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Abstract 
 
In model-driven software development, inconsis-

tency of a model must be detected and eliminated to 
ensure the quality of the model. This paper investigates 
the consistency check in the modelling of multi-agent 
systems (MAS). Consistency constraints are formally 
defined for the CAMLE language, which was proposed 
in our previous work for modelling MAS. Uses of the 
consistency constraints in the implementation of a 
modelling environment for automatic consistency 
check and model transformation are discussed. 

1. Introduction 
Agent technology has been widely recognized as a 

viable solution for applications in dynamic environ-
ments such as the Internet [1]. A number of agent-
oriented methodologies have been proposed in the 
literature, such as Gaia [2]. In [3, 4], we proposed a 
modelling language CAMLE, which stands for Caste-
centric Agent-oriented Modelling Language and Envi-
ronment, to support the development of multi-agent 
systems (MAS). Diagrammatic models in CAMLE 
serve as the base for the design and implementation of 
MAS, for example, to generate formal specifications in 
SLABS [5, 6].   

CAMLE language is based on the principle of mul-
tiple views. Models from different views must be 
consistent with each other before they are utilized for 
further development. Inconsistency not only results in 
incorrect outcomes in the later stages, but also causes 
unnecessary complexity for developing tools that 
process the models. Therefore, inconsistency must be 
identified, managed and resolved. Models’ consistency 
cannot rely on manual test, which is expensive, labour 
intensive and error prone. It is unacceptable especially 
for a modelling language like CAMLE that is designed 
to support evolutionary software development in which 
models are to be incrementally refined, extended, and 
revised through many cycles. In this paper, we investi-
gate the automatic consistency check of MAS models 
by defining consistency constraints of the CAMLE 

language and implementing them as consistency check 
tools in the modelling environment.  

The remainder of the paper is organized as follows. 
Section 2 briefly reviews the basic concepts used in 
CAMLE language. Section 3 defines the consistency 
constraints on CAMLE models. Section 4 discusses the 
uses of consistency constraints in the implementation 
of the modelling environment. Section 5 concludes this 
paper with a discussion of related works. 

2. Overview of CAMLE 
A number of theories and models of agent-based 

systems have been proposed in the literature; cf. [7]. 
CAMLE is based on the conceptual model of MAS 
formally defined in SLABS, which is a specification 
language for agent-based systems [5, 6].  

In our model, agents are the basic entities of MAS. 
They are defined as real-time active computational 
entities that encapsulate data, operations and behav-
iours and situate in their designated environments. 
Therefore, by our definition, objects are degenerate 
forms of agents. Consequently, everything in a MAS is 
an agent. These agents are classified into a number of 
castes, which are agent classifiers. A caste is a set of 
agents that have the same structural and behavioural 
characteristics. Agents are instances of castes. How-
ever, an agent can change its casteship, viz. member-
ship to a caste, by joining in a caste or retreating from 
its current caste at run-time. Inheritance (is-a relation), 
aggregation (whole-part relations), migration (role 
change relations) and collaboration are the basic rela-
tionships between castes. The environment of an agent 
in a MAS is a subset of the agents in the system. An 
agent communicates with others by taking visible 
actions and changing visible state variables as an in-
formation sender, and by observing other agents’ visi-
ble actions and state variables as a receiver. The 
environment description of an agent or a caste defines 
which agents are visible; see [4, 5] for more details.  

Compared to the concept of objects in object-
orientation, the concept of agents in our definition 
highlights agents’ features of encapsulation, autonomy 
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and collaboration because behaviour rules and envi-
ronment are specified in agent structure, changing 
casteship is in agents’ ability and communication is 
through agents’ visible activities rather than objects’ 
method invoking. In comparison with other approaches 
in the research on agent-oriented software engineering 
such as FIPA [8] and AUML [9], we give a definition 
to conception of agent and MAS constructively rather 
than by a set of characteristics features.  

