

Consistency Check in Modelling Multi-Agent Systems

 Lijun Shan Hong Zhu
 Dept. of Comp., National Univ. of Defence Tech. Dept. of Comp., Oxford Brookes Univ.
 Changsha, 410073, China Oxford OX33 1HX, UK
 Email: lijunshancn@yahoo.com Email: hzhu@brookes.ac.uk

Abstract

In model-driven software development, inconsis-

tency of a model must be detected and eliminated to
ensure the quality of the model. This paper investigates
the consistency check in the modelling of multi-agent
systems (MAS). Consistency constraints are formally
defined for the CAMLE language, which was proposed
in our previous work for modelling MAS. Uses of the
consistency constraints in the implementation of a
modelling environment for automatic consistency
check and model transformation are discussed.

1. Introduction
Agent technology has been widely recognized as a

viable solution for applications in dynamic environ-
ments such as the Internet [1]. A number of agent-
oriented methodologies have been proposed in the
literature, such as Gaia [2]. In [3, 4], we proposed a
modelling language CAMLE, which stands for Caste-
centric Agent-oriented Modelling Language and Envi-
ronment, to support the development of multi-agent
systems (MAS). Diagrammatic models in CAMLE
serve as the base for the design and implementation of
MAS, for example, to generate formal specifications in
SLABS [5, 6].

CAMLE language is based on the principle of mul-
tiple views. Models from different views must be
consistent with each other before they are utilized for
further development. Inconsistency not only results in
incorrect outcomes in the later stages, but also causes
unnecessary complexity for developing tools that
process the models. Therefore, inconsistency must be
identified, managed and resolved. Models’ consistency
cannot rely on manual test, which is expensive, labour
intensive and error prone. It is unacceptable especially
for a modelling language like CAMLE that is designed
to support evolutionary software development in which
models are to be incrementally refined, extended, and
revised through many cycles. In this paper, we investi-
gate the automatic consistency check of MAS models
by defining consistency constraints of the CAMLE

language and implementing them as consistency check
tools in the modelling environment.

The remainder of the paper is organized as follows.
Section 2 briefly reviews the basic concepts used in
CAMLE language. Section 3 defines the consistency
constraints on CAMLE models. Section 4 discusses the
uses of consistency constraints in the implementation
of the modelling environment. Section 5 concludes this
paper with a discussion of related works.

2. Overview of CAMLE
A number of theories and models of agent-based

systems have been proposed in the literature; cf. [7].
CAMLE is based on the conceptual model of MAS
formally defined in SLABS, which is a specification
language for agent-based systems [5, 6].

In our model, agents are the basic entities of MAS.
They are defined as real-time active computational
entities that encapsulate data, operations and behav-
iours and situate in their designated environments.
Therefore, by our definition, objects are degenerate
forms of agents. Consequently, everything in a MAS is
an agent. These agents are classified into a number of
castes, which are agent classifiers. A caste is a set of
agents that have the same structural and behavioural
characteristics. Agents are instances of castes. How-
ever, an agent can change its casteship, viz. member-
ship to a caste, by joining in a caste or retreating from
its current caste at run-time. Inheritance (is-a relation),
aggregation (whole-part relations), migration (role
change relations) and collaboration are the basic rela-
tionships between castes. The environment of an agent
in a MAS is a subset of the agents in the system. An
agent communicates with others by taking visible
actions and changing visible state variables as an in-
formation sender, and by observing other agents’ visi-
ble actions and state variables as a receiver. The
environment description of an agent or a caste defines
which agents are visible; see [4, 5] for more details.

Compared to the concept of objects in object-
orientation, the concept of agents in our definition
highlights agents’ features of encapsulation, autonomy

mailto:hzhu@brookes.ac.uk

and collaboration because behaviour rules and envi-
ronment are specified in agent structure, changing
casteship is in agents’ ability and communication is
through agents’ visible activities rather than objects’
method invoking. In comparison with other approaches
in the research on agent-oriented software engineering
such as FIPA [8] and AUML [9], we give a definition
to conception of agent and MAS constructively rather
than by a set of characteristics features.

