Agent Oriented Programming based on SLABS*

Ji Wang and Rui Shen Hong Zhu
National Laboratory for Department of Computing
Parallel and Distributed Processing Oxford Brookes University
Changsha, 410073, China Oxford, OX33 1HX, United Kingdom
jiwang@mail.edu.cn, shenrui98@yahoo.com hzhu@brookes.ac.uk
Abstract operations and behavior protocols and are situated in their

designated environments. In the caste-centric methogolog
SLABS is a formal specification language designed for presented in SLABS as an approach to agent oriented soft-
modular and composable specification of multi-agent sys-ware development, caste is proposed to define a collection
tems. This paper reports our attempts to support SLABSof agents that have the same behavior and structural charac-
at the level of programming languages. An program- teristics, and scenario is proposed to define agent belsavior
ming language, SLABSp, is presented to support two dis-in the context of environment situations. Therefore, ités d
tinguished mechanisms, namely caste and scenario, insired to introduce and implement caste and scenario mecha-
caste-centric methodology of agent-oriented software de-nisms in agent-oriented programming languages. An initial
velopment. Based on Java platform, the SLABSp has beesolution to the mechanism of scenario in programming lan-
implemented by compiling the programs into Java with the guages has been presented in [5].
multi-agent runtime environment. In this paper, we propose a programming language
SLABSp to support caste and scenario mechanisms in
agent-oriented programming, as well as its implemen-
tation framework. SLABSp regards a multi-agent sys-
1. Introduction tem as a set of agents and organizes the agents into castes.
In SLABSp, an agent can be bounded to its castes dy-
Agent oriented software methodology has been becom-namically (i.e. it may join to or quit from a caste at
ing widely accepted in academy and industry [7, 8], and runtime), and can perceive other agents in its environ-
agent based software systems have been on the service ghent rather than communicate directly. With a component
real applications. Many existing researches have been enpased approach, the SLABSp has been systematically im-
gaged on agent oriented analysis, specification and designplemented by compiling the programs into Java with the
However, the programming languages based on the agengnulti-agent runtime environment.
oriented methodology have not been explored as desired in The remainder of the paper is organized as follows. Sec-
the past decades, especially from the perspective of softtion 2 presents the SLABSp programming language, where
ware engineering. The aim of this paper is to investigate thecastes and scenarios are introduced as the novel language
approach to design and implementation of the new languagefacilities. Then section 3 describes the implementation of
facilities supporting agent orientation by showing an expe S| ABSp, including the compiler and the runtime support.
imental programming language called SLABSp. The examples are demonstrated in section 4, and a compar-
As the growth of agent oriented methodology, agent ori- ison of the related work is given in section 5. At last, sec-

ented programming is considered as the paradigm beyondion 6 concludes the paper with the contributions and future
object oriented programming. Recently, SLABS [10, 11, 12, work.

13] has been designed for modular and composable speci-
fication of multi-agent systems, where agents are the active,

and persistent computational entities that encapsuldée da SLABSp: Agent-Oriented Programming

with Caste and Scenario

+ Supported by the National NSF of China under grant No. 602330 . .
and 90104007, the National High Technology R&D 863 Programme ~ SLABSP is a Java-extended programming language de-

of China under grant No. 2002AA116070, and Program for New-Ce signed to support the caste-centric methodology of agent
tury Excellent Talents in University. oriented software development [11], whose key concepts

are castes and scenarios. The approach here is to embedState-Element ::=

‘agent-oriented’ description mechanisms in Java. ['internal’] ‘state’ Type id ‘(" Parameter-List *)' {’
(Java-Definition Getf| Setf)*

