

 ~ 1 ~

A Multi-Agent Software Environment for Testing Web-based Applications
 Qingning Huo Hong Zhu and Sue Greenwood
 Lanware Limited Dept of Comp., Oxford Brookes Univ.
 68 South Lambeth Road, London SW8 1RL, UK Wheatley Campus, Oxford OX33 lHX, UK
 Email: Qingning.Huo@lanware.co.uk Email: (hzhu | sgreenwood)@brookes.ac.uk

Abstract
This paper presents an agent-based software environ-

ment for testing web-based applications. The infrastruc-
ture of the system consists of a lightweight agent platform
that supports agent communication, an ontology of soft-
ware testing that enables flexible integration of multiple
agents, and a formalism using XML to represent both the
basic and compound concepts of the ontology. Relations
between testing concepts are defined and their properties
are analysed. A number of agents are implemented to
perform various tasks in testing web-based applications.
Broker agents use the ontology as a means of inferences to
manage the knowledge about agents and assign each task
to the most appropriate agent.

1. Introduction
The Internet and Web is becoming a distributed, hy-

permedia, autonomous and cooperative platform for soft-
ware development, which stimulates much new progress in
web-based application development [1]. A number of new
features of web-based applications have been observed.
For example, web-based applications often have an evolu-
tionary lifecycle and rapidly updated. They often use a
diversity of information representation formats and execu-
tion platforms. Their components can be developed using
various techniques and written in different languages.
They often operate in dynamic and open environments. As
service based computing techniques becoming mature,
they tend to be increasingly involved in collaboration with
other information systems, e.g., by hyperlinks to out re-
source, by calls to web service providers, through software
agents and so on. Moreover, it is common that they store
and process such a vast volume of information that de-
mands a network of computer systems to process and
store. Finally, web-based applications usually have a large
number of user in a diversity of user types.

Because of these properties, web-based applications
are complex and difficult to develop and maintain. Al-
though there is much established work in the validation
and verification of traditional software [2], however, tradi-
tional testing methods and tools become inadequate for the
web. First, the code and data are often mixed in a web-
based application. Executable code can be embedded in
data. On the other hand, information such as text, images

and sounds can be presented, for example, through Java
Applet programs. This requires software testing tools to
bridge the gap between traditional dynamic testing and
static analysis methods. Second, the diversity of informa-
tion formats and execution platforms requires a software
tool can support a wide range of platforms and information
representation formats. It demands a flexible software
environment to host and/or integrate a wide variety of
tools for various platforms and languages. Moreover, the
evolutionary lifecycle and incremental development of
web-based applications and the ever emerge of new tech-
niques require such an environment to be easily extended
as well as to easily integrate third party tools and systems.

To meet these requirements, we proposed a multi-agent
architecture of software environment [3]. Generally speak-
ing, an agent is an active computational entity that has
relatively complete functionality and cooperates with
others to achieve its designed objectives. In our system,
various software agents decompose testing tasks into small
subtasks and carry out these tasks. They cooperate with
each other to fulfil the whole testing task. This paper re-
ports a prototype of such a system.

The paper is organised as follows. Section 2 gives the
system’s architecture. Section 3 presents the communica-
tion mechanism of the system. Section 4 presents an on-
tology of software testing and its uses in the integration of
testing agents. Section 5 presents the collaboration mecha-
nism of the system. Section 6 gives the details of the
agents that perform various testing tasks for testing web-
based applications. Section 7 concludes the paper with an
analysis of the approach.

2. Overview of system structure
As shown in Figure 1, the components in our testing

environment are agents. Agents can dynamically join and
leave the system to achieve the maximum flexibility and
extendibility. A test task can be decomposed into many
small tasks until it can be carried out directly by an agent.
The decomposition of testing tasks is also performed by
agents. More than one agent may have the same function-
ality, but they may be specialised to deal with different
information formats, executing on different platforms,
using different testing methods or testing criteria, etc.
These agents communicate to broker agents to submit and
receive testing tasks. They may execute on different com-

 ~ 2 ~

puters and on different platforms in the system. In addi-
tion, they can be implemented in different programming
languages. This makes the system flexible to integrate and
extensible to improve functionality and performances.

