Application of Hazard Analysis to Quality Modelling

H. Zhu, at al. 05/02/02

Application of Hazard Analysis to Software Quality Modelling

Hong Zhu, Yanlong Zhang, Qingning Huo and Sue Greenwood
Dept of Computing, Oxford Brookes University, Wheatley Campus, Oxford, OX33 1HX, UK
Emails: (hzhu | yzhang | ghuo | sgreenwood) @brookes.ac.uk

Abstract

Quality is a fundamental concept in sofiware and
information system development. It is also a complex and
elusive concept. A large number of quality models have
been developed for wunderstanding, measuring and
predicting qualities of software and information systems.
It has been recognised that quality models should be
constructed in accordance to the specific features of the
application domain. This paper proposes a systematic
method for constructing quality models of information
systems. A diagrammatic notation is devised to represent
quality models that enclose application specific features.
Techniques of hazard analysis for the development and
deployment of safety related systems are adapted for
deriving quality models from system architectural designs.
The method is illustrated by a part of web-based
information systems.

1. Introduction

Software quality is a complex and elusive concept [1].
There are dozens, even hundreds, of attributes that are
associated with the quality of software and information
systems. In the past few decades, researchers have built
models to understand, measure and predict the quality of
software and information systems [2]. These models form
general guidelines for the elicitation of users' quality
requirements. They help software designers to seek
technical solutions to achieve required quality. They are
the foundation for effective organisation of quality
assurance activities, for example, testing can be directly
targeted to the quality issues that are important to the
system.

Existing work in the literature on software quality falls
into two categories: quality models and their construction
methods. Among the best known quality models are
hierarchical models, such as the McCall model [3], the
Boehm model [4], and the quality model of ISO 9126 [5].
The SOLE model [6] and its variants are hierarchical
quality models of information systems. They organise the
hierarchic structure according to the views from three
different groups of stakeholders: users, technical staffs and
managers. In [7], a quality model for websites of
universities, called Website QEM, was proposed based on
the users’ view. It breaks down the quality of websites into

more than a hundred attributes. Such models represent the
positive influences between quality attributes, but fail to
represent more complicated relationships. Relational
models, such as the Perry model [§] and the Gillies model
[2, 9], characterise the relationships between quality
attributes by a number of stereotypes of relations,
including positive, negative and neutral impacts of one
attribute on another. Quantitative models of software
quality usually appear in the form of software quality
metrics so that the measurement of quality on an attribute
is calculated from measurements of other attributes; cf.
[10,11]. Existing quality models were intended to be
comprehensive and applicable to all software
development. However, as pointed out in [1], there can be
no single and simple measure of software quality
acceptable to everybody. Every software system may have
its own quality concerns [12]. Special requirements of the
application must be considered in the use of quality
models [12,13]. With the ever-growing range of computer
applications, software engineers are seeking for quality
models that can provide useful insight information not
only for quality management, but also for supporting other
development activities. How to develop such quality
models remains an open problem.

Existing quality models are constructed based on many
years’ experience in the development and maintenance of
software and information systems. The validation of such
models is by empirical studies, by analysing data collected
from questionnaires and interviews, for example [8]. A
systematic method is necessary to construct testable,
assessable, and refineable quality models for different
software products and key products of software
development. In [14, 15], Dromey proposed a generic
quality model and a process to systematically develop
software quality models. The generic quality model
consists of three principal elements: product properties
that influence quality, a set of high-level quality attributes,
and a means of linking them. The generic model is
instantiated and refined for a particular software product
through a five-step model construction process. Dromey
demonstrated the application of the method to software
requirements definition, design and implementation.
Recently, Bansiya and Davis [16] also applied the method
to build a hierarchical model of object-oriented design
quality. Although Dromey correctly recognised that a

To appear in Proc. of COMPSAC’02

Application of Hazard Analysis to Quality Modelling

H. Zhu, at al. 05/02/02

quality model must be built through quality-carrying
properties of the components of the software product, the
applications of the method only produced universal quality
models. The specific features of the application area and
system design and implementation were not considered.
The card sort method proposed in [17] to elicit the quality
attributes of web-based applications provided a partial
solution to the problem. A shortcoming of the approach is
that it can only be applied after the completion of the
development of the web site.