A caste diagram defines the castes in the system, 
indicates three kinds of relationships between the 
castes: inheritance, aggregation and migration.  

A well-formed caste diagram must satisfy the fol-
lowing conditions.  
a) A caste diagram defines a naming space in which 

each node defines a caste with a unique name.  
b) Each link defines a binary relation on castes by 

linking two nodes in the diagram.  
In CAMLE, a MAS is specified with three types of 

models: caste models, collaboration models and behav-
iour models. Each model consists of one or more dia-
grams. The caste model describes the castes in the 
system and the structural relationships between them. 
A caste is a compound caste if it is composed of a 
number of other castes; otherwise, it is atomic. For 
each compound caste, a collaboration model and a 
behaviour model are constructed, while each atomic 
caste only has a behaviour model.  

c) An inheritance relation and a migration relation 
must be associated to two different caste nodes.  

d) Inheritance relations must not form any loops.  
Note that aggregation and migration relations are 

allowed to form loops. It is not required for an aggre-
gation relation to be associated to different caste 
nodes.  

3.2. Collaboration models  
Collaboration models describe the dynamic struc-

ture of a system from communication perspective.  3. Consistency constraints As shown in Figure 2, there are two types of nodes 
in a collaboration diagram (CD). In a CD, an agent 
node represents a specific agent while a caste node 
represents any agent in a caste. An arrow from node A 
to node B indicates that A’s visible actions are ob-
served by agent B. The actions with their parameters 
are annotated on the arrow.  

Here, consistency constraints refer to the conditions 
on the uses of diagrammatic notations, variables and 
names, types and symbols that a set of well-formed 
diagrams must satisfy so that they can be regarded as 
forming a meaningful model. These conditions are 
usually related to the semantics of the diagrams, but 
can be syntactically checked effectively and effi-
ciently.  

 
 
 

3.1. Caste models  
 We view an information system as an organization 

that consists of a collection of agents. The agents stand 
in certain relationships one to another by being a mem-
ber of certain groups and playing certain roles, i.e. in 
certain castes. Such an organizational structure is 
captured in a caste model represented by a caste dia-
gram; see Figure 1 for an example.  
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Figure 2. Example of collaboration diagram 
A collaboration model may contain a number of 

CDs, including a general collaboration diagram (GCD) 
and a set of specific collaboration diagrams (SCD). A 
GCD serves as a declaration of what castes and their 
instance agents are involved in collaborations, while 
SCDs define the details of the collaboration protocols 
in various scenarios. Each SCD specifies a linear se-
quence of actions taken by the agents in a specific 
scenario of collaboration. CAMLE also supports the 
decomposition of an agent into a number of component 
agents in the same way as the analysis of the whole 
system. The collaboration among the component 
agents can also be defined by a collaboration model. 
Thus, a hierarchy of collaboration models for the sys-
tem and all the agents can be formed. The following 
are the well-formedness conditions imposed on CDs. 
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b) The number assigned to an action indicating its 
temporal order must be unique, if any.  
Let G be a GCD, S be the set of SCD and D∈S be 

any given SCD. Let ANode(X), CNode(X) and Node(X) 
denote the set of agent nodes, the set of caste nodes 
and the set of all nodes in the CD X, respectively. Let 
CName(x) denote the caste name of a node x. Nodes 
and linkages in G and those in S must satisfy the fol-
lowing consistency conditions.  
c) Every agent node in the GCD G must appear in at 

least one SCD. Formally,  
∀n∈ ANode (G).∃D∈S. (n∈ANode (D)) 

d) A caste node in the GCD must appear at least once 
in a SCD as either a caste node or an agent node 
representing a specific agent of the caste. Formally,  

∀n∈ CNode (G).∃D∈S. (n∈CNode (D)∨ 
∃n’∈ANode(D).(CName(n’)=CName(n))) 

e) Every caste node in a SCD must also appear in the 
GCD. Formally,  

∀D∈S.∀n∈ CNode (D).(n∈CNode (G)) 
f) For every agent node in any SCD, there must be 

either a node of the same agent or the caste of the 
agent in the GCD. Formally,  

∀D∈S.∀n∈ ANode (D). (n∈ANode (G)∨ 
∃n’∈CNode(G).(CName(n’)=CName(n))).  