Figure 1 System structure

The key issue in the design of such a system is the co-
operation between agents through an agent communication
facility. In order to maximise interoperability and extendi-
bility of the system, we divide the communication facility
into the following three layers.

At the lowest level, agents communicate with each
other through sending messages. Since agents may execute
on different operating systems and they can join and leave
the system dynamically, message passing between the
agents must be supported by a platform built on top of
operating systems. A message mechanism layer is imple-
mented to support transmitting messages. This constitutes
a light weight agent platform.

The middle level defines the contents of messages so
that agents can communicate at an abstract and extendible
language. The information contained in the messages can
be classified into two types: (1) about testing tasks, which
include requests of testing tasks to be performed, and
reports of the results of testing activities; (b) about agents,
such as the capability of an agent to perform certain types
of testing tasks and its resource requirements such as
hardware and software platform and the format of inputs
and outputs. Such information are represented in an ontol-
ogy [4, 5, 6] about software testing.

The top level of the infrastructure is the communica-
tion and collaboration protocols, which defines the mes-
sage formats and sequences for the collaborations between
agents. We adopted the theory of speech-act [7, 8] to de-
fine the communication protocols. The following 3 sec-
tions discusses each level in more detail.

3. Message communication mechanism
The message mechanism consists of a set of

communication primitives for message passing between
agents [9]. Its design objectives are generally applicable,
flexible, lightweight, scaleable and simple.

The communication mechanism is based on the con-
cept of message box (mbox). An mbox is an unbounded

buffer of messages. Unlike agents, an mbox never moves.
All messages are sent to mboxes, and stay there until they
are retrieved by agents. Our experiments shown that the
mbox communication mechanism is effective and efficient
in mobile agent environments. This is confirmed by other
researchers in a recent theoretical study [10].

The mbox mechanism consists of 4 primitives.
• Open: to create a new mbox, or to fetch a handle of an

existing mbox. Every mbox has a reference count. This
count is incremented by one after an open operation.

• Close: to release a handle of an mbox after use. The
reference count of the mbox is decreased by one for
every invocation of close operation. The mbox is de-
stroyed when its reference count reaches zero.

• Send: to send a message to an mbox. The message is
kept in the mbox until its deletion condition is satisfied.

• Receive: to receive the next message from an mbox. If
the mbox is empty, caller is put to sleep waiting for the
next message; otherwise, the receive operation returns
the message to the caller and changes its deletion condi-
tion. For example, for a read once mbox, one receive
operation removes the first message from the mbox.

Each mbox is uniquely identified in the system with an
id. It consists of a host id and a local id. However, its
location is transparent to the agents. Given an mbox id, the
agents can operate the mbox without knowing its physical
location, nor need the agents to be on the same computer
with the mbox. This allows agents to move freely without
lost of communication contact and not to worry whether
other agents are moving.

The mbox can be opened by more than two agents at
the same time. Thus, in addition to simple 1-1 communica-
tion, it also supports 1-n, n-1 or n-n agent communication.
For example, a broker agent has an mbox to receive task
requests. Multiple agents can send message to this mbox.
It is also possible to allow more than one broker agent to
retrieve messages from the mbox. The change from one
scenario to the other can happen at run time. It is also
possible to terminate and restart an agent, either the same
version, or an updated version, without lost of communica-
tion contact. All these are transparent to other agents en-
gaged in the communication.

4. Ontology of software testing
Ontology defines the basic terms and relations com-

prising the vocabulary of a topic area, as well as the rules
for combining terms and relations to define extensions to
the vocabulary [5,11]. It can be used as a means for agents
to share knowledge, to transfer information and to negoti-
ate their actions [12]. For this reason, we designed an
ontology for software testing [13].