In [18, 19], we proposed a method to systematically
derive quality models from architectural designs of
information systems. It adapted hazard analysis methods
to enable software engineers systematically identify
certain types of quality attributes and the quality carrying
properties of each component and connector, and to
establish the links between them. Case studies of the
methods have been carried out for b-to-c and b-to-b e-
commerce systems. These case studies have demonstrated
the applicability and a number of advantages of the quality
modelling method. First, it enables the practitioners and
researchers to develop their own quality models for
individual systems. Second, as many applications in a
specific application domain often share a common
architectural structure, the method can also provide a
quality model for those systems of the same architecture
and in the same application domain. Moreover, the method
is applicable at a relatively early stage of system
development process. Finally, the method can provide
more insight information of the system than existing
quality models and quality modelling methods.

This paper further develops the method by proposing a
new representation of quality models and a process for the
derivation of such quality models. The paper is organised
as follows. Section 2 proposes a diagrammatic notation for
the representation of quality models. Section 3 adapts a
hazard analysis method for the derivation of quality
models from system architectural designs. Section 4
concludes the paper with analysis of the proposed method
and discussion of future work.

2. Representation of quality models

Existing software quality models have been
represented using simple and intuitive notations. For
example, hierarchical models are represented in the form
of a tree with nodes as quality attributes and arcs as
positive relations between the attributes. Relational models
use matrices that each row and column represents a quality
attribute and the values of the matrix represent the
stereotype relations between the corresponding attributes.
Such representations do not refer to any elements of the
software product whose quality is under investigation.
Hence, they are independent of the software product.
These representations are suitable for universal quality
models that are intended to be applicable to all software

systems. Although such models do play significant roles in
software and information system development, quality
models that make no explicit references to the product
specific features have limited usefulness. We believe in
Dromey's principle that abstract quality attributes must be
linked to the tangible software properties through the
quality-carrying properties of each component. However,
in Dromey's method, the model of a software product is
only used as a tool. The result quality models make no
explicit reference to the components of the product. Here,
we argue that how a quality-carrying property of a
component is related to a quality attribute of the system is
important because it provides the sort of insight
information that can significantly improve the usability of
quality models.

For example, safety is an important quality attribute of
safety critical systems. It is of extreme importance for
engineers to understand how faults and failures of the
components are related to the safety of the system. Only
when such information is available, can design solutions
be put forward to eliminate the specific types of faults of
the component and to prevent the occurrences of the
specific types of failure modes that may contribute to
safety. Moreover, testing of the system can then directly
target the safety-related components and events to ensure
system safety.

The quality attributes / quality-carrying properties of a
component, such as usability and maintainability, are
usually abstract. Consequently, the links between two
abstract properties cannot be easily established or
validated. =~ However, abstract properties usually
demonstrate themselves through various concrete events
and observable phenomena, which are tangible and
observable. For example, the poor usability of a web page
is clearly demonstrated if the user cannot find the required
information through the hyperlinks. While relationships
between abstract properties are difficult to establish and
validate, the relationships between observable phenomena
are often self-evidence in the context of the system. For
example, when an HTML file contains a large number of
broken links (i.e. it is incorrect), the usability of the system
will be poor because the user would not be able to find the
information through the hyperlinks. This example shows
that if the observation of one phenomenon implies the
occurrence of another phenomenon, the corresponding
abstract properties must have an implication relationship.
Many authors have used such rationale in the construction
of quality models. Unfortunately, such rationale has never
been included in existing quality models. We believe that
such information is crucial for the testability of the quality
model. For example, in the design and analysis of safety
critical systems, we not only need to know if the system is
safe, we also need to know how the system will behave if
certain event happens. This provides the crucial
information for software testers to develop test cases to

To appear in Proc. of COMPSAC’02

2

Application of Hazard Analysis to Quality Modelling

H. Zhu, at al. 05/02/02

check if the system correctly implements the safety as
designed.

In summary, we identify the following requirements on
the representation of quality models.

Requirements 1: A quality model should explicitly
associate quality attributes / quality carrying properties to
the components of the system.

Requirements 2: A quality model should associate
abstract properties with observable and verifiable
phenomena of the components / system.

Requirements 3: A quality model should be able
present the rationale of the relationships between the
properties. Such rationales can be system specific and
should be able to be verified and validated in the context
of the system.