A caste diagram defines the castes in the system,
indicates three kinds of relationships between the
castes: inheritance, aggregation and migration.

A well-formed caste diagram must satisfy the fol-
lowing conditions.
a) A caste diagram defines a naming space in which

each node defines a caste with a unique name.
b) Each link defines a binary relation on castes by

linking two nodes in the diagram.
In CAMLE, a MAS is specified with three types of

models: caste models, collaboration models and behav-
iour models. Each model consists of one or more dia-
grams. The caste model describes the castes in the
system and the structural relationships between them.
A caste is a compound caste if it is composed of a
number of other castes; otherwise, it is atomic. For
each compound caste, a collaboration model and a
behaviour model are constructed, while each atomic
caste only has a behaviour model.

c) An inheritance relation and a migration relation
must be associated to two different caste nodes.

d) Inheritance relations must not form any loops.
Note that aggregation and migration relations are

allowed to form loops. It is not required for an aggre-
gation relation to be associated to different caste
nodes.

3.2. Collaboration models
Collaboration models describe the dynamic struc-

ture of a system from communication perspective. 3. Consistency constraints As shown in Figure 2, there are two types of nodes
in a collaboration diagram (CD). In a CD, an agent
node represents a specific agent while a caste node
represents any agent in a caste. An arrow from node A
to node B indicates that A’s visible actions are ob-
served by agent B. The actions with their parameters
are annotated on the arrow.

Here, consistency constraints refer to the conditions
on the uses of diagrammatic notations, variables and
names, types and symbols that a set of well-formed
diagrams must satisfy so that they can be regarded as
forming a meaningful model. These conditions are
usually related to the semantics of the diagrams, but
can be syntactically checked effectively and effi-
ciently.

3.1. Caste models
 We view an information system as an organization

that consists of a collection of agents. The agents stand
in certain relationships one to another by being a mem-
ber of certain groups and playing certain roles, i.e. in
certain castes. Such an organizational structure is
captured in a caste model represented by a caste dia-
gram; see Figure 1 for an example.

Undergraduates

PhD Students
Practical

Class
Personal Tutor:

Faculties Request Reference

Academic Advice

Report progress

Suggest
research topic

Supervisor:
Faculties

Give
Lecture

Faculties

 Caste node Action Agent node

Figure 2. Example of collaboration diagram
A collaboration model may contain a number of

CDs, including a general collaboration diagram (GCD)
and a set of specific collaboration diagrams (SCD). A
GCD serves as a declaration of what castes and their
instance agents are involved in collaborations, while
SCDs define the details of the collaboration protocols
in various scenarios. Each SCD specifies a linear se-
quence of actions taken by the agents in a specific
scenario of collaboration. CAMLE also supports the
decomposition of an agent into a number of component
agents in the same way as the analysis of the whole
system. The collaboration among the component
agents can also be defined by a collaboration model.
Thus, a hierarchy of collaboration models for the sys-
tem and all the agents can be formed. The following
are the well-formedness conditions imposed on CDs.

Caste
Aggregation Migration ICaste node nheritance Participation

University

Secretary

Department

Module
Manager

Staff
Manager

Alumni

PhD
student

Post-
graduate

Under-
gradu-

Faculty Student

University Member

Congregation Composition

a) Each caste / agent node must have a unique name. Figure 1. Example of caste diagram

b) The number assigned to an action indicating its
temporal order must be unique, if any.
Let G be a GCD, S be the set of SCD and D∈S be

any given SCD. Let ANode(X), CNode(X) and Node(X)
denote the set of agent nodes, the set of caste nodes
and the set of all nodes in the CD X, respectively. Let
CName(x) denote the caste name of a node x. Nodes
and linkages in G and those in S must satisfy the fol-
lowing consistency conditions.
c) Every agent node in the GCD G must appear in at

least one SCD. Formally,
∀n∈ ANode (G).∃D∈S. (n∈ANode (D))

d) A caste node in the GCD must appear at least once
in a SCD as either a caste node or an agent node
representing a specific agent of the caste. Formally,

∀n∈ CNode (G).∃D∈S. (n∈CNode (D)∨
∃n’∈ANode(D).(CName(n’)=CName(n)))

e) Every caste node in a SCD must also appear in the
GCD. Formally,

∀D∈S.∀n∈ CNode (D).(n∈CNode (G))
f) For every agent node in any SCD, there must be

either a node of the same agent or the caste of the
agent in the GCD. Formally,

∀D∈S.∀n∈ ANode (D). (n∈ANode (G)∨
∃n’∈CNode(G).(CName(n’)=CName(n))).