The most widely used approaches to ontology model-
ling include the Knowledge Interchange Format [14],
description logic, UML [15], and recently, XML. XML
has the advantages of being customisable, extensible, and

Broker

Agent Agent

Agent Agent
Broker

Agent Agent

Agent

Light Weight Agent Platform: Message Mechanism

OS/Computer OS/Computer
Network

 ~ 3 ~

most importantly, suitable for web-based applications. The
users can define the tags and formats to represent both
simple concepts and complex structures. For these reasons,
XML is also used in our system. However, the definitions
of XML syntax are somehow not very readable. Therefore,
in this paper, we use the well known extended BNF to
define our ontology rather than DTD or XML schemes.

4.1 Taxonomy of testing concepts
We divide the concepts related to software testing into

two groups: basic concepts and compound concepts. As
shown in Figure 3, there are six types of basic concepts
related to software testing, which include testers, testing
context, activities, methods, resources, and environment.
For each basic concept, there may be a number of sub-
concepts. For example, a testing activity can be generation
of test cases, verification of test results, measurement of
test adequacy, etc. A basic concept may also be character-
ised by a number of properties, which are the parameters
of the concept. For example, a software artefact is deter-
mined by (a) its format, such as JavaScript, (b) its type,
such as the object under test, and (c) its creation and revi-
sion history, such as the version number.

Entity

Method

Artefact

Product

Version

Hardware

Environment

Format

History

Software

Manufacturer
Model

Type

Tester

Human

Team

Context

Unit Test

Regression Test
System Test
Integration Test

Activity Test Case Execution

Test Case Generation

Coverage Measurement

Test Result Verification

Test Planning

Report Generation

Error-based
Testing

Fault-base
Testing

Structural
Testing

Technique

Program-based
testing

Specification-
based Testing

Approach

Control-flow
Testing

Data-flow
Testing

Program-based
Structure Testing

Type

Objects under Test

Testing Result

Test Plan

Test Script

Test Suite

Error Report

Test Coverage

Specification

Type

Operating System

Database

Compiler

Web Server
Web Browser

HTML File

Image

Video

Sound

Java Applet

XML File

JavaScript

Program

Software Agent

Figure 2 Taxonomy of Software Testing Concept

The following discusses each type of the basic con-
cepts and defines their representations in XML.
(A) Tester. A tester refers to a particular party who carries
out a testing activity. A tester can be a human being, a
software tool, or a team, which consists of one or more

testers. The type parameter of a tester indicates whether
the tester is a human, a piece of software or a team. For the
team type, the tester structure can contain a number of
other tester structures, and the leader attribute gives the
name of the leader of the team. The name parameter indi-
cates the name or an identifier of the tester.
 <tester> ::= "<" TESTER <tester_parameter> ">"
 { <tester> } "</" TESTER ">"
 <tester_parameter> ::= TYPE "=" <tester_type>
 NAME "=" <identifier> LEADER “=” <identifier>
 <tester_type>::="HUMAN"|"SOFTWARE"|"TEAM"| …

where “|…” means that the syntax can be extended to
include more tester types. The following are examples of a
human tester named Joe and a team that consists of Joe
and a software agent with Joe as the leader.
 <TESTER TYPE=”HUMAN” NAME=”JOE”> </TESTER>
 <TESTER TYPE=”TEAM”
 NAME=”ATEAM”
 LEADER=”JOE”>
 <TESTER TYPE=”HUMAN” NAME=”JOE”> </TESTER>
 <TESTER TYPE=”SOFTWARE” NAME=”ANAGENT”>
 </TESTER>
 </TESTER>
(B) Context. Software testing activities occur in various
software development stages and have different testing
purposes. For example, unit testing is to test the correct-
ness of software units at implementation stage. The con-
text of testing in the development process determines the
appropriate testing methods as well as the input and output
of the testing activity. Typical testing contexts include unit
testing, integration testing, system testing, regression
testing, and so on.
 <context> ::= "<" CONTEXT <context_parameter> ">"
 "</" CONTEXT ">"
 <context_parameter> ::= TYPE "=" <context_type>
 <context_type>::="UNIT_TEST" | "SYSTEN_TEST"
 | "INTEGRATION_TEST"|"REGRESSION_TEST"
 | …

