
Position Statement: Can Testing Prove Software Has No Bug?

Hong Zhu
Department of Computing and Communication Technologies, Oxford Brookes University

Oxford OX33 1HX, UK, e-mail: hzhu@brookes.ac.uk

 “Program testing can be used to show the presence of
bugs, but never their absence”, Dijkstra alleged in 1972 [1].
However, software engineers have never stopped testing in
practice. Instead, more emphasis has been put on software
testing in modern software development methodologies, such
as the so-called test-driven approach in agile methodologies
[2]. Over many years of practice in software engineering, it
is widely recognized that confidence in software systems can
be gained from systematic testing. The question is whether
there is a theoretical foundation to this claim.

Addressing this problem, in 1975, Goodenough and
Gerhart made a significant breakthrough by proposing the
notion of test adequacy criteria [3]. Since then, a large
number of adequacy criteria have proposed and investigated
C.f. [4]. Several theories have also been advanced in attempt
to prove that testing can guarantee software correctness.
These theories fall into two categories.
• Statistical theories. Consider the case when test cases are

selected at random. The basic idea of this approach is: if a
software system passes certain number of random tests, the
reliability of the software system can be asserted with
certain confidence according to the mathematical theory of
probability and statistics.

• Fault elimination theories. This is based on the assumption
that there are only a limited number of ways that a software
system can contain faults. When the software passes a test
case successfully, it can be regarded as eliminating certain
possible faults in the system. After passing a large number
of well selected test cases, most possible faults of the
software can be eliminated. Fault-based software testing
methods (such as mutation testing and perturbation testing)
and error-based testing methods (such as category
partitioning testing) have been advanced.

However, none of these two approaches can lead to a
definite answer to the foundation problem of software test.
Thus, we have proposed an inductive inference theory [5]. It
regards software testing as an inductive inference process.
Indeed, testing is induction because a tester observes a
software system’s correctness on a finite number of test
cases and then tries to conclude that the system is correct on
all inputs. However, in practice, such inference is done
implicitly, even omitted completely.

There are a number of different computational inductive
inference models that have been studied in the literature. One
of the most well-known is identification in the limit.
Applying this model to software testing led to results relating
testing to software correctness. Here is a brief summary of
the main results.

Let M be an inductive inference device, and a = a1, a2, ... ,
an, ... be an infinite sequence of instances of a given rule f.

Let fn =M {(a1 , a2 ,..., an) }. If there is a natural number K
such that for all n, m ≥ K, fm = fn, then we say that M
converges to fK on a and that M behaviorally identifies f
correctly in the limit by M. If the fK=f, we say that M
explanatorily identifies f correctly in the limit. A set P of
rules is behaviorally (or explanatorily) learnable by M, if for
all f∈P, f is behaviorally (or explanatorily) learnable by M.

For example, the set of one-variable polynomials is an
explanatorily learnable set of functions. More examples of
learnable rule sets can be found in [6].

The notions of software testing can be interpreted in the
terminology of inductive inference as follows. A program
under test is interpreted as a rule to learn. A test case is
interpreted as an instance of the rule. A test set is then a set
of instances. Consider P to be a set of functions on a domain
D of input values such that both the program p under test and
its specification s are included in P. With this interpretation,
in [5], we have proved the following result.
Proposition 1. Let P be a behaviourally learnable set of
functions on a domain D. Let | . | be a complexity measure
of the elements in D such that for any natural number N the
subset {x∈D | |x|≤N} is finite. Then, for all functions p, s
∈ P, there exists a natural number N such that p≡s, if and
only if p(x)=s(x) for all x∈D where |x|≤N.

This theorem states that the correctness of a software
system can be validated by testing on a finite number of test
cases provided that the program and specification are in a
learnable set of functions. Moreover, such testing can be
performed without writing down a formal specification. This
lays a foundation of the current practice of software testing
where formal specifications are not available. This theorem
implies that what current testing practice lacks is an analysis
of the “complexity” of the program to determine a learnable
set within which the program and the specification vary.

REFERENCES

[1] E. W. Dijkstra, Notes on structured programming. In Structured
Programming, by O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare,
Academic Press. 1972.

[2] Beck, K. Test-Driven Development, Addison Wesley, 2003.
[3] J. B. Goodenough, AND S. L. Gerhart, Toward a theory of test data

selection. IEEE Trans. Softw. Eng. SE-3, June 1975.
[4] Zhu, H., Hall, P. and May, J., Software unit test coverage and

adequacy, ACM Computing Survey, 29(4), Dec. 1997, pp366~427.
[5] Zhu, H., A formal interpretation of software testing as inductive

inference, Journal of Software Testing, Verification and Reliability 6,
July 1996, pp3~31.

[6] Case, J. & Smith, C., (1983) ‘Comparison of identification criteria for
machine inductive inference’, Theoretical Computer Science, 25(2),
193~220.