Assume that a = ActName(p1, p2, …, pn) is an ac-
tion associated to an arrow from node b to c. We call
<a, b, c> an interaction from b to c with action a. Let
Interaction(X) be the set of all interactions in a CD X.
Let α=<a, b, c> be any given interaction. We write
Action(α) for a, Begin(α) for b and End(α) for c.
g) Every interaction in a GCD must appear in at least

one SCD, where a caste in the GCD can be re-
placed by an agent of the caste in the SCD. For-
mally,

∀α∈Interaction(G).∃D∈S.∃β∈Interaction(D).
(CName(Begin(α))=CName(Begin(β)) ∧

CName(End(α))=CName(End(β)) ∧
Action(α)=Action(β) ∧

Begin(α)∈ANode(G)⇒Begin(β)∈ANode(D)∧
End(α) ∈ANode(G) ⇒ End(β) ∈ANode(D))

h) Every interaction in an SCD must also be defined
in the GCD. Formally,

∀D∈S.∀α∈Interaction(D). ∃β∈Interaction(G).
(CName(Begin(α))=CName(Begin(β))∧

CName(End(α))=CName(End(β)) ∧
Action(α)=Action(β) ∧

Begin(α)∈CNode(G)⇒Begin(β)∈CNode(D)∧
End(α) ∈CNode(G) ⇒ End(β) ∈CNode(D))

Let X be a CD. We use Env(X) to denote the envi-
ronment of X, i.e. the set of agent and caste nodes on
the boundary of X.
i) The environment of an SCD must be identical to

the environment of the GCD. Formally,
∀D∈S. (Env(D)=Env(G))

For the sake of simplicity, we assume that a col-
laboration model (CM) satisfies the consistency con-
straints within one model discussed above. Therefore,
we can overload the notation Env(X) defined on dia-
grams to be the environment of the model, i.e. for a
model M and any diagram D in M, define Env(M) =
Env(D), provided that M satisfies condition 3.2.i).

Let C be a compound caste in a CM M, and MC be
the CM for C, that is, MC specifies the collaborations
between C’s components. The environment of C de-
fined in M should be consistent with the environment
description in MC. The following two constraints are
imposed on the models at different levels.
j) The set of agents and castes in C’s environment

described in M must be equal to the set of agents
and castes in MC’s environment description. For-
mally,

∀n.(n∈Env(MC) ⇔ ∃α∈Interaction(G).
(n=Begin(α) ∧ C =End(α)));

where G is the GCD in M.
k) The interactions that C participates as an observer

described in M must be realized as interactions be-
tween environment elements and C’s components
in MC. Formally,

∀α∈Interaction(G).∃β∈Interaction(GC).(End(α)=C ⇒
Begin(α)=Begin(β) ∧ Action(α)=Action(β) ∧

Begin(β)∈Env(GC) ∧End(β) ∈ Component(GC));
where GC is the GCD in MC and Component(GC) is
the set of C’s components depicted in GC.

3.3. Behaviour models
Each caste is associated with a behaviour model

(BM), which contains two kinds of diagrams: scenario
diagrams (SD) and behaviour diagrams (BD).

Status = FinalYear;
Average = ‘A’

Request(references)

Apply(graduate course) CS: DeptOffice
 Offer graduate course

PersonalTutor: Faculty

Agree as referee

Graduate course
available

JOIN(Graduate); QUIT(Undergraduate)

Figure 3. Example of behaviour diagram
An SD describes a typical situation in the operation

of a system from an agent’s view. SDs are referred to
in BDs. A BD containing a number of behaviour rules

describes an agent’s designed behaviours in certain
scenarios. Readers are referred to [4] for details of the
notations and their semantics.