It is worth noting that XML is very flexible and easy to
extend. The syntax given above is just for illustration.
Other context types can be easily included into our imple-
mentation. This also applies to the definition of other
concept in the sequel.
(C) Activity. There are various kinds of testing activities,
including test planning, test case generation, test execu-
tion, test result verification, test coverage measurement,
test report generation, and so on. For the sake of space, the
BNF definitions of the syntax are omitted.
(D) Method. For each testing activity, there may be a
number of testing methods applicable. For instance, there
are structural testing, fault-based testing and error-based
testing for unit testing. Each test method can be further
divided into program-based and specification-based. There
are two main groups of program-based structural test:
control-flow methods and data-flow methods. The control-
flow methods include statement coverage, branch cover-
age and path coverage, etc. [12].

 ~ 4 ~

(E) Artefact. Each testing activity may involve a number
of software artefacts as the objects under test, intermediate
data, testing result, test plans, test suites, and test scripts
and so on. There are different types of objects under test,
such as source code in programming languages, HTML
files, XML files, embedded images, sound, video, Java
applets, JavaScript, etc. Testing results include error re-
ports, test coverage measurements, etc. Each artefact may
also be associated with a history of creation and revision.
(F) Environment. Information about the environment in
which testing is performed includes hardware and software
configurations. For each hardware device, there are three
essential fields: the device category, the manufacturer and
the model. For software components, there are also three
essential fields: the type, product and version.
4.2 Compound concepts

Compound concepts are defined on the bases of basic
concepts, such as testing tasks and agent's capability.

The capability of a tester is determined by the activities
that a tester can perform together with the context for the
agent to perform the activity, the testing method used, the
environment to perform the testing, the required resources
(i.e. the input) and the output that the tester can generate.
 <capability> ::= "<" CAPABILITY ">"
 [<context>] <activity> <method>
 [<environment>] { <capability_data> }
 "</" CAPABILITY ">"
 <capability_data> ::= "<" CAPABILITY_DATA
 TYPE "=" <capability_data_type> ">" <artefact>
 "</" CAPABILITY_DATA ">"
 <capability_data_type> ::= "INPUT" | "OUTPUT"

In the following example of capability description, the
agent is capable of doing node coverage test case genera-
tion in the context of system testing of hypertext applica-
tions represented in HTML.
 <CAPABILITY>
 <CONTEXT TYPE=”SYSTEM_TEST”> </CONTEXT>
 <ACTIVITY TYPE=”TEST_CASE_GENERATION”>
 </ACTIVITY>
 <METHOD TYPE=”NODE_COVERAGE”></METHOD>
 < CAPABILITY _DATA TYPE=”INPUT”>
 <ARTEFACT
 TYPE=”OBJECT_UNDER_TEST” FORMAT=”HTML”>
 </ARTEFACT>
 </ CAPABILITY _DATA>
 < CAPABILITY _DATA TYPE=”OUTPUT”>
 <ARTEFACT TYPE=”TEST_SUITE”
 FORMAT=”NODE_SEQUENCES”>
 </ARTEFACT>
 </ CAPABILITY _DATA>
 </CAPABILITY>

A testing task consists of a testing activity and related
information about how the activity is required to be per-
formed, such as the context, the testing method to use, the
environment in which to carried out the activity, the avail-
able resources and the requirements on the test results.
 <task> ::= "<" TASK ">"
 [<context>] <activity> <method>

 [<environment>] { <task_data> } "</" TASK ">"
 <task_data> ::=
 "<" TASK_DATA TYPE "=" <task_data_type> ">"
 <artefact> "</" TASK_DATA ">"
 <task_data_type> ::= "INPUT" | "OUTPUT"

However, not all combinations of basic concepts make
sense. For example, the node coverage method cannot be
combined with any media file types, such as images,
sound or videos. A weakness of XML is that it provides
very limited power to restrict such illegal combinations.