Therefore, as shown in Figure 1, our proposed
diagrammatic representation of quality models is a
directed graph, which consists of two principal elements:
the nodes and links. Each node contains three basic
elements: (1) the component of the system; (2) the quality-
carrying properties of the component; and (3) the
observable phenomena of the property. The links are
directed arcs between the nodes. A link from node A to
node B means that the observation of the phenomenon on
node A implies the occurrence of the phenomenon on node
B. Each link can contain an optional annotation for the
reasons why the two nodes are related.

Component Component

Property

47

Property

Phenomenon Phenomenon

Reasons

Figure 1. Notation for representation of quality models

Component Component

Property Property

Phenomenon Phenomenon

Figure 2 shows a fragment of a quality model of Web-
based information systems. This fragment of a quality
model only shows that the usability of a web-based system
is related to the correctness, responsiveness, structuredness
of HTML files, compatibility of client-side platform, and
the usability of the online help subsystem. It also indicates
in detail how these properties are related to whether the
user can find the required information. For example, if a
file is of large size, it will have a long response time. If the
response time is longer than the time-out setting, the
browser will regard the requested file as unavailable. It
also shows that the compatibility of the code on the client
side will affect the usability, while the compatibility of the
server side does not. According to this quality model, to
achieve a good usability, the software designer should
make each web page in a reasonable size to avoid
excessive response time. The model also indicates that the
testers should check if there are any broken links in the

Web pages to ensure the usability, and so on. It should be
noticed that, the links between the nodes must be
understood as the implications of one phenomenon to
another, rather than simply the relationship between two
quality attributes. For example, large sized HTML files
may contain less hyperlinks between them than smaller
sized files. This makes the navigation between the files
easier. Consequently, the user may find it is easier to use.
Therefore, it is positively related to the usability of the
system. On the other hand, large sized HTML files will
increase the response time and in extreme cases it may
cause poor usability. Such complexity cannot be
represented in a quality model that only relates two
abstract quality attributes as in hierarchical and relational
models.

Unable to HTML files Need long HTML files

obtain files Correctness time to 4— Structuredness
through Contains transmit -

hyperlinks broken links the files Large size

Web Server

Less nodes

Files are
considered as

Responsiveness means less

System P unavailable Long response links
— when time-out time
Usability
Cannot find p
i HTML files
. requlrefi Unable to get Online Help —
information Navigation
help‘Whe‘n Usability Small number
experiencing - !
difficulty Not available of hyperlinks

The Web Client side System Simpler
page Compatibility Usability hyperlink
cannot be Not executable Easy to find network
displayed on user's required usually easier
platform information to navigate

Figure 2. A fragment of quality model of Web-based systems
3. Derivation of quality models

Our method for the construction of quality models
takes structural models of information systems as input. It
applies hazard analysis methods to derive observable
quality sensitive phenomena of the behaviour of the
components or the system and establishes the causal
relationships between the phenomena. The quality
carrying property / quality attribute that a phenomenon
demonstrates is then identified according to the nature of
the phenomenon. These elements are then assembled
together and represented in the diagrammatic notation
given above.

3.1. Adaptation of hazard analysis method

Hazard analysis techniques have been widely used in
the development and deployment of safety critical systems
that involve computer software or not. Originally, hazard
analysis intends systematically identifying, assessing and
controlling hazards before a new work process, piece of

To appear in Proc. of COMPSAC’02

-3

Application of Hazard Analysis to Quality Modelling

H. Zhu, at al. 05/02/02

equipment, or other activity is initiated. In such a context,
a hazard is a situation in which there is actual or potential
danger to people or to the environment. Associated with
each hazard is a risk, which is related to the likelihood of
the event occurring and its consequences. Once the
hazards are identified and analysed, safety as well as other
quality requirements can be specified for each component.
Risks can be avoided or reduced ultimately through
technical design, management and organisational means.
Consequently, the quality and reliability of the system are
improved [20, 21, 22, 23].

In [18, 19], we adapted the methods of hazard analysis
and extended the concept of hazard to construct quality
models of information systems. In our context, the word
hazard has its widest meaning, which means any situation
that may cause harm. The more likely a hazard occurs and
more serious the consequences of the hazard, the more
important the corresponding quality attribute, and vice
versa.

