
Specifying Behavioural Features of Design
Patterns in First Order Logic

Dr Ian Bayley and Prof Hong Zhu,
Oxford Brookes University

30th July 2008
COMPSAC ’08, Turku, Finland

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Introduction to Design Patterns

Purpose is to “capture design experience in a form that
people can use effectively”

eg for reusability, testability, modifiability (non-functional)

23 patterns in GoF book eg Template Method

informal English plus indicative UML diagrams
class diagrams for structural features
sequence diagrams for behavioural features

Formal model of UML specified in GEBNF

BNF Graphically Extended for references
predicates induced to inspect model
pattern is a first-order predicate on models

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Example of a Class Diagram (Visitor)

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Class Diagrams I

ClassDiagram ::=

classes : Class+,

assocs : Rel∗, inherits : Rel∗,CompAg : Rel∗

Rel ::=

[name : String], source, end : End

Class ::=

name : String , [attrs : Property∗],

[opers : Operation∗]

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Class Diagrams II

Operation ::=

name : String , [params : Parameter∗],

[isQuery : Boolean], [isLeaf : Boolean],

[isNew : Boolean], [isStatic : Boolean],

[isAbstract : Boolean]

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Class Diagrams III

Parameter ::=

[direction : ParameterDirectionKind],

[name : String], [type : Type],

[mult : MultiplicityElement]

ParameterDirectionKind ::=

“in” | “inout” | “out” | “return”

MultiplicityElement ::=

[upperValue : Natural | “ ∗ ”],

[lowerValue : Natural]

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Class Diagrams IV

Property ::=

name : String , type : Type, [isStatic : Boolean],

[mult : MultiplicityElement]

End ::=

node : Class, [name : String], [mult : MultiplicityElement]

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Example of a Sequence Diagram (Visitor)

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Sequence Diagrams I

SequenceDiagram ::=

lifelines : Lifeline∗,messages : Message∗,

ordering : (Message,Message)∗

Lifeline ::=

activations : Activation∗,

className : String , [objectName : String],

isStatic : Boolean

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Sequence Diagrams II

Activation ::=

start : Event, finish : Event, others : Event∗

Message ::=

send : Event, receive : Event, sig : Operation

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Defining Constraints on Diagrams

quantification over sets: classes, C .opers, msgs

symbols −−B, −→, �−→
predicates and functions include:

subs(C), isAbstract(C)
m < m′, calls(m,m′), isNew(o), returns(m)
fromAct(m), fromLL(m), fromClass(m)

inter-diagram constraints include that every message to an
activation must be for an operation of a concrete class

∀m ∈ msgs. m.sig ∈ toClass(m).opers ∧ ¬isAbstract(toClass(m)))

can’t be done in OCL and would be far more complex anyway

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Visitor Pattern I

Components

ObjectStructure,Visitor ,Element ∈ classes

visitops ⊆ Visitor .opers

Static Conditions

allAbstract(visitops)

For every kind of element, there’s a unique visit operation for
that element and a unique operation defined only for that
element subclass.

∀E ∈ subs(Element) . ∃!opv ∈ Visitors.opers .

∃!op ∈ E .opers . ¬∃op′ ∈ Element.opers .

op = E .op′

furthermore, denoting the witnesses op and opv by f (E) and
g(E), the functions f and g are total bijections

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Visitor Pattern II

Dynamic Conditions - Antecedent

For every kind of element, if that element is told to accept a
visitor then

∀E ∈ subs(Element) . ∃ma ∈ messages .

ma.sig = accept ∧ toClass(ma) = E ∧
∃l ∈ lifelines . hasParam(ma, l .name) ∧
l .class ∈ subs(Visitor) ⇒

Dynamic Conditions - Consequent

the message came from the object structure and

fromClass(ma) = ObjectStructure∧

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Visitor Pattern III

the message will call the visit operation and

∃mv ,mo ∈ messages .

mv .sig = g(E) ∧mo.sig = f (E)∧

that operation will then call the unique operation for the
element

toLL(mv) = l ∧ calls(ma,mv)

∧calls(mv ,mo) ∧ toLL(mo) = fromLL(mv)

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Class Diagram for Factory Method Pattern

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Factory Method Pattern I

Components

Creator ,Product ∈ classes

factoryMethod ∈ Creator .opers

Static Conditions

factoryMethod .isAbstract

for every creator subclass, there is a product subclass

∀C ∈ subs(Creator) . ∃!P ∈ subs(Product)

furthermore, denoting witness P by f (C), then f is a total
bijection.

Dynamic Conditions

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Formalisation of Factory Method Pattern II

for every creator subclass, the factory method creates a
unique product subclass:

∀C ∈ subs(Creator).

isMakerFor(C ..factoryMethod , f (C))

isMakerFor(op,C) ≡
∃m ∈ messages . m.sig = op ⇒
∃m′ ∈ messages ∧ isNew(m′.sig) ∧
calls(m,m′) ∧ toClass(m′) = C ∧
returns(m) = toLL(m′).name

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Results of Case study

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

Further Work

Tool support for detection of Design Patterns

translate any UML model into logical statements
use SPASS theorem prover to prove the predicate true
class diagrams are easier than sequence diagrams

Define a composition operator

Formalise the intent of Design Patterns

Dr Ian Bayley and Prof Hong Zhu, Oxford Brookes University Specifying Behavioural Features of Design Patterns in First Order Logic