2.1. Language Framework }
Getf ::=‘get’ ‘{" Java-Code }'

SLABSp regards a multi-agent system as a set of agents. e ,
The agents are defined as encapsulations of states, actionsS€lf ::= ‘set’ {" Java-Code }
and behavior rules, and each agent has its own rules thajction Action-Element can be ‘internal’ to the agent or be
govern its behaviors. SLABSp organizes agents in the sys-observable for other agents. The ‘do’ clause will be exe-
tem into castes. Just as classes in object oriented languagezuted when the action is invoked.
to abstract a set of objects with the same pattern of data and Action-Element ::=

methods, castes are designed to abstract a set of agents with [internal’] ‘action’ id ‘(Parameter-List)" “{’

the same pattern of states, actions, behaviors and environ- ‘do’* {" Java-Code }'
ments. However, in contrast with that an object is bounded (Java-Definition)*
to its class statically and persistently, an agent is désoe y

be bounded to its castes dynamically, i.e. it may join to or
quit from a caste at runtime. The concept ‘caste’ has beenBehavior Rules Behavior-Element describes that ‘do’
presented in [11] and has been examined in [10, 13] to jus-clause will be executed if the scenario specified in ‘when’
tify its feature as a step beyond object orientation. clause is satisfied.

Each agent can join multiple castes. When an agent joins Behavior-Element ::=
a caste, it will copy all elements of the caste, including the ‘behavior’ id *{’

states, actions, and behavior rules. Currently, when plelti ‘do’ * {" Java-Code }’
castes are joined, the name/behavior conflictions of tHese e (Java-Definition)*
ements should be avoided. The environment of an agentis ‘}' ‘when’* {’
the set of agents in the system that can affect its behavior. [Scenario]

The EBNF definition of SLABSp is given below. Note ‘b

that ‘Java-Import’ is the same as Java’'s import declaration

and "Java-Definition’ can be any declaration clause of JaVa’describe a set of typical combinations of the behaviors-of re

such ’a_s class declaration and method decla_rat|on. ‘]avaTated agents in a multi-agent system. Its most fundamental
Code’ is the sequence of Java statements, with some spe-

ial token “# and ‘@' to ref tate and acti | i characteristics is to put events in the context of the hystor
cla token # an fo reterence state and action €1ements ¢ hehavior. A basic form of scenario description is a pat-
of the agent respectively.

tern of an agent’s behavior. In SLABSp, the description of
Agent/Caste scenario is extended to allow the reference of the observer
agent itself by ‘this’.

Scenarios Scenario presented in [3, 9, 11] is employed to

Agent ::=

(Java-Import)* Scenario ::=

Agent-1d ;" Pattern

‘agent’ name [‘join’ Caste-Id (', Caste-Id)*]{’ Relation-E !
elation-Expression
‘for’ (number | ‘all’) Caste-Id ;" Pattern

(Element| Java-Definition)*
) Scenario ‘and’ Scenario

|

|

|

Caste ::= | Scenario ‘or’ Scenario

(Java-Import)* | ‘not’ Scenario

‘caste’ name [‘join’ Caste-Id (', Caste-Id)*]{" | ‘(C Scenario ‘)’
(Element| Java-Definition)* | ‘this’‘’ Pattern

i SLABSp can also describe the situations that a specific
agent behave in a certain pattern, a number of or all agents
of a caste behave in certain pattern, and logic combinations
of such situations and relational expressions that contain
State State-Element can be ‘internal’ to the agent or be ob- such descriptions. Pattern is used to specify the sequédnce o
servable for other agents. A State-Element must have readbservable state changes and observable actions. Once an
and write operations, i.e. ‘Getf’ and ‘Setf’ clauses, foeth agent’s state is changed or an observable action is taken, th
representation of complex, multi-dimensional values ar ob pattern sequence will be evaluated by a Pattern Process Ma-
jects. chine [5] to decide whether an action should be taken. The

Element ::=
State-Element Action-Element Behavior-Element

atomic action ‘any’ can be matched by any actions, and the
// agents of this caste can dynamically

‘id’ can be matched by action whose name is the same with // Join/quit castes
.id. caste core.Mutable {
. // join caste action
action joinCaste(String casteName){

Pattern ::= [Sequence-Unit (‘,; Sequence-Unit)* T do {
getAgent().dynamicjoin(casteName);

Sequence-Unit ::=

// quit caste action

ACtion-Patterd ‘I’ State-Assertion action quitCaste(String casteName){
do {
Action-Pattern ::= Atomic-Action [~ number] , gerAgentQ-dynamicQuit(casteName);
, . ¥
Atomic-Action ::= }

‘any’ | id | id ‘(' Parameter-Value-List ‘)’
Figure 2. Caste core.Mutable.