There are a number of hazard analysis techniques
available in the literature. We are particularly interested in
the FMEA (failure modes and effects analysis) technique.
FMEA progressively selects the individual components or
functions within a system and investigates their possible
modes of failure. It then considers possible causes for each
failure mode and assesses their likely consequences. In the
original FMEA, the effects of the failure are determined
for the unit itself and for the complete system. Possible
remedial actions are also suggested. A simple example of
FMEA is given in Figure 3.

FMEA enables us to identify a system’s potential
failure modes, their possible causes and the consequences.
Each cause of a failure indicates what quality attribute that
the system is sensitive from developer’s point of view.
The corresponding consequences of the failure indicate
what quality attributes the system is sensitive from the
users’ point of view. Both causes and their consequences
are observable phenomena of the system. Therefore, the
relationships between the quality attributes or quality-
carrying properties can be established. However, the
original FMEA chart is ambiguous about which
component causes the failure. As discussed in the previous
sub-section, which component causes the failure is
important for quality models of information systems.
Therefore, to adapt FMEA for analysing software quality,
we modify the FMEA chart to the following format so that
the component that causes a failure becomes clear.
Another modification to FMEA is that the effects of a
failure mode are not charted. There are two reasons for
this. First, we found that for a complicated software
system, the indirect effects such as those at system level
may not be so clear when a component fails. Second,
because indirect effects will be analysed subsequently as
the effect of other failures, the system level effects of a
component failure will eventually emerge from such a
chain of cause-effect. The direct effects of a failure mode
should have been charted if the direct causes of all failure
modes are charted because the 'effect' relation is the
inverse of the relation of 'cause'. Finally, we also included
an explanation column in the SFMEA chart so that the
reasons why a failure mode is caused by another can be

Figure 3. An example of FMEA chart [23]

FMEA for a microswitch .
_ - _ Provided.
No| Unit | Failure | Possible | Local }System | Remedial For example, Figure 4 shows a failure mode that the
mode cause effects effects action . . .
e o — - - - s user cannot find the required information on the Web
00 pen- aulty ailure to |Prevents elect switc : :
guard |circuit component |detect tool |use of for high page. A CEU'JSG of the fa11ur§ mode is charted as that.the
switch |contacts , guardin |machine - |reliability and Web page is unable to obtain a file through a hyperlink.
Excessive 1 1 babilit .
current place EYitemfl Ofvzl probability Two further causes of the failure are charted: (1) the
A hyperlink is broken; (2) the Web server is down. (Notice
. . that, there are more causes of the failure than what have
Extreme Rigid duality been charted in the example.)
temperature cor}trol on ple.
switch
procurement Software FMEA for Web-Based information system
2 Short- Faulty System |Allows Modify Failure mode Possible cause Explanations
circuit component |incorrectly |machine to [software to No K
. Fault / failure
contact - senses be used detect switch Component | Phenomena | Component d
Excessive . mode
guard to |when failure and take
current be closed |guardis |appropriate 1| Theuser |Cannotfind | Webpage |Unableto When the user
absent - action required obtain a file |[searches for
dangerous information through a information by
failure hyperlink browsing through
. hyperlinks
3 Ex,ceshswe Af%emg ghlght. Negligible E“S(;"e 2 | Webpage |Unableto | HTML files |The linkis |The file cannot be
switch-Jeffects clay mn ardware obtain a file broken found due to the
bounce Prolonged sensing design through a broken of the link.
hi state of prevents — hyperlink
igh - 3 P Web Server i The fil tb
guard excessive eb server [Server is e file cannot be
currents d trieved and
current through own retrieved a
switch transmitted.

Figure 4. The format of SFMEA chart

To appear in Proc. of COMPSAC’02

4

Application of Hazard Analysis to Quality Modelling

H. Zhu, at al. 05/02/02

In the application of SFMEA, each of the causes and
consequences of a failure mode become a new entry to the
chart. These causes and consequences are further
investigated until the cause is primitive and the
consequences are terminal. A failure mode is primitive if it
is caused by a fault of a component and its causes cannot
be further identified without additional knowledge about
the system. A failure mode is terminal if it does not effect
any other component of the system or does not cause any
other failures. In the example shown in Figure 4, the
consequence of 'user cannot find required information' can
be considered as terminal. The failure 'broken link' can be
considered as primitive. The failure mode that the server is
down is neither terminal nor primitive. It should be further
investigated for its causes, which might be hackers' attack,
maintenance shutdown, system crash due to software
failure, etc. The consequences of the failure also need
further investigation, which may be more than just that the
user cannot find the information.