4.3 Relations between concepts
Relationships between concepts play a significant role

in the management of testing activities in our multi-agent
system. We identified a number of relationships between
basic concepts as well as compound concepts. They are:
• Subsumption relation between testing methods.
 Compatibility relation between artefacts.
 Enhancement relation between environments.
 Inclusion relation between test activities.
 Temporal ordering between test activities.

These relations are all partial orderings. Based on these
basic facts and knowledge, more complicated relations can
be defined and used through inferences. The following are
definitions of the most important ones.

(A) MorePowerful relation on capability. Let C represent
the set of all capabilities. For all c1, c2 ∈ C, we say More-
Powerful(c1, c2) if and only if all of the following state-
ments are true.
• c1 and c2 have the same context, and
• c1 and c2 have the same activity, and
• The method of c1 subsumes the method of c2, and
• The environment of c2 is an enhancement of the envi-

ronment of c1, and
• The input of c2 is compatible with the input of c1, and
• The output of c1 is compatible with the output of c2.

Informally, MorePowerful(c1, c2) means that a tester
has capability c1 implies that the tester can do all the tasks
that can be done by a tester who has capability c2.

(B) Inclusion relation on test tasks. Let T represent the set
of all tasks. For all t1 and t2∈T, we say Include(t1, t2), if
and only if all of the following statements are true.
• t1 and t2 have the same context, and
• t1 and t2 have the same activity, and
• The method of t1 subsumes the method of t2, and
• The environment of t2 is an enhancement of the envi-

ronment of t1, and
• The input of t1 is compatible with the input of t2, and
• The output of t2 is compatible with the output of t1.

Informally, Include(t1, t2) means that accomplishing
task t1 implies accomplishing task t2.

(C) Match between a task and a capability. In the assign-
ment of a testing task to a tester, a broker agent must an-

 ~ 5 ~

swer the question whether the job matches the capability
of the tester. For any c∈C and t∈T, we say Match(c, t), if
and only if all of the following statements are true.
• c and t have the same context, and
• c and t have the same activity, and
• The method of c subsumes the method of t, and
• The environment of t is an enhancement of the envi-

ronment of c, and
• The input of t is compatible with the input of c, and
• The output of c is compatible with the output of t.

Match(c, t) means that a tester with capability c can
fulfil the task t. The following properties of the relations
form the foundation of the inferences that the broker agent
requires in the assignment of testing tasks.
MorePowerful(c1, c2) ∧ Match(c2, t) ⇒ Match(c1, t). (1)
Include(t1, t2) ∧ Match(c, t1) ⇒ Match(c, t2). (2)

5. Communication protocol
In our system, agents of similar functionalities may

have different capabilities and are implemented with dif-
ferent algorithms, executing on different platforms and
specialised in dealing with different formats of informa-
tion. The agent society is dynamically changing; new
agents can be added into the system and old agents can be
replaced by a newer version. This makes task scheduling
and assignment more important and more difficult as well.
Therefore, broker agents are implemented to negotiate
with testing agents to assign and schedule testing activi-
ties. Each broker manages a registry of agents and keeps a
record of their capabilities and performances. Each agent
registers its capability to the brokers when joining the
system. Tests tasks are also submitted to the brokers. For
each task, the brokers will send it to the most suitable
agent use the Match relation as a means of inferences.

When an agent sends a message to a broker, its inten-
sion must be made clear if it is to register their capabilities
or to submit a test job quests, or to report the test result,
etc. Such intensions are represented as 1 of the 7 illocu-
tionary forces [7,8], which can be assertive, directive,
commissive, prohibitive, declarative, or expressive. We
associate each message a speech-act parameter. Hence,
messages have the following structure.
 <message> ::=
 "<" MESSAGE ACT "=" <massage_act> ">"
 <message_para> "</" MESSAGE ">"
 <massage_act> ::= "ASSERTIVE" | "DIRECTIVE"
 | "COMMISSIVE" | "PERMISSIVE"
 | "PROHIBITIVE" | "DECLARATIVE"
 | "EXPRESSIVE"
 <message_para> ::= <capability> | <task> | <answer>
 <answer> ::=
 "<" ANSWER STATUS "=" <answer_status>
 [REASON "=" <identifier>] ">"
 [<job>] [<artefact>] “</” ANSWER ">"
 <answer_status> ::= "SUCCUSS" | "FAIL"
Example 1. The following is a sequence of messages

between agents A1 and A2 and a broker B.
(1) Agent A1 sends an ASSERTIVE message with a

<capability> parameter to the broker B. This means that A1
wants to register to the broker B and claims its capability.

