
Agent Oriented Programming based on SLABS ∗

Ji Wang and Rui Shen
National Laboratory for

Parallel and Distributed Processing
Changsha, 410073, China

jiwang@mail.edu.cn, shenrui98@yahoo.com

Hong Zhu
Department of Computing
Oxford Brookes University

Oxford, OX33 1HX, United Kingdom
hzhu@brookes.ac.uk

Abstract

SLABS is a formal specification language designed for
modular and composable specification of multi-agent sys-
tems. This paper reports our attempts to support SLABS
at the level of programming languages. An program-
ming language, SLABSp, is presented to support two dis-
tinguished mechanisms, namely caste and scenario, in
caste-centric methodology of agent-oriented software de-
velopment. Based on Java platform, the SLABSp has been
implemented by compiling the programs into Java with the
multi-agent runtime environment.

1. Introduction

Agent oriented software methodology has been becom-
ing widely accepted in academy and industry [7, 8], and
agent based software systems have been on the service of
real applications. Many existing researches have been en-
gaged on agent oriented analysis, specification and design.
However, the programming languages based on the agent
oriented methodology have not been explored as desired in
the past decades, especially from the perspective of soft-
ware engineering. The aim of this paper is to investigate the
approach to design and implementation of the new language
facilities supporting agent orientation by showing an exper-
imental programming language called SLABSp.

As the growth of agent oriented methodology, agent ori-
ented programming is considered as the paradigm beyond
object oriented programming. Recently, SLABS [10, 11, 12,
13] has been designed for modular and composable speci-
fication of multi-agent systems, where agents are the active
and persistent computational entities that encapsulate data,

∗ Supported by the National NSF of China under grant No. 60233020
and 90104007, the National High Technology R&D 863 Programme
of China under grant No. 2002AA116070, and Program for New Cen-
tury Excellent Talents in University.

operations and behavior protocols and are situated in their
designated environments. In the caste-centric methodology
presented in SLABS as an approach to agent oriented soft-
ware development, caste is proposed to define a collection
of agents that have the same behavior and structural charac-
teristics, and scenario is proposed to define agent behaviors
in the context of environment situations. Therefore, it is de-
sired to introduce and implement caste and scenario mecha-
nisms in agent-oriented programming languages. An initial
solution to the mechanism of scenario in programming lan-
guages has been presented in [5].

In this paper, we propose a programming language
SLABSp to support caste and scenario mechanisms in
agent-oriented programming, as well as its implemen-
tation framework. SLABSp regards a multi-agent sys-
tem as a set of agents and organizes the agents into castes.
In SLABSp, an agent can be bounded to its castes dy-
namically (i.e. it may join to or quit from a caste at
runtime), and can perceive other agents in its environ-
ment rather than communicate directly. With a component
based approach, the SLABSp has been systematically im-
plemented by compiling the programs into Java with the
multi-agent runtime environment.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the SLABSp programming language, where
castes and scenarios are introduced as the novel language
facilities. Then section 3 describes the implementation of
SLABSp, including the compiler and the runtime support.
The examples are demonstrated in section 4, and a compar-
ison of the related work is given in section 5. At last, sec-
tion 6 concludes the paper with the contributions and future
work.

2. SLABSp: Agent-Oriented Programming
with Caste and Scenario

SLABSp is a Java-extended programming language de-
signed to support the caste-centric methodology of agent
oriented software development [11], whose key concepts

are castes and scenarios. The approach here is to embed
‘agent-oriented’ description mechanisms in Java.

2.1. Language Framework

SLABSp regards a multi-agent system as a set of agents.
The agents are defined as encapsulations of states, actions
and behavior rules, and each agent has its own rules that
govern its behaviors. SLABSp organizes agents in the sys-
tem into castes. Just as classes in object oriented languages
to abstract a set of objects with the same pattern of data and
methods, castes are designed to abstract a set of agents with
the same pattern of states, actions, behaviors and environ-
ments. However, in contrast with that an object is bounded
to its class statically and persistently, an agent is desired to
be bounded to its castes dynamically, i.e. it may join to or
quit from a caste at runtime. The concept ‘caste’ has been
presented in [11] and has been examined in [10, 13] to jus-
tify its feature as a step beyond object orientation.

Each agent can join multiple castes. When an agent joins
a caste, it will copy all elements of the caste, including the
states, actions, and behavior rules. Currently, when multiple
castes are joined, the name/behavior conflictions of these el-
ements should be avoided. The environment of an agent is
the set of agents in the system that can affect its behavior.