Assume that a = ActName(p1, p2, …, pn) is an ac-
tion associated to an arrow from node b to c. We call 
<a, b, c> an interaction from b to c with action a. Let 
Interaction(X) be the set of all interactions in a CD X. 
Let α=<a, b, c> be any given interaction. We write 
Action(α) for a, Begin(α) for b and End(α) for c.  
g) Every interaction in a GCD must appear in at least 

one SCD, where a caste in the GCD can be re-
placed by an agent of the caste in the SCD. For-
mally,  

∀α∈Interaction(G).∃D∈S.∃β∈Interaction(D). 
(CName(Begin(α))=CName(Begin(β)) ∧ 

CName(End(α))=CName(End(β)) ∧ 
Action(α)=Action(β) ∧ 

Begin(α)∈ANode(G)⇒Begin(β)∈ANode(D)∧  
End(α) ∈ANode(G) ⇒ End(β) ∈ANode(D)) 

h) Every interaction in an SCD must also be defined 
in the GCD. Formally,  

∀D∈S.∀α∈Interaction(D). ∃β∈Interaction(G). 
(CName(Begin(α))=CName(Begin(β))∧ 

CName(End(α))=CName(End(β)) ∧ 
Action(α)=Action(β) ∧ 

Begin(α)∈CNode(G)⇒Begin(β)∈CNode(D)∧ 
End(α) ∈CNode(G) ⇒ End(β) ∈CNode(D) ) 

Let X be a CD. We use Env(X) to denote the envi-
ronment of X, i.e. the set of agent and caste nodes on 
the boundary of X.  
i) The environment of an SCD must be identical to 

the environment of the GCD. Formally, 
∀D∈S. (Env(D)=Env(G)) 

For the sake of simplicity, we assume that a col-
laboration model (CM) satisfies the consistency con-
straints within one model discussed above. Therefore, 
we can overload the notation Env(X) defined on dia-
grams to be the environment of the model, i.e. for a 
model M and any diagram D in M, define Env(M) = 
Env(D), provided that M satisfies condition 3.2.i).   

Let C be a compound caste in a CM M, and MC be 
the CM for C, that is, MC specifies the collaborations 
between C’s components. The environment of C de-
fined in M should be consistent with the environment 
description in MC. The following two constraints are 
imposed on the models at different levels.   
j) The set of agents and castes in C’s environment 

described in M must be equal to the set of agents 
and castes in MC’s environment description. For-
mally, 

∀n.(n∈Env(MC) ⇔ ∃α∈Interaction(G). 
(n=Begin(α) ∧ C =End(α))); 

where G is the GCD in M.  
k) The interactions that C participates as an observer 

described in M must be realized as interactions be-
tween environment elements and C’s components 
in MC. Formally,  

∀α∈Interaction(G).∃β∈Interaction(GC).(End(α)=C ⇒ 
Begin(α)=Begin(β) ∧ Action(α)=Action(β) ∧   

Begin(β)∈Env(GC) ∧End(β) ∈ Component(GC) ); 
where GC is the GCD in MC and Component(GC) is 
the set of C’s components depicted in GC. 

3.3. Behaviour models  
Each caste is associated with a behaviour model 

(BM), which contains two kinds of diagrams: scenario 
diagrams (SD) and behaviour diagrams (BD).  
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Figure 3. Example of behaviour diagram 
An SD describes a typical situation in the operation 

of a system from an agent’s view. SDs are referred to 
in BDs. A BD containing a number of behaviour rules 



describes an agent’s designed behaviours in certain 
scenarios. Readers are referred to [4] for details of the 
notations and their semantics.  