3.2. Construction of quality model

In our method, the construction of a quality model
takes the information charted in the SFMEA as input.
Each failure mode in the chart forms a node with the
component and phenomenon as specified in the SFMEA
chart. Each row in the chart forms a link from the node
that represents the cause to the node that represents the
failure mode. The explanation column of the row forms
the reason of the link. For example, for the first row in
Figure 4, the following nodes and link are generated.

User Web pages

When browsing
through the
hyperlink

Unable to provide
files pointed to by
hyperlinks

Cannot find
required
information

Figure 5. The fragment of diagram derived from row 1 of Figure 4

Similarly, from the second and third rows in Figure 4,
we can derive the following nodes and links.

Web server

File cannot be
retrieved and
transmitted

Web -
¢ pages Server is down

Unable to provide

files pointed to by : HTML files
hyperlinks ¢ File cannot
be located < —
Hyperlink is
broken

Figure 6. Fragment of diagram for row 2~3 of Figure 4.

These nodes and links can be assembled together to
obtain a diagram. However, diagrams generated from
SFMEA charts as above are incomplete. The property slots

need to be filled. Therefore, for each node in the diagram,
the observable phenomenon is compared with the
definitions of a set of quality attributes and quality-
carrying properties of the components. The quality
attribute or quality carrying property that the phenomenon
demonstrates is, then, identified, or a new attribute or
property is recognised. This property is filled into the slot
of each node. For example, 'a hyperlink is broken'
demonstrates the quality attribute correctness. 'Server is
down' is related to the reliability of the system. 'User
cannot find required information' is associated to the
usability of the system. Therefore, we can derive the
following quality model from Figure 4.

b Web server
File cannot be —
Web pages retrieved and Rehablh.ty
Reliability transmitted Szr;’\irnls
Unable to provide
files pointed to by Fil ! HTML files
: ile canno
hyperlinks 4— Correctness
Hyperlink is
broken
When Use-zr.
browsing Usability
through Cannot find
hyperlinks required
information

Figure 7. The quality model derived from Figure 4.
4. Conclusion

In this paper, we further developed the method of
hazard analysis based approach to quality modelling of
information systems proposed in [18, 19]. The main
contribution of the paper is two-fold. First, a diagrammatic
notation is proposed to represent quality models of
information systems. It enables the explicit references to
the components of the information system whose quality-
carrying properties affect the system quality attribute. It
also enables the explicit annotation of the reasons why two
properties or attributes are related. Containing such
information in quality models can significantly improve
the usability of quality models in information system
development. Second, the failure mode and effect analysis
method originally developed for hazard analysis of safety
critical systems is adapted for the analysis of software and
information systems. The result of this adapted method
can be directly used to construct quality models of
information systems. It provides a logic that bridges the
gap between abstract system quality attributes and the
tangible quality-carrying properties of components and the
observable behaviour of the system and their components.

There are also a number of other advantages of the
proposed method. First, it enables software engineers to
derive quality models at an earlier stage of software

To appear in Proc. of COMPSAC’02

-5

Application of Hazard Analysis to Quality Modelling

H. Zhu, at al. 05/02/02

development in comparison with similar methods such as
the card sorting method [17]. This is particularly important
because the awareness of a sensitive quality attribute at
early stage such as at design stage enables software
engineers to seek for technique solutions to achieve the
required quality standard.

Second, deriving quality models at architectural level
enables software engineers to understand the quality of a
type of software systems in a particular application
domain and of the same architectural features. The results
of such quality modelling have a wide applicability. Yet,
when more details of the structure and functions of the
components are provided, more details of the quality
model can be obtained, and thus, provide more insight
information for follow up development activity.

Finally, the quality models constructed by our method
include not only the abstract properties and attributes but
also their observable phenomena of the components of the
system and the rationale of the links between the
phenomena. The representation of models proposed in this
paper is not only more expressive than existing ones, but
also makes software quality models more testable and
verifiable.

A preliminary empirical study of the method has been
carried out to develop quality models of several types of
web-based information systems. The result seems very
promising. There are a number of directions for further
work. For example, how to identify failure modes
systematically for each component needs further
investigation. It seems that the HAZOP technique can be
adapted for this purpose and integrated into the process of
modelling proposed in this paper. Moreover, quality
attributes are of different importance in different
application systems. How to assign weights to quality
attributes needs further investigation. We can also learn
from the methods and techniques of hazard analysis where
the safety and risks of a system are quantitatively analysed
according to the consequences of a hazard and its
probability of occurrences.