There are six different kinds of arrows that connect
different kinds of nodes in BDs. In addition to the
conditions for using right arrows between the nodes,
the following well-formedness conditions are also
imposed on BD and SD.
a) The temporal order between events must be linear,

i.e. the in-degree and out-degree of an event node
must be less than or equal to 1.

b) The logic connective nodes ‘AND’ and ‘OR’ are
binary operators, and ‘NOT’ is unitary operator.

c) A transition bar has at most three nodes directly
connected to it: at most one scenario, at most one
pre-condition node, and at most one event node.
Each scenario reference node in a BD refers to a

scenario defined in a SD. Therefore, a consistency
condition on the relationship between a BD and the
SDs in one behaviour model is defined as follows.
d) The set of scenarios referred to in a BD by using

scenario reference nodes is a subset of the scenarios
defined by SDs. Formally, let C be a caste, DC be
the BD of caste C, and SC be the set of SDs of C.

∀n∈ ScenarioNode(DC). ∃S∈ SC.(Name(n)=Name(S)

3.4. Consistency between models
All the constraints defined above are intra-model

constraints since they are on a same type of models.
This subsection discusses the consistency between
different types of models and defines inter-model
constraints. In the sequel, models are assumed to be
consistent with regard to the intra-model constraints.

3.4.1. Between collaboration model and caste model

Let CD be the set of CDs in a collaboration model
(CM) and C the caste model for the system in question.
a) The set of the castes in the CM must be a subset of

the castes in caste model. Formally,
∀D∈CD.∀n∈Node(D).∃n’∈Node(C).

(CName(n) = Name(n’))
It is possible that a caste in the caste model does

not appear in any CD. For example, a caste can be an
abstract caste, which has no direct instance agent and
any instance of the caste is always an instance of its
sub-caste. The behaviours of the agents of the abstract
caste can be defined by its sub-castes. Consequently,
the abstract caste may not occur in any CD.

Let CM be the collection of collaboration models
of the system. Let x be a caste in the system, and Mx be
the collaboration model for x. For models MA and MB
in CM, we say that MB is an immediate refinement of
model MA and write MB < MA, if B is the component
caste of caste A. Let Aggr(C) be the set of aggregation

relations in the caste model C.
b) The hierarchical structure of the CMs must be

consistent with the whole-part relations between
castes defined in caste diagram. Formally,
∀MA,MB∈CM.(MB < MA⇒∃R∈ Aggr(C).(R(B,A))

3.4.2. Between behaviour model and caste model

Let BM be the set of behaviour models (BM) of a
system, and C the caste model. The caste with a BM X
defining its behaviour is denoted by Caste(X).
c) Each BM defines the behaviour of a caste and the

caste must be in the caste model. Formally,
∀B∈BM.∃n∈Node(C).(Caste(B)= n).

In a BM, say, of caste B, the description of scenar-
ios may refer to the agents in the environment of B. Let
Agents(B) be the set of agents referred to in a BM B,
Caste-of(x) the caste of such an agent.
d) Every agent in a scenario in a BM must have its

caste defined in the caste model. Formally,
∀B∈BM.∀a∈Agents(B).∃n∈Node(C).

(Caste-of(a)=Name(n)).
In a caste model, an agent’s change of casteship is

described through a migration relation between the
castes. In a BM, an agent’s change of casteship is
defined through actions JOIN(caste), MOVETO(caste)
and QUIT. Such information in the BM must be con-
sistent with the caste model.
e) Let BC be the BM for caste C.

 BC contains an action JOIN(C’), where C’ is a
caste name, if and only if there is a participation
relation from C to C’ in the caste model.

 If BC contains an action MOVETO(C’), where C’
is a caste name, there must be a migration relation
from C to C’ in the caste model.

 If BC contains an action QUIT, there must be a
migration relation from C to some caste in the
caste model.