There are six different kinds of arrows that connect 
different kinds of nodes in BDs. In addition to the 
conditions for using right arrows between the nodes, 
the following well-formedness conditions are also 
imposed on BD and SD.  
a) The temporal order between events must be linear, 

i.e. the in-degree and out-degree of an event node 
must be less than or equal to 1.  

b) The logic connective nodes ‘AND’ and ‘OR’ are 
binary operators, and ‘NOT’ is unitary operator.  

c) A transition bar has at most three nodes directly 
connected to it: at most one scenario, at most one 
pre-condition node, and at most one event node.  
Each scenario reference node in a BD refers to a 

scenario defined in a SD. Therefore, a consistency 
condition on the relationship between a BD and the 
SDs in one behaviour model is defined as follows. 
d) The set of scenarios referred to in a BD by using 

scenario reference nodes is a subset of the scenarios 
defined by SDs. Formally, let C be a caste, DC be 
the BD of caste C, and SC be the set of SDs of C.  

∀n∈ ScenarioNode(DC). ∃S∈ SC.(Name(n)=Name(S) 

3.4. Consistency between models  
All the constraints defined above are intra-model 

constraints since they are on a same type of models. 
This subsection discusses the consistency between 
different types of models and defines inter-model 
constraints. In the sequel, models are assumed to be 
consistent with regard to the intra-model constraints.  

3.4.1. Between collaboration model and caste model  

Let CD be the set of CDs in a collaboration model 
(CM) and C the caste model for the system in question. 
a) The set of the castes in the CM must be a subset of 

the castes in caste model. Formally,  
∀D∈CD.∀n∈Node(D).∃n’∈Node(C). 

(CName(n) = Name(n’)) 
It is possible that a caste in the caste model does 

not appear in any CD. For example, a caste can be an 
abstract caste, which has no direct instance agent and 
any instance of the caste is always an instance of its 
sub-caste. The behaviours of the agents of the abstract 
caste can be defined by its sub-castes. Consequently, 
the abstract caste may not occur in any CD. 

Let CM be the collection of collaboration models 
of the system. Let x be a caste in the system, and Mx be 
the collaboration model for x. For models MA and MB 
in CM, we say that MB is an immediate refinement of 
model MA and write MB < MA, if B is the component 
caste of caste A. Let Aggr(C) be the set of aggregation 

relations in the caste model C.  
b) The hierarchical structure of the CMs must be 

consistent with the whole-part relations between 
castes defined in caste diagram. Formally,  
∀MA,MB∈CM.(MB < MA⇒∃R∈ Aggr(C).(R(B,A)) 

3.4.2. Between behaviour model and caste model  

Let BM be the set of behaviour models (BM) of a 
system, and C the caste model. The caste with a BM X 
defining its behaviour is denoted by Caste(X).  
c) Each BM defines the behaviour of a caste and the 

caste must be in the caste model. Formally, 
∀B∈BM.∃n∈Node(C).(Caste(B)= n ). 

In a BM, say, of caste B, the description of scenar-
ios may refer to the agents in the environment of B. Let 
Agents(B) be the set of agents referred to in a BM B, 
Caste-of(x) the caste of such an agent.  
d) Every agent in a scenario in a BM must have its 

caste defined in the caste model. Formally, 
∀B∈BM.∀a∈Agents(B).∃n∈Node(C). 

(Caste-of(a)=Name(n)). 
In a caste model, an agent’s change of casteship is 

described through a migration relation between the 
castes. In a BM, an agent’s change of casteship is 
defined through actions JOIN(caste), MOVETO(caste) 
and QUIT. Such information in the BM must be con-
sistent with the caste model.  
e) Let BC be the BM for caste C.  

 BC contains an action JOIN(C’), where C’ is a 
caste name, if and only if there is a participation 
relation from C to C’ in the caste model.  