2.2. CoreCastes

named core.Social is defined as shown in Figure 3. It de-

Caste is a nice language facility to enrich the expressive- s)
clares two actionssénd andrecv) to send and receive mes-

ness and scalability of agent programs in SLABSp. For ex-

amples, three core castes, namely core.Agent, core.l\@tabl,sagfs’ WT(éh ca:n ultimately tyse t()jnt/erse Java It|brar|eﬁ to
and core.Social, are shown in this subsection. Implement direct communication between agents, such as

Each agent in SLABSp joins caste core.Agent (in Fig- message passing, remote procedure call, file system, email

ure 1) either explicitly or implicitly. Internal stateme rep- service and etc.
resents the agent’s name, and the other internal state;

shows whether the agent has started running. Behavior rule // agents of this caste can communicate
fireStartup makes the agent take actierart when it starts e oiher social agents
running in the platform, and actiamart can be observed by // send message

. . . action send(Message message){
agents in their scenario patterns. do {

getAgent(). send (message);

b
— // receive message
éggfgig‘:gti;gﬁgy{agentJoms action recv(Message message){
// the name of the agent as a state do tAgent().receive (m);
internal state String name(){ getAgent().receive (message);
get { return getAgent().getName(); })
set { /* name is read-only*/ } y

¥

// whether the agent has been started

e o ean started()}{ Figure 3. Caste core.Social
get { returnv; }
set { v = value; }

// start action
action start(){

do { #started() = true;}
3. Compiler and Runtime Platform for

// rule: when agent start, fire start action

e e SLABSp
} when {
1 this: LI #stared() = false] The system supporting SLABSp language is based on
} Java, and includes the SLABSp library, the SLABSp com-
) piler, the underlying classes (Java Agent Components), and
Figure 1. Base caste for all agents. the SLABSp runtime platform, as shown in Figure 4.

The SLABSp library contains some standard castes de-
fined in SLABSp language, for examples the castes in sec-

Caste core.Mutable declares two actiops¢aste and tion 2.2. These castes are either for defining common states,
quitCaste), which use methods of the underlying Java classesactions and behaviors of specific kinds of agents, such as
to accomplish dynamic caste joining and quitting, as shown caste core.Agent shown in Figure 1, which is the caste ev-
in Figure 2. Agents of core.Mutable has the ability to join ery agent joins, or for wrapping some complex operations to
and quit castes at runtime. provide high level facilities, such as caste core.Mutable i

SLABSp can be extended by defining new castes, e.g.Figure 2, which provides actions to support dynamic caste
to provide the direct communication mechanism, a castejoining and quitting.

N,
JacUnit
+name
+castes
s

o
JacState K \
+listeners

JacAgent K-----oo__ JacCaste
SLABSp Source SLABSp v
(*.p) Library

SLABSp Compiler

l JacAction
Java Source t.?ava Agent tlisteners
(*.java) P 3
JacStructureElement JacBehavior
ﬂ ﬂ +internal +scenario
Java Compiler JacElement
+name

+agent

Java Bytecode
(*.class)

Figure 5. Main underlying classes.

SLABSp Runtime Platform
Java Virtual Machine CasteScenario
AgentScenario +caste

+agent

Figure 4. Overview of SLABSp.

. <<interface>>
3.1 Underlymg Classes \\\\ JacScenario
+open()
. O1S . +close()
The underlying classes (Java Agent Components) are de- rocenarto +nsAccepted()

. . . left
fined to serve as the semantics of SLABSp. In this model, an :gtm

agent’s structure can be changed at run-time, which makes
dynamic caste joining and quitting possible.