 If there is a migration from C to some caste (say
C’) in the caste model, there must be either a
MOVETO(C’) or QUIT action in the BM of C.

By ‘an action in a behaviour model’, we mean a
result action of a behaviour rule, depicted as an action
node immediately after a transition bar in a BD.

3.4.3. Between collaboration model and behaviour
model

Let Components(C) be the set of C’s component
castes. Let VisibleActions(C) be the set of visible ac-
tions of caste C defined in the CM. Let BX be the BM
for caste X, Rules(B) be the set of rules in BM B, and
Action(r) be the result action of rule r.
f) Every visible action of caste C defined in the CM

must occur in the BM of C or at least one of C’s
components as a result action. Formally,

∀a∈VisibleActions(C).(∃r∈Rules(BC)∨
(∃M∈Components(C). ∃r∈ Rules(BM)). (a=Action(r))

Let G be a caste or agent that has a communication
link to caste C in the CM. We call G a collaborator of
caste C, and write Collaborators(C) for the set of C’s
collaborators. Let Scenarios(B) be the set of scenarios
used in a BM B, and Ref(Sc) denote the set of castes or
agents that a scenario Sc refers to.
g) For each scenario used in the definition of caste C’s

behaviour, the agents and/or castes that the scenario
referred to must occur in the CM as C’s collabora-
tors. Formally,

∀Sc∈Scenarios(BC).∀G∈Ref(Sc).G∈Collaborators(C)
A scenario actor may be specified with qualifier,

e.g. ‘∀A:CasteX’, and ‘∃Y:CasteX’. The caste CasteX
must be a collaborator of caste C. If the actor of a
scenario refers to a specific agent, i.e. in the form of
‘AgentM:CasteX’, the agent AgentM of caste CasteX
must be a collaborator.
h) The agents and castes referred to in a scenario must

be elements in the environment of the caste de-
scribed by the CM. Formally, let C to be the caste
described by a BM B.

∀Sc∈Scenarios(B).∀G∈Ref(Sc).(G∈Env(C)).
The collaboration between an agent A of caste C

and other agents may be realized through the collabo-
ration of A’s component agents. Therefore, we do not
require all collaborators of caste C to be referred to in
the definition of caste C’s behaviour.

Let p1, p2, …, pn be the sequence of actions of a
caste C (or an agent of caste C) described in a scenario
Sc. Each of pi, i=1, 2, …, n, is called a referred action
of caste C in scenario Sc. We write ReferredActions(C,
Sc) to denote the set of all such actions.
i) Every referred action in a scenario used in a BD

must be a visible action of the caste described by
the scenario. Formally,
∀Sc∈ Scenarios(BC).∀a∈ ReferredActions(C, Sc).

(a∈ VisibleActions(C)).
It is not required that all visible actions of a

collaborator should be referred to in the definition of a
caste’s behaviour, because the collaboration may be
realized through component agents.

4. Uses of consistency constraints
Consistency conditions can play at least two impor-

tant roles in model-based development. First, they
serve as check points for quality assurance in model-
ling process. Violation of the conditions indicates the
existence of contradictions in the model. Inconsistency
may also be caused by conflict in requirements. Con-
sistency checks on requirement models help to identify
and thereafter to resolve and manage such conflict.

Therefore, automatic consistency check can help engi-
neers to detect errors at modelling stage, hence prevent
errors from being propagated to later stages. Second, in
model-driven development of software systems, it is
desirable to automatically transform one model to
another model, and to generate code (or code frame-
work) from models. Design and implementation of
such tools must ensure that the transformation rules
preserve the models’ meanings. Consistency condi-
tions provide a means to formally specify the correct-
ness of the transformation rules.