 If BC contains an action MOVETO(C’), where C’ 
is a caste name, there must be a migration relation 
from C to C’ in the caste model. 

 If BC contains an action QUIT, there must be a 
migration relation from C to some caste in the 
caste model.  

 If there is a migration from C to some caste (say 
C’) in the caste model, there must be either a 
MOVETO(C’) or QUIT action in the BM of C.  

By ‘an action in a behaviour model’, we mean a 
result action of a behaviour rule, depicted as an action 
node immediately after a transition bar in a BD.  

3.4.3. Between collaboration model and behaviour 
model  

Let Components(C) be the set of C’s component 
castes. Let VisibleActions(C) be the set of visible ac-
tions of caste C defined in the CM. Let BX be the BM 
for caste X, Rules(B) be the set of rules in BM B, and 
Action(r) be the result action of rule r.  
f) Every visible action of caste C defined in the CM 

must occur in the BM of C or at least one of C’s 
components as a result action. Formally,  



∀a∈VisibleActions(C).(∃r∈Rules(BC)∨ 
(∃M∈Components(C). ∃r∈ Rules(BM)). (a=Action(r)) 

Let G be a caste or agent that has a communication 
link to caste C in the CM. We call G a collaborator of 
caste C, and write Collaborators(C) for the set of C’s 
collaborators. Let Scenarios(B) be the set of scenarios 
used in a BM B, and Ref(Sc) denote the set of castes or 
agents that a scenario Sc refers to.    
g) For each scenario used in the definition of caste C’s 

behaviour, the agents and/or castes that the scenario 
referred to must occur in the CM as C’s collabora-
tors. Formally,  

∀Sc∈Scenarios(BC).∀G∈Ref(Sc).G∈Collaborators(C) 
A scenario actor may be specified with qualifier, 

e.g. ‘∀A:CasteX’, and ‘∃Y:CasteX’. The caste CasteX 
must be a collaborator of caste C. If the actor of a 
scenario refers to a specific agent, i.e. in the form of 
‘AgentM:CasteX’, the agent AgentM of caste CasteX 
must be a collaborator.  
h) The agents and castes referred to in a scenario must 

be elements in the environment of the caste de-
scribed by the CM. Formally, let C to be the caste 
described by a BM B. 

∀Sc∈Scenarios(B).∀G∈Ref(Sc).(G∈Env(C)). 
The collaboration between an agent A of caste C 

and other agents may be realized through the collabo-
ration of A’s component agents. Therefore, we do not 
require all collaborators of caste C to be referred to in 
the definition of caste C’s behaviour.  

Let p1, p2, …, pn be the sequence of actions of a 
caste C (or an agent of caste C) described in a scenario 
Sc. Each of pi, i=1, 2, …, n, is called a referred action 
of caste C in scenario Sc. We write ReferredActions(C, 
Sc) to denote the set of all such actions.  
i) Every referred action in a scenario used in a BD 

must be a visible action of the caste described by 
the scenario. Formally,  
∀Sc∈ Scenarios(BC).∀a∈ ReferredActions(C, Sc). 

(a∈ VisibleActions(C)). 
It is not required that all visible actions of a 

collaborator should be referred to in the definition of a 
caste’s behaviour, because the collaboration may be 
realized through component agents.  

4. Uses of consistency constraints  
Consistency conditions can play at least two impor-

tant roles in model-based development. First, they 
serve as check points for quality assurance in model-
ling process. Violation of the conditions indicates the 
existence of contradictions in the model. Inconsistency 
may also be caused by conflict in requirements. Con-
sistency checks on requirement models help to identify 
and thereafter to resolve and manage such conflict. 

Therefore, automatic consistency check can help engi-
neers to detect errors at modelling stage, hence prevent 
errors from being propagated to later stages. Second, in 
model-driven development of software systems, it is 
desirable to automatically transform one model to 
another model, and to generate code (or code frame-
work) from models. Design and implementation of 
such tools must ensure that the transformation rules 
preserve the models’ meanings. Consistency condi-
tions provide a means to formally specify the correct-
ness of the transformation rules.  