(2) Agent A2 sends an EXPRESSIVE message to the
broker B, with a <task> parameter describing a testing
task. This means that the agent wants to find some agent to
perform the testing task.

(3) The broker B searches its knowledge about regis-
tered agents, and finds that agent A1 is the best match for
the task. It then sends a DIRECTIVE message with the
<task> parameter to agent A1.

(4) When agent A1 finishes the task, it sends an
ASSERTIVE message with an <answer> parameter to the
broker. The <answer> parameter describes the status of
the task and output of the task if it is successful, or the
reason of failure or error messages if it is not successful.

(5) The broker B may forward the message to agent A2,
or try to find another agent to carry out the testing task in
case the output of agent A1 is not successful.

6. Test agents for web applications
As shown in Figure 3, the testing environment consists

of a number of agents to fulfil testing tasks for web-based
applications. These agents can be distributed to different
computers, for example, as in Figure 4, on a media server,
a test server, and a client. In fact, agents can be freely
distributed according to any specific configuration. They
can also be mobile and change their location at runtime.

 Testing
Guidance

GWP

Media Server

WPI

WSS WSM

KB

TCG Test Server

TCE

TO

KB

Client Computer

TA

 Tester
Feedback

Testing
Command

Web
Info

THD

Figure 3 Agents for Testing Web-Based Applications

The following agents have been implemented for test-
ing web-based applications.
Get Web Page (GWP) agents retrieve web pages from a
web site.
Web Page Information (WPI) agents analyse the source
code of a web page, and extract useful information. It also
stores the structure information in a knowledge base.
Web Site Structure (WSS) agents analyse the hyperlink
structure of a web site, and generate a node-link-graph
describing the structure. This structure is also stored in a
knowledge base for other agents to use.
Test Case Generator (TCG) agents generate test cases to

 ~ 6 ~

test a web site according to certain testing criteria. Cur-
rently, three agents are implemented for node coverage,
link coverage and linear independent path coverage crite-
ria, respectively. See [16] for their definitions.
Test Case Executors (TCE) agents execute the test cases,
and generate execution results. There are two ways of test
case execution. One is to run the test cases interactively in
front of the human tester, with the aid of a testing assis-
tant. The other is to playback a recorded test sequence.
Test harness and driver (THD) agents provide flexible
interfaces to unit test tools. They play the traditional role
of test harness, test driver and module stubs. They enable
the integration of various testing tools seamlessly into the
multi-agent systems so that components written in differ-
ent languages can be tested in a unified environment.
Some of these agents work on the servers and directly calls
the modules; some execute on client side and indirectly
calls the modules by sending cgi command (URL).
Test Oracles (TO) agents verify whether the testing results
match a given software specification. Different types of
information require different kinds of oracles. Some sim-
ply compare with the results of previous tests. Some exam-
ine the results to make sure it fits into certain patterns.
These patterns can be generated automatically or defined
by the software engineers.
Testing Assistants (TA) are user interface agents that guide
human testers in the process of testing. It helps to get test
requirements from the human users, send messages to
TCG to generate test cases, present test cases to the user,
allow the user to click through links to test each web page,
allow the user to enter information of tested pages, record
testing history and generating testing report.
WSM (Web Site Monitor) agents monitor the web site and
generate testing tasks when changes in the web site is
detected.