The EBNF definition of SLABSp is given below. Note
that ‘Java-Import’ is the same as Java’s import declaration,
and ‘Java-Definition’ can be any declaration clause of Java,
such as class declaration and method declaration. ‘Java-
Code’ is the sequence of Java statements, with some spe-
cial token ‘#’ and ‘@’ to reference state and action elements
of the agent respectively.

Agent/Caste

Agent ::=
(Java-Import)*
‘agent’ name [‘join’ Caste-Id (‘,’ Caste-Id)*] ‘{’

(Element| Java-Definition)*
‘}’

Caste ::=
(Java-Import)*
‘caste’ name [‘join’ Caste-Id (‘,’ Caste-Id)*] ‘{’

(Element| Java-Definition)*
‘}’

Element ::=
State-Element| Action-Element| Behavior-Element

State State-Element can be ‘internal’ to the agent or be ob-
servable for other agents. A State-Element must have read
and write operations, i.e. ‘Getf’ and ‘Setf’ clauses, for the
representation of complex, multi-dimensional values or ob-
jects.

State-Element ::=
[‘internal’] ‘state’ Type id ‘(’ Parameter-List ‘)’ ‘{’

(Java-Definition| Getf | Setf)*
‘}’

Getf ::= ‘get’ ‘{’ Java-Code ‘}’

Setf ::= ‘set’ ‘{’ Java-Code ‘}’

Action Action-Element can be ‘internal’ to the agent or be
observable for other agents. The ‘do’ clause will be exe-
cuted when the action is invoked.

Action-Element ::=
[‘internal’] ‘action’ id ‘(’ Parameter-List ‘)’ ‘{’

‘do’ ‘ {’ Java-Code ‘}’
(Java-Definition)*

‘}’

Behavior Rules Behavior-Element describes that ‘do’
clause will be executed if the scenario specified in ‘when’
clause is satisfied.

Behavior-Element ::=
‘behavior’ id ‘{’

‘do’ ‘ {’ Java-Code ‘}’
(Java-Definition)*

‘}’ ‘when’ ‘ {’
[Scenario]

‘}’

Scenarios Scenario presented in [3, 9, 11] is employed to
describe a set of typical combinations of the behaviors of re-
lated agents in a multi-agent system. Its most fundamental
characteristics is to put events in the context of the history
of behavior. A basic form of scenario description is a pat-
tern of an agent’s behavior. In SLABSp, the description of
scenario is extended to allow the reference of the observer
agent itself by ‘this’.

Scenario ::=
Agent-Id ‘:’ Pattern

| Relation-Expression
| ‘for’ (number | ‘all’) Caste-Id ‘:’ Pattern
| Scenario ‘and’ Scenario
| Scenario ‘or’ Scenario
| ‘not’ Scenario
| ‘(’ Scenario ‘)’
| ‘this’ ‘:’ Pattern

SLABSp can also describe the situations that a specific
agent behave in a certain pattern, a number of or all agents
of a caste behave in certain pattern, and logic combinations
of such situations and relational expressions that contain
such descriptions. Pattern is used to specify the sequence of
observable state changes and observable actions. Once an
agent’s state is changed or an observable action is taken, the
pattern sequence will be evaluated by a Pattern Process Ma-
chine [5] to decide whether an action should be taken. The

atomic action ‘any’ can be matched by any actions, and the
‘id’ can be matched by action whose name is the same with
‘id’.

Pattern ::= ‘[’ Sequence-Unit (‘,’ Sequence-Unit)* ‘]’

Sequence-Unit ::=
Action-Pattern| ‘!’ State-Assertion

Action-Pattern ::= Atomic-Action [‘ˆ’ number]

Atomic-Action ::=
‘any’ | id | id ‘(’ Parameter-Value-List ‘)’

2.2. Core Castes

Caste is a nice language facility to enrich the expressive-
ness and scalability of agent programs in SLABSp. For ex-
amples, three core castes, namely core.Agent, core.Mutable
and core.Social, are shown in this subsection.

Each agent in SLABSp joins caste core.Agent (in Fig-
ure 1) either explicitly or implicitly. Internal statename rep-
resents the agent’s name, and the other internal statestarted

shows whether the agent has started running. Behavior rule
fireStartup makes the agent take actionstart when it starts
running in the platform, and actionstart can be observed by
agents in their scenario patterns.