The consistency constraints defined in this paper
have been used for both of the above purposes in the
implementation of CAMLE environment [4]. They are
computable and have been directly implemented in the
environment as consistency check tools. Diagnostic
information as the result of the check is reported to
users to help locate and correct errors. A diagram
generator in the environment generates partial models
(incomplete diagrams) from existing diagrams to help
model construction. The rules to generate partial mod-
els are based on the consistency constraints so that the
generated partial diagrams are consistent with existing
ones. Preliminary case studies show that both consis-
tency check and partial model generations are very
helpful to improve the models’ quality and software
engineers’ productivity. The case studies are omitted
here for the sake of space. Besides model construction
and checking, another main function of CAMLE envi-
ronment is to automatically transform a model into the
system’s formal specifications in SLABS. Consistency
check simplifies the error processing in the implemen-
tation of the automatic transformation tool.

5. Conclusion
In this paper, we defined the consistency con-

straints on CAMLE models and investigated its uses in
the modelling environment. The following table sum-
marizes and classifies the consistency constraints.

Table 1. Classification of Constraints
Vertical Consistency Horizontal Consis-

tency Local Global
Intra-

diagram
1a, 1b, 1c, 1d, 1e,
2a, 2b, 3a, 3b, 3c − −

In
tra

-
m

od
el

Inter-
diagram

2c, 2d, 2e, 2f, 2g,
2h, 2i, 3d 2j, 2k −

Inter-model 4f, 4g, 4h, 4i 4e 4a, 4b, 4c, 4d

The constraints in are referred to by their
numbers in section 3. For example, 2b refers to condi-
tion b) in section 3.2. Note that the horizontal / vertical
consistency means the consistency of models on same /
different abstract level. Local consistency conditions
are imposed on models of adjacent levels while global
consistency conditions are concerned with the whole

Table 1

hierarchical structure of the models.
Well-defined visual notations for modelling soft-

ware systems’ structures and behaviours have the
advantages of readability and preciseness due to their
semi-formal nature. A common feature of such visual
notations is that multiple views are utilized to model a
system’s different aspects and/or at different levels of
abstraction. The consistency between various views is
crucial for developing quality software systems. It is,
therefore, desirable to automatically check the consis-
tency among the diagrams [10, 11]. The past few years
has seen a rapid increase in the research on defining
consistency conditions and implementing consistency
check tools for modelling languages, especially for
UML [12, 13, 14, 15]. However, defining consistency
between different views or diagrams is not trivial [16].
Most existing modelling languages, for example UML,
have no explicitly defined consistency constraints.

Among the related works on consistency check,
Xlinkit is a flexible tool for checking the consistency
of distributed heterogeneous documents [17]. It com-
prises a language for expressing constraints between
such documents, a document management mechanism
and an engine that checks the documents against the
constraints. In comparison with Xlinkit, our approach
is language specific. The direct implementation of
consistency constraints as a part of modelling envi-
ronment is highly efficient and effective in detecting
errors. In addition, the explicitly defined constraints
form a base for automatic transformations between
models. Formal methods, such as model checking,
have also been used for checking the consistency be-
tween multiple views of software specifications, e.g. in
[18, 19]. It requires translating models into a formal
notation as the input to a model checker, while as-
sumes that syntactic errors have been removed before
the translation. Therefore, to check consistency before
translation is still necessary. As formal specifications
are automatically generated from a consistent model by
our tools, application of formal methods to analyse the
models becomes possible. This is a direction for our
further investigation.

Acknowledgement
The work reported in this paper is supported by

China High-Technology Research and Development
Programme under the grant 2002AA116070.

References

[1] Jennings, N.& Wooldridge,M. (Eds.), Agent Technology:
Foundations, Applications And Markets, Springer, 1998.
[2] Zambonelli, F., Jennings, NR & Wooldridge, M. Devel-
oping multiagent systems: the Gaia Methodology. ACM
Trans on Software Eng. and Meth. 12(3): 317-370, 2003.
[3] Shan, L. & Zhu, H. Analysing and specifying scenarios

