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 “Program testing can be used to show the presence of 
bugs, but never their absence”, Dijkstra alleged in 1972 [1]. 
However, software engineers have never stopped testing in 
practice. Instead, more emphasis has been put on software 
testing in modern software development methodologies, such 
as the so-called test-driven approach in agile methodologies 
[2]. Over many years of practice in software engineering, it 
is widely recognized that confidence in software systems can 
be gained from systematic testing. The question is whether 
there is a theoretical foundation to this claim.  

Addressing this problem, in 1975, Goodenough and 
Gerhart made a significant breakthrough by proposing the 
notion of test adequacy criteria [ 3 ]. Since then, a large 
number of adequacy criteria have proposed and investigated 
C.f. [4]. Several theories have also been advanced in attempt 
to prove that testing can guarantee software correctness. 
These theories fall into two categories.  
• Statistical theories. Consider the case when test cases are 

selected at random. The basic idea of this approach is: if a 
software system passes certain number of random tests, the 
reliability of the software system can be asserted with 
certain confidence according to the mathematical theory of 
probability and statistics.   

• Fault elimination theories. This is based on the assumption 
that there are only a limited number of ways that a software 
system can contain faults. When the software passes a test 
case successfully, it can be regarded as eliminating certain 
possible faults in the system. After passing a large number 
of well selected test cases, most possible faults of the 
software can be eliminated. Fault-based software testing 
methods (such as mutation testing and perturbation testing) 
and error-based testing methods (such as category 
partitioning testing) have been advanced.  

However, none of these two approaches can lead to a 
definite answer to the foundation problem of software test. 
Thus, we have proposed an inductive inference theory [5].  It 
regards software testing as an inductive inference process. 
Indeed, testing is induction because a tester observes a 
software system’s correctness on a finite number of test 
cases and then tries to conclude that the system is correct on 
all inputs. However, in practice, such inference is done 
implicitly, even omitted completely.  

There are a number of different computational inductive 
inference models that have been studied in the literature. One 
of the most well-known is identification in the limit. 
Applying this model to software testing led to results relating 
testing to software correctness. Here is a brief summary of 
the main results. 

Let M be an inductive inference device, and a = a1, a2, ... , 
an, ... be an infinite sequence of instances of a given rule f. 

Let fn  =M {(a1 , a2 ,..., an) }. If there is a natural number K 
such that for all n, m ≥ K, fm = fn, then we say that M 
converges to fK on a and that M behaviorally identifies f 
correctly in the limit by M. If the fK=f, we say that M 
explanatorily identifies f correctly in the limit. A set P of 
rules is behaviorally (or explanatorily) learnable by M, if for 
all f∈P, f is behaviorally (or explanatorily) learnable by M.  

For example, the set of one-variable polynomials is an 
explanatorily learnable set of functions. More examples of 
learnable rule sets can be found in [6]. 

The notions of software testing can be interpreted in the 
terminology of inductive inference as follows. A program 
under test is interpreted as a rule to learn. A test case is 
interpreted as an instance of the rule. A test set is then a set 
of instances. Consider P to be a set of functions on a domain 
D of input values such that both the program p under test and 
its specification s are included in P. With this interpretation, 
in [5], we have proved the following result.  
Proposition 1. Let P be a behaviourally learnable set of 
functions on a domain D. Let | . | be a complexity measure 
of the elements in D such that for any natural number N the 
subset {x∈D | |x|≤N} is finite. Then, for all functions p, s 
∈ P, there exists a natural number N such that p≡s, if and 
only if p(x)=s(x) for all x∈D where |x|≤N.  

This theorem states that the correctness of a software 
system can be validated by testing on a finite number of test 
cases provided that the program and specification are in a 
learnable set of functions. Moreover, such testing can be 
performed without writing down a formal specification. This 
lays a foundation of the current practice of software testing 
where formal specifications are not available. This theorem 
implies that what current testing practice lacks is an analysis 
of the “complexity” of the program to determine  a learnable 
set within which the program and the specification vary.  
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