// base caste every agent joins
caste core. Agent {
// the name of the agent as a state
internal state String name(){
get { return getAgent().getName(); }
set { /* name is read-only*/ }

}
// whether the agent has been started
internal state boolean started(){
boolean v = false;
get { return v; }
set { v = value; }

}
// start action
action start(){
do { #started() = true;}

}
// rule: when agent start, fire start action
behavior fireStartup(){
do { @start(); }

} when {
this: [! #started() = false]

}
}

Figure 1. Base caste for all agents.

Caste core.Mutable declares two actions (joinCaste and
quitCaste), which use methods of the underlying Java classes
to accomplish dynamic caste joining and quitting, as shown
in Figure 2. Agents of core.Mutable has the ability to join
and quit castes at runtime.

SLABSp can be extended by defining new castes, e.g.
to provide the direct communication mechanism, a caste

// agents of this caste can dynamically
// join/quit castes
caste core.Mutable {
// join caste action
action joinCaste(String casteName){
do {
getAgent().dynamicJoin(casteName);

}
}
// quit caste action
action quitCaste(String casteName){
do {
getAgent().dynamicQuit(casteName);

}
}

}

Figure 2. Caste core.Mutable.

named core.Social is defined as shown in Figure 3. It de-
clares two actions (send andrecv) to send and receive mes-
sages, which can ultimately use diverse Java libraries to
implement direct communication between agents, such as
message passing, remote procedure call, file system, email
service and etc.

// agents of this caste can communicate
// directly with other social agents
caste core.Social {
// send message
action send(Message message){
do {
getAgent(). send (message);

}
}
// receive message
action recv(Message message){
do {
getAgent().receive (message);

}
}

}

Figure 3. Caste core.Social

3. Compiler and Runtime Platform for
SLABSp

The system supporting SLABSp language is based on
Java, and includes the SLABSp library, the SLABSp com-
piler, the underlying classes (Java Agent Components), and
the SLABSp runtime platform, as shown in Figure 4.

The SLABSp library contains some standard castes de-
fined in SLABSp language, for examples the castes in sec-
tion 2.2. These castes are either for defining common states,
actions and behaviors of specific kinds of agents, such as
caste core.Agent shown in Figure 1, which is the caste ev-
ery agent joins, or for wrapping some complex operations to
provide high level facilities, such as caste core.Mutable in
Figure 2, which provides actions to support dynamic caste
joining and quitting.

SLABSp
Library

SLABSp Source
(*.p)

Java Source
(*.java)

Java Agent
Components

SLABSp Compiler

Java Bytecode
(*.class)

Java Compiler

Java Virtual Machine

SLABSp Runtime Platform

Figure 4. Overview of SLABSp.

3.1. Underlying Classes

The underlying classes (Java Agent Components) are de-
fined to serve as the semantics of SLABSp. In this model, an
agent’s structure can be changed at run-time, which makes
dynamic caste joining and quitting possible.

In Figure 5,JacAgent represents an agent definition in
SLABSp.JacCaste represents a caste definition, and it main-
tains a set of agents that have joined it.JacAgent andJacCaste

have the same super classJacUnit, which has a name and a
set of castes to join, and maintains a composition ofJac-

State, JacAction andJacBehavior. The listeners ofJacState and
JacAction can be notified when the state changes or action is
invoked, driving the pattern processing in scenario mecha-
nism.JacBehavior uses a scenario object to process the sce-
nario declared in the ‘when’ clause of the behavior rule.

Figure 6 shows the underlying scenario classes. Inter-
faceJacScenario defines the methods that all scenario classes
should implement.AgentScenario processes the scenario fo-
cused on a single agent, andCasteScenario processes the
scenario focused on agents of a specific caste.AndScenario,
OrScenario andNotScenario process the compound scenarios.

3.2. Compiling SLABSp Programs

The SLABSp compiler compiles SLABSp source code
together with the SLABSp library into Java. The syntax el-
ements of SLABSp will be compiled to subclasses of cor-
responding underlying classes. A SLABSp source file con-
tains the declaration of exactly one agent or caste, and it
will be compiled to a package of Java classes correspond-
ing to the syntax elements.

Figure 5. Main underlying classes.

Figure 6. Underlying scenario classes.

3.3. Runtime Support

The runtime platform to execute SLABSp programs pro-
vides codebase management, naming service, agent lifecy-
cle management, containers of agents and castes, dynamic
caste joining and quitting support, and communication in-
frastructure, as shown in Figure 7.