The consistency constraints defined in this paper 
have been used for both of the above purposes in the 
implementation of CAMLE environment [4]. They are 
computable and have been directly implemented in the 
environment as consistency check tools. Diagnostic 
information as the result of the check is reported to 
users to help locate and correct errors. A diagram 
generator in the environment generates partial models 
(incomplete diagrams) from existing diagrams to help 
model construction. The rules to generate partial mod-
els are based on the consistency constraints so that the 
generated partial diagrams are consistent with existing 
ones. Preliminary case studies show that both consis-
tency check and partial model generations are very 
helpful to improve the models’ quality and software 
engineers’ productivity. The case studies are omitted 
here for the sake of space. Besides model construction 
and checking, another main function of CAMLE envi-
ronment is to automatically transform a model into the 
system’s formal specifications in SLABS. Consistency 
check simplifies the error processing in the implemen-
tation of the automatic transformation tool.  

5. Conclusion 
In this paper, we defined the consistency con-

straints on CAMLE models and investigated its uses in 
the modelling environment. The following table sum-
marizes and classifies the consistency constraints.  

Table 1. Classification of Constraints 
Vertical Consistency  Horizontal  Consis-

tency  Local  Global  
Intra- 

diagram 
1a, 1b, 1c, 1d, 1e, 
2a, 2b, 3a, 3b, 3c − − 

In
tra

-
m

od
el

  

Inter- 
diagram 

2c, 2d, 2e, 2f, 2g, 
2h, 2i, 3d 2j, 2k − 

Inter-model  4f, 4g, 4h, 4i 4e 4a, 4b, 4c, 4d

The constraints in  are referred to by their 
numbers in section 3. For example, 2b refers to condi-
tion b) in section 3.2. Note that the horizontal / vertical 
consistency means the consistency of models on same / 
different abstract level. Local consistency conditions 
are imposed on models of adjacent levels while global 
consistency conditions are concerned with the whole 

Table 1



hierarchical structure of the models.  
Well-defined visual notations for modelling soft-

ware systems’ structures and behaviours have the 
advantages of readability and preciseness due to their 
semi-formal nature. A common feature of such visual 
notations is that multiple views are utilized to model a 
system’s different aspects and/or at different levels of 
abstraction. The consistency between various views is 
crucial for developing quality software systems. It is, 
therefore, desirable to automatically check the consis-
tency among the diagrams [10, 11]. The past few years 
has seen a rapid increase in the research on defining 
consistency conditions and implementing consistency 
check tools for modelling languages, especially for 
UML [12, 13, 14, 15]. However, defining consistency 
between different views or diagrams is not trivial [16].  
Most existing modelling languages, for example UML, 
have no explicitly defined consistency constraints. 

Among the related works on consistency check, 
Xlinkit is a flexible tool for checking the consistency 
of distributed heterogeneous documents [17]. It com-
prises a language for expressing constraints between 
such documents, a document management mechanism 
and an engine that checks the documents against the 
constraints. In comparison with Xlinkit, our approach 
is language specific. The direct implementation of 
consistency constraints as a part of modelling envi-
ronment is highly efficient and effective in detecting 
errors. In addition, the explicitly defined constraints 
form a base for automatic transformations between 
models. Formal methods, such as model checking, 
have also been used for checking the consistency be-
tween multiple views of software specifications, e.g. in 
[18, 19]. It requires translating models into a formal 
notation as the input to a model checker, while as-
sumes that syntactic errors have been removed before 
the translation. Therefore, to check consistency before 
translation is still necessary. As formal specifications 
are automatically generated from a consistent model by 
our tools, application of formal methods to analyse the 
models becomes possible. This is a direction for our 
further investigation.  
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