7. Conclusion
This paper presented an application of agent technol-

ogy in the testing of web-based applications. A prototype
is described and discussed. Its multi-agent architecture and
the infrastructure of the system satisfy the requirements of
testing web-based applications. It clearly demonstrated
that agent techniques are suitable for testing web-based
systems. In particular, first, the dynamic nature of web
information systems demands constant monitoring the
changes of the system and its environment. Sometimes, the
change in the system and its environment may require
changes in testing strategy and method accordingly.
Agents are adaptive, and they can adjust their behaviours
based on environment changes. These changes can be
integrated to the system lively. Second, the diversity of
platforms and the formats of media and data of web infor-
mation systems demand using a wide variety of test meth-
ods and tools. Multi-agent systems can provide a
promising solution to this problem. Different agents are

built to handle different types of information, to imple-
ment different testing methods and to integrate different
tools. Thus, each individual agent can be relatively simple
while the whole system is powerful and extendible. Third,
the distribution of large volume of information and
functionality over a large geographic area requires testing
tasks carried out at different geographic locations and to
transfer information between computer systems. The
agents can be distributed among many computers to
reduce the communication traffic. Although a single agent
can only perform as a normal program, the strength of
agents come from the intelligent dynamic task assignment,
the dynamic control of agent pool, the dynamic interac-
tions between agents, the live update of agent systems.

References

[1] Crowder, R., Wills, G., and Hall, W., Hypermedia informa-
tion management: A new paradigm, Proc. of 3rd Int. Conf. on
Management Innovation in Manufacture, pp329-334, 1998.

[2] Zhu, H., Hall, P., May, J., Software Unit Test Coverage and
Adequacy, ACM Comp. Survey 29(4), pp366~427, 1997.

[3] Zhu, H., Greenwood, S., Huo, Q. and Zhang, Y., Towards
agent-oriented quality management of information systems,
in Workshop Notes of 2nd International Bi-Conference
Workshop on Agent-Oriented Information Systems at
AAAI'2000, Austin, USA, July 30, 2000, pp57-64.

[4] Neches, R. et al., Enabling Technology for Knowledge
Sharing. AI Magazine. Winter issue, 1991. pp36-56.

[5] Uschold, M. and Gruninger M, Ontologies: Principles, Meth-
ods, and Applications. Knowledge Engineering Review
11(2), June 1996.

[6] Gruber, T., A translation Approach to portable ontology
specifications. Knowledge Acquisition 5, pp199-200, 1993.

[7] Singh, M.P., A semantics for speech acts, Annals of Mathe-
matical and Artificial Intelligence 8(II), pp 47-71, 1993.

[8] Singh, M. P., Agent communication languages: Rethinking
the principles, IEEE Computer, Dec 1998, pp40-47.

[9] Huo, Q., and Zhu, H., A message communication mechanism
for mobile agents, Proc. of CACSCUK’2000, Loughborough,
UK, Sep., 2000.

[10] Cao J., Feng, X., Lu, J., and Das, S. K., Mailbox-based
scheme for mobile agent communication. Computer, Sep-
tember 2002, pp54-60.

[11] Staab, S. and Maedche, A., Knowledge portals --- Ontology
at work, AI Magazine, 21(2), Summer 2001.

[12] Fox, M. S., and Gruninger, M., Ontologies for Enterprise
Integration, Proc. of the 2nd Conf. on Cooperative Informa-
tion Systems, Toronto, 1994.

[13]Huo, Q., Zhu, H., Greenwood, S., Using Ontology in Agent-
based Web Testing, Proc. of ICIIT’2002, Beijing, China.

[14] National Committee for Information Technology Standards,
Draft proposed American national standard for Knowledge
Interchange Format. http://logic.stanford.edu/kif/dpans.html

[15] Cranefield, S., Haustein, S., Purvis M., UML-Based Ontol-
ogy Modelling for Software Agents, Proc. of Ontologies in
Agent Systems Workshop, Agents 2001, Montreal, pp21-28.

[16] Jin, L., Zhu, H., and Hall, P., Adequate testing of hypertext
applications, Information and Software Technology, 39(4),
pp225-234, 1997.