References

[1] Kitchenham, B. and Pfleeger, S. L., “Software Quality: The
Elusive Target”, IEEE Software, Vol. 13, No. 1, Jan. 1996,
ppl2-21.

[2] Gillies, A., Softiware Quality: Theory and Management, 2"
Edition. International Thomson Computer Press, 1997.

[3] McCall, J., Richards, P. and Walters, G., “Factors in
Software Quality”, Technical Report CDRL A003, US Rome
Air Development Centre, Vol. I, 1977.

[4] Boehm, B.W., Brown, J., Kaspar, H., Lipow, M., MacLeod,
G. and Merrit, M., Characteristics of Software Quality.
TRW Serious of Software Technology, Vol. 1, North-
Holland, New York, 1978.

[5] ISO 9126, Information Technology -- Sofiware Product
Evaluation -- Quality Characteristics and Guidelines for
Their Use, International Organisation for Standardization,

Geneva, 1992.

[6] Eriksson, I. and Torn, A., “A Model for IS Quality”,
Software Engineering Journal, July 1991, pp152-158.

[7] Olsina, L., Godoy, D., Lafuente, G.J. and Rossi, G.,
“Specifying Quality Characteristics and Attributes for
Websites”, in Proceedings of the First ICSE Workshop on
web Engineering, ppl6-17 May 1999, Los Angeles, USA.

[8] Perry, W.E., Quality Assurance for Information systems:
Methods, Tools and Techniques. New York: John Wiley &
Sons, 1991.

[9] Gillies, A., “Modelling Software Quality in The Commercial
Environment”. Software Quality Journal, Vol. 1, 1992,
ppl75-191

[10] Fenton, N.E., Sofiware Metrics -- A Rigorous Approach,
Chapman & Hall, 1991.

[11] Shepperd, M., Foundations of Software Measurement,
Prentice Hall, 1995.

[12] Kitchenham, B. A. and Walker, J. G., “A Quantitative
Approach to Monitoring Software Development”, Software
Engineering Journal, Vol. 4 , No.1, 1989, pp2-13.

[13] Kitchenham, B.A. and Pickard, L.M., “Towards a
Constructive Quality Model”, Software Engineering
Journal, Vol. 2, No.4, 1987, pp114-126.

[14] Dromey, R. G., “A Model for Software Product Quality”,
IEEFE Transactions on Software Engineering, Vol. 21, No. 2,
Feb. 1995, pp146~162

[15] Dromey, R. G., “Cornering the Chimera”, IEEE Software,
Vol. 13, No. 1, Jan. 1996, pp33~43.

[16] Bansiya, J. and Davis, C. G., “A Hierarchical Model for
Object-Oriented Design Quality Assessment”, [EEE
Transactions on Software Engineering, Vol. 28, No. 1, Jan.
2002, pp4-17.

[17] Upchurch, L., Rugg, G. and Kitchenham, B. “Using Card
Sorts to Elicit Web Page Quality Attributes”, [EEE
Software, July/Aug, 2001, pp84-85.

[18] Zhang, Y., Zhu, H., Greenwood, S., and Huo, Q.
“Deriving Quality Models of Web-based Information
Systems”, In Proc. of SQE'2002, Feb, 2002, Banff, Canada.

[19] Zhang, Y., Zhu. H., Greenwood, S. and Huo, Q., “Quality
Modelling of Web-based Information Systems”, in Proc. of
the IEEE Workshop on FTDCS, Italy, Oct 30-Nov 2 , 2001,
pp41-47.

[20] Kletz, T., Computer control and Human Error, Rugby,
Institute of Chemical Engineers, 1995.

[21] Leveson, N. G., Safeware: System Safety and Comuters,
Reading, MAL Addison-Wesley, 1995.

[22] Neumann, P. G., Computer-Related Risks, ACM Press,
New York, 1995.

[23] Storey, N. Safety-Critical Computer Systems, Reading,
MA, Addison, 1996.

To appear in Proc. of COMPSAC’02

	Abstract
	Introduction
	Representation of quality models
	Derivation of quality models
	Adaptation of hazard analysis method
	Construction of quality model

	Conclusion
	References