It manages the codebase to load necessary Java classes
of the compiled agent or caste. The naming service is used
to lookup the agent or caste by its qualified name, which
is accomplished with the help of agent container and caste
container. The agent container also manages the lifecycle of
agents. When an agent dynamically joins or quits a caste,
the platform should be aware of its situations, and keep ev-
erything consistent.

4. Examples

In this section, we demonstrate that SLABSp can make
the high level concepts and powerful abstraction available
in the programming level naturally.

Platform

Naming

Distribute

Security

Codebase

Distribute

Lifecycle

Container

Mutable Caste

Communication
Administration

Figure 7. Runtime platform.

4.1. Teacher or Student

Agents of core.Mutable can use actionjoinCaste andquit-

Caste to join and quit a caste at runtime. In Figure 8, there
is an agent named Harry of caste Person and core.Mutable.
Behavior ruledaytime defines when the Sun (which is an
agent here) takes actionrise, Harry will quit caste Student
and join caste Teacher; Behavior rulenight defines when the
Sun takes actionfall, Harry will quit caste Teacher and join
caste Student.

// Harry is a teacher in the daytime,
// but he goes studying at night.
agent Harry join Person, core.Mutable {
behavior daytime(){
do {

@quitCaste(“Student”);
@joinCaste(“Teacher”);

}
} when { Sun: [@rise()] }

behavior night(){
do {

@quitCaste(“Teacher”);
@joinCaste(“Student”);

}
} when { Sun: [@fall()] }

}

Figure 8. Agent Harry in SLABSp

4.2. Vote Backers

The backers can support one of the two candidates:
Tommy and Jerry. CasteBacker declares two actions (sup-

portTommy andsupportJerry) and one behavior rule (turnRan-

dom). Behavior ruleturnRundom makes the agent randomly
choose a candidate to support after it starts running, as
shown in Figure 9(a).

CastePityBacker in Figure 9(b) extends caste Backer, and
declares two more behavior rules (turnToJerry and turnTo-

Tommy). Behavior ruleturnToJerry makes the agent take ac-
tion supportJerry when Jerry is less supported, and behavior
rule turnToTommy makes the agent take actionsupportTommy

when Tommy is less supported. CasteRitzyBacker in Fig-

ure 9(c) adopts an symmetrical strategy compared to caste
PityBacker.

When there are only agents of caste Backer in the run-
time platform, the support ratio is fifty-fifty. When there are
only agents of caste PityBacker, because they support the
weaker one, the final support ratio is also fifty-fifty. But
when there are only agents of caste RitzyBacker, all the
agents will support one side.

5. Related Work

Agent oriented programming languages and sys-
tems have been investigated for more than one decade since
the original work presented in [6], including agent archi-
tectures and agent communication languages. From the
perspective of software engineering, an alternative ap-
proach is to design the languages based on object-oriented
programming languages such as Java. The representa-
tive one is JACK [2], which shares the component based
idea with SLABSp on the implementation of agent-
oriented programming language. The JACK Agent Lan-
guage is a programming language that extends Java with
agent-oriented concepts, such as Agents, Capabilities,
Events and Plans etc. In SLABSp, it is desired to exam-
ine the extensions of object-orientation to agent-orientation
steadily in a caste-centric approach, that is from ob-
jects to agents, from classes to castes, and from meth-
ods to scenario-based behavior rules. The principles of
SLABSp are to explore the language facilities for organiza-
tion of agents and capture of the behaviors of agents, which
can switch object-orientation to agent-orientation in a com-
patible way. As a result, the conceptual level of the lan-
guage design is ‘lower’ than that of the languages based on
BDI model. However, the idea of BDI model can still find
its place in SLABSp implicitly.

There is the tool-based approach to providing a platform
including a software framework, a library of software com-
ponents and tools that facilitate the development and de-
ployment of agent based systems, such as JADE [1] and
ZEUS Toolkit [4]. SLABSp chooses a language-based ap-
proach and can build the library of software components in
castes. For example, one may write user-defined agent com-
munication by using caste mechanism in SLABSp. While
in the tool-based approach, the extensions will be carried
by adding specific library in the specific languages in which
the platform is built. Therefore, SLABSp may ease the in-
cremental development of agent systems.