AndScenario
+left

NotScenarlo

In Figure 5,JacAgent represents an agent definition in right +scenario
SLABSp.JacCaste represents a caste definition, and it main-
tains a set of agents that have joineddtAgent andJacCaste Figure 6. Underlying scenario classes.

have the same super classunit, which has a name and a

set of castes to join, and maintains a compositionaof

State, JacAction andJacBehavior. The listeners ofacState and 3.3. Runtime Support

JacAction can be notified when the state changes or action is

invoked, driving the pattern processing in scenario mecha- The runtime platform to execute SLABSp programs pro-

nism. JacBehavior USeS a scenario object to process the sce-Vides codebase management, naming service, agent lifecy-

nario declared in the ‘when’ clause of the behavior rule. cle management, containers of agents and castes, dynamic
Figure 6 shows the underlying scenario classes. Inter-caste joining and quitting support, and communication in-

faceJacScenario defines the methods that all scenario classesfrastructure, as shown in Figure 7.

should implementagentScenario processes the scenario fo- It manages the codebase to load necessary Java classes
cused on a single agent, amdstescenario processes the Of the compiled agent or caste. The naming service is used
scenario focused on agents of a specific casigscenario, to lookup the agent or caste by its qualified name, which

OrScenario andNotScenario process the compound scenarios. i accomplished with the help of agent container and caste
container. The agent container also manages the lifecycle o

3.2. Compiling SLABSp Programs agents. When an agent dynamically joins or quits a caste,

the platform should be aware of its situations, and keep ev-
The SLABSp compiler compiles SLABSp source code erything consistent.

together with the SLABSp library into Java. The syntax el-

ements of SLABSp will be compiled to subclasses of cor- 4, Examples

responding underlying classes. A SLABSp source file con-

tains the declaration of exactly one agent or caste, and it In this section, we demonstrate that SLABSp can make

will be compiled to a package of Java classes correspond-the high level concepts and powerful abstraction available

ing to the syntax elements. in the programming level naturally.

ure 9(c) adopts an symmetrical strategy compared to caste
PityBacker.

When there are only agents of caste Backer in the run-
time platform, the support ratio is fifty-fifty. When there are
only agents of caste PityBacker, because they support the
weaker one, the final support ratio is also fifty-fifty. But
when there are only agents of caste RitzyBacker, all the
i Distribute ;; Distribute ; agents will support one side.

Lifecycle

Container

Platform
Mutable Caste

Administration Communication

‘ Codebase ‘

Figure 7. Runtime platform. 5. Related Work

Agent oriented programming languages and sys-

4.1. Teacher or Student tems have been investigated for more than one decade since
the original work presented in [6], including agent archi-
Agents of core.Mutable can use actjoinCaste andquit- tectures and agent communication languages. From the

Caste to join and quit a caste at runtime. In Figure 8, there Perspective of software engineering, an alternative ap-
is an agent named Harry of caste Person and core.MutableProach is to design the languages based on object-oriented
Behavior ruledaytime defines when the Sun (which is an Programming languages such as Java. The representa-
agent here) takes actiose, Harry will quit caste Student tive one is JACK [2], which shares the component based
and join caste Teacher: Behavior rulgnt defines whenthe ~ idéa with SLABSp on the implementation of agent-

Sun takes actiorll, Harry will quit caste Teacher and join ©riented programming language. The JACK Agent Lan-
caste Student. guage is a programming language that extends Java with

agent-oriented concepts, such as Agents, Capabilities,
Events and Plans etc. In SLABSp, it is desired to exam-

// H is a teacher in the daytime, ;.
f bj{r,{e’sgje;gﬁu‘i;,’n”g ot night, ine th_e e>ften3|ons of objeqt—orlentatlon to ager)t-orlmrna
B etor Koy coretutaple € steadily in a caste-centric approach, that is from ob-
do{ N . jects to agents, from classes to castes, and from meth-
@quitCaste(“Student”);
, @joinCaste("Teacher"); ods to scenario-based behavior rules. The principles of
} when { Sun: [@rise()] } SLABSp are to explore the language facilities for organiza-
behavior night(){ tion of agents and capture of the behaviors of agents, which
do@{gqitCaste(“Teacher”); can switch object-orientation to agent-orientation in mmeo
, omcesteliStudentt; patible way. As a result, the conceptual level of the lan-
, Jwhen (SunL@fI0] guage design is ‘lower’ than that of the languages based on
BDI model. However, the idea of BDI model can still find
Figure 8. Agent Harry in SLABSp its place in SLABSp implicitly.