and agent behaviours. Proc. of IEEE/WIC Int. Conf. on
Intelligent Agent Technology. Halifax, Canada. 2003.
[4] Shan, L. & Zhu, H. CAMLE: A Caste-Centric Agent
Modelling Language and Environment. Proc. of the 3rd
International Workshop on Software Engineering for Large-
Scale Multi-Agent Systems (SELMAS 2004) at ICSE 2004,
Edinburgh, Scotland (UK), May 2004.
[5] Zhu, H. SLABS: A Formal Specification Language for
Agent-Based Systems, Journal of Software Engineering and
Knowledge Engineering 11(5), 529-558, 2001.
[6] Zhu, H., A formal specification language for agent-
oriented software engineering, Proc. of AAMAS'2003, Mel-
bourne, Australia, July 2003.
[7] Wooldridge, M. J. & Jennings, N. R. Agent theories,
architectures, and languages: a survey. Intelligent Agents:
Theories, Architectures, and Languages, LNAI 890, 1-32,
Springer-Verlag, 1995.
[8] FIPA. http://www.fipa.org
[9] AUML. http://www.auml.org
[10] Xu, J., Jin, L., & Zhu, H. Tool support of orderly transi-
tion from informal to formal descriptions in requirements
engineering. Proc. of IFIP'96: Advanced IT Tools,
Terashima, N. & Altman, E. (Eds.), Chapman & Hall, 199-
206, 1996.
[11] Kuzniarz, L., Reggio, G., Sourrouille, J. L., & Huzar, Z.
(eds.) Consistency Problems in UML-based Software Devel-
opment, Workshop Materials at UML’2002, Research Re-
port. Blekinge Institute of Technology, 2002.
[12] Pap, Z. S., Majzikl, I., Pataricza, A, & Szegi, A. Com-
pleteness and Consistency Analysis of UML Statechart
Specifications. Proc. of IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop, 83-90. 2001.
[13]Andr´e, P., Romanczuk, A., Royer, J-C. Check the Con-
sistency of UML Class Diagrams Using Larch Prover. Proc.
of 3rd Rigorous Object-Oriented Methods Workshop, Clark T.,
(ed.), BCS, 2000.
[14] Paige, R. F., Ostroff, J. S., and Brooke, P. J. Check the
Consistency of Collaboration and Class Diagrams using
PVS. Proc. of 4th Workshop on Rigorous Object-Oriented
Methods, London, British Computer Society, 2002.
[15]Astesiano, E. & Reggio, G.. An Attempt at Analysing the
Consistency Problems in the UML from a Classical Alge-
braic Viewpoint. Recent Trends in Algebraic Development
Techniques, Selected Papers of the 15th Int. Workshop
WADT'02, LNCS, Springer Verlag, 2003.
[16]Nentwich, C., Emmerich, W. & Finkelstein, A. Static
Consistency Check for Distributed Specifications. Proc. of
16th Int. Conf. on Automated Software Engineering, Coro-
nado Island, CA., 115-124. 2001.
[17]Nentwich, C., Emmerich, W., & Finkelstein, A. Flexible
Consistency Check. ACM Transactions on Software Engi-
neering and Methodology 12 (1), 28-63, 2003.
[18]Inverardi, P., Muccini, H., Pelliccione, P. Automated
check of architectural models consistency using SPIN. Proc.
of 16th IEEE Int. Conf. on Automated Software Engineering,
San Diego, California, p.346, 2001.
[19] Schafer, T., Knapp, A., & Merz, S. Model Check UML
State Machines and Collaborations. Workshop on Software
Model Check, Paris, July 2001.

http://www.fipa.org/
http://www.auml.org/
http://www.cs.ucl.ac.uk/staff/c.nentwich/publications/conference/staticconsistency.html
http://www.cs.ucl.ac.uk/staff/c.nentwich/publications/conference/staticconsistency.html
http://www.informatik.uni-trier.de/~ley/db/journals/tosem/index.html
http://www.informatik.uni-trier.de/~ley/db/journals/tosem/index.html

	Abstract
	1. Introduction
	2. Overview of CAMLE
	3. Consistency constraints
	3.1. Caste models
	3.2. Collaboration models
	3.3. Behaviour models
	3.4. Consistency between models
	3.4.1. Between collaboration model and caste model
	3.4.2. Between behaviour model and caste model
	3.4.3. Between collaboration model and behaviour model

	4. Uses of consistency constraints
	5. Conclusion
	Acknowledgement
	References