6. Conclusion and Future Work

In this paper, the programming language SLABSp is pre-
sented and implemented to demonstrate that caste and sce-
nario are feasible as the novel facilities in agent oriented

import java.util.*;

caste Backer {
action supportTommy(){
do {

System.out.println(
#name()+" support Tommy");

}
}
action supportJerry(){
do {

System.out.println(
#name()+" support Jerry");

}
}
// choose a random one to support
behavior turnRandom(){

Random rand = new Random();
do {
if (rand.nextBoolean())

@supportTommy();
else

@supportJerry();
}

} when {
this: [@start()]

}
}

// pity, support the weaker side
caste PityBacker join Backer{

// turn to Jerry if he's weaker
behavior turnToJerry() {
do { @supportJerry(); }

} when {
this: [@supportTommy()] and
(count Backer: [@supportTommy()]
> count Backer: [@supportJerry()])

}

// turn to Tommy if he's weaker
behavior turnToTommy() {
do { @supportTommy(); }

} when {
this: [@supportJerry()] and
(count Backer: [@supportJerry()]
> count Backer: [@supportTommy()])

}
}

// ritzy, support the stronger one
caste RitzyBacker join Backer{

// turn to Jerry if he's stronger
behavior turnToJerry() {
do { @supportJerry(); }

} when {
this: [@supportTommy()] and
(count Backer: [@supportTommy()]
< count Backer: [@supportJerry()]

}
// turn to Tommy if he's stronger
behavior turnToTommy() {
do { @supportTommy(); }

} when {
this: [@supportJerry()] and
(count Backer: [@supportJerry()]
< count Backer: [@supportTommy()])

}
}

(a) Backer.p (b) PityBacker.p (c) RitzyBacker.p

Figure 9. Vote backers example in SLABSp.

programming. The mechanism of castes is designed to orga-
nize the agents with the same pattern of states, actions, be-
haviors and environments. To our best knowledge, SLABSp
is the first one to provide castes and to support the dy-
namic binding between agents and castes in programming
languages. The mechanism of scenarios is designed to de-
scribe the agent’s behaviors under specific environment and
to support its perception to the environment. An obvious
advantage is that using scenarios can reduce many unneces-
sary direct communications among agents in programming
and achieve a powerful abstraction in programming.

The future work is to support the running of SLABSp
program on distributed platforms.

References

[1] F. Bellifemmine, A. Poggi, G. Rimassa, and P. Turci. An
object-oriented framework to realize agent systems. InPro-
ceedings of WOA 2000 Workshop, pages 52–57, 2000.

[2] M. Coburn. JACK Intelligent Agents: User Guide, version
2.0. http://www.agent-software.com, 2001.

[3] B. Moulin and M. Brassard. A scenario-based design method
and environment for developing multi-agent systems. InPro-
ceeding of First Australian Workshop on DAI, volume 1087
of LNAI, pages 216–232, 1996.

[4] H. S. Nwana, D. T. Ndumu, and L. C. Lee. ZEUS: An ad-
vanced tool-kit for engineering distributed multi-agent sys-
tems. InProceedings of PAAM98, pages 377–391, 1998.

[5] R. Shen, J. Wang, and H. Zhu. Scenario mechanism in agent-
oriented programming. InProceedings of 11th Asia-Pacific
Software Engineering Conference (APSEC’04), pages 464–
471, Busan, Korea, 30 Nov - 3 Dec 2004.

[6] Y. Shoham. Agent-oriented programming.Artificial Intelli-
gence, 60(1):51–92, 1993.

[7] G. Weiss, editor.Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence. MIT Press, 1999.

[8] M. Wooldridge and N. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review,
10(2):115–152, 1995.

[9] H. Zhu. Scenario analysis in an automated requirements
analysis tool.Journal of Requirements Engineering, 5(1):2–
22, 2000.

[10] H. Zhu. The role of caste in formal specification of MAS. In
Proceeding of PRIMA’2001, volume 2132 ofLNCS, pages
1–15, 2001.

[11] H. Zhu. SLABS: A formal specification language for agent-
based systems.International Journal of SEKE, 11(5):529–
558, 2001.

[12] H. Zhu. A formal specification language for agent-oriented
software engineering. InProceedings of the 2nd Interna-
tional Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS’03), pages 1174–1175, Melbourne,
Australia, 2003.

[13] H. Zhu and D. Lightfoot. Caste: A step beyond object orien-
tation, in modular programming languages. InProceeding of
JMLC’2003, volume 2789 ofLNCS, pages 59–62, 2003.

