if intensions
of design patterns can be formalized and automatically
recognized from the design problem, automatic selection of
design patterns can be automated.

Second, the formalization of design patterns has been
limited to object-oriented code design. How to formalize
patterns of other design aspects remains open.

V. DIRECTIONS OF RESEARCH

We believe that formalization of design knowledge and
representing it into an encoded format such as design space
are necessary for software design as a subject of creative

computing. Two approaches have been proposed and inves-
tigated, but mostly separately: the design space approach
and the design pattern approach. Whats important for future
research are

1) Formalisation of the intension of design patterns so
that the knowledge of design patterns can fit into
the framework of General Design Theory, thus enable
both synthesis and analysis design problems be solved
computationally.

2) Generalisation of the formal theory of OO design to
the patterns of other software design aspects so that a
wide range of software design issues and aspects can
be computed.

3) Representation of software architectural styles in the
framework of General Design Theory.

An approach to achieve these goals is to regard design
patterns as hot spots in design spaces, so that design
knowledge in the framework of the general design theory
can be unified with the formal algebra of design patterns.
A general purpose design space definition language and its
computational implementation will provide a bridge to the
future.

REFERENCES

[1] H.J. Rittel and M. M. Webber, “Planning problems are wicked
problems,” in Developments in Design Methodology, N. Cross,
Ed. Wiley, 1984, pp. 135-144.

[2] H. A. Simon, “The structure of ill-structured problems,” Arti-
ficial Intelligence, vol. 4, pp. 181-200, 1973.

[3] M. Shaw, “The role of design spaces,” IEEE Software, vol. 29,
no. 1, pp. 46-50, Jan. 2012.

[4] E. J. Brooks, The Design of Design: Essays from a Computer
Scientist. Addison-Wesley, 2010.

[5] H. Yoshikawa, “General design theory and a CAD system,” in
Man-Machine Communication in CAD/CAM, Proceedings of
the 1980 IFIP WG5.2-5.3 Working Conference, Tokyo, Japan,
T. Sata and E. Warman, Eds. North-Holland, 1981, pp. 35-57.

[6] Y. Kakuda and M. Kikuchi, “Abstract design theory,” Annals
of the Japan Association for Philosophy of Science, 2001.

[71 H. Zhu, Software Design Methodology - From Principles to
Architectural Styles. Elsevier, 2005.

[8] L. Bayley and H. Zhu, “A formal language for the expression
of pattern compositions,” International Journal on Advances
in Software, vol. 4, no. 3&4, pp. 354-366., 2011.

[9] H. Zhu and 1. Bayley, “An algebra of design patterns,” ACM
Transactions on Software Engineering and Methdology, 2012,
(In press).