There is the tool-based approach to providing a platform
including a software framework, a library of software com-
ponents and tools that facilitate the development and de-
ployment of agent based systems, such as JADE [1] and
4.2. \Jote Backers ZEUS Toolkit [4]. SLABSp chooses a language-based ap-
proach and can build the library of software components in

The backers can support one of the two candidates:castes. For example, one may write user-defined agent com-
Tommy and Jerry. Cast®acker declares two actionssp- munication by using caste mechanism in SLABSp. While
portTommy andsupportJerry) and one behavior ruleunRan- in the tool-based approach, the extensions will be carried
dom). Behavior ruleturnRundom makes the agent randomly Py adding specific library in the specific languages in which
choose a candidate to support after it starts running, asthe platform is built. Therefore, SLABSp may ease the in-
shown in Figure 9(a). cremental development of agent systems.

CasteprityBacker in Figure 9(b) extends caste Backer, and
declares two more behavior rulesir{ToJerry and turnTo- 6. Conclusion and Future Work
Tommy). Behavior ruleturnToJerry makes the agent take ac-
tion supportJerry when Jerry is less supported, and behavior In this paper, the programming language SLABSp is pre-
rule turnToTommy makes the agent take actiewpporttommy sented and implemented to demonstrate that caste and sce-
when Tommy is less supported. CastieeyBacker in Fig- nario are feasible as the novel facilities in agent oriented

import java.util.*;

caste Backer {
action supportTommy(){

do {
System.out.printin(
#name()+" support Tommy");

action supportlerry(){
do {
System.out.printin(
#name()+" support Jerry");

behavior turnTolerry() {

} when {

// choose a random one to support
behavior turnRandom()<{
Random rand = new Random();

// pity, support the weaker side
caste PityBacker join Backer{

¥ // turn to Jerry if he's weaker
do { @supportlerry(); }
this: [@supportTommy()] and

(count Backer: [@supportTommy()]
> count Backer: [@supportlerry()])

// turn to Tommy if he's weaker

dod behavior turnToTomm
if (rand.nextBoolean()) do { @supportTomnzég)f}
. @supportTommy(); } when {
s this: [@supportlerry()] and
@supportlerry(); (count Backer: [@supportlerry()]
} when { N > count Backer: [@supportTommy()])
this: [@start()] 3

// ritzy, support the stronger one
caste RitzyBacker join Backer{

// turn to Jerry if he's stronger
behavior turnTolerry() {
do { @supportierry(); }
} when
this: [@supportTommy()] and
(count Backer: [@supportTommy()]
< count Backer: [@supporterry()]

// turn to Tommy if he's stronger
behavior turnToTommy() {

do { @supportTommy(); }
} when {

this: [@supportlerry()] and

(count Backer: [@supportlerry()]

< count Backer: [@supportTommy()])

(a) Backer.p

(b) PityBacker.

p

(c) RitzyBacker.p

Figure 9. Vote backers example in SLABSp.

programming. The mechanism of castes is designed to orga-[7] G. Weiss, editor.Multiagent Systems: A Modern Approach
nize the agents with the same pattern of states, actions, be-

haviors and environments. To our best knowledge, SLABSp [8]
is the first one to provide castes and to support the dy-
namic binding between agents and castes in programming
languages. The mechanism of scenarios is designed to de-[9]
scribe the agent’s behaviors under specific environment and
to support its perception to the environment. An obvious

advantage is that using scenarios can reduce many unnecegl—

sary direct communications among agents in programming
and achieve a powerful abstraction in programming.

The future work is to support the running of SLABSp
program on distributed platforms.

References

(1]

(2]
(3]

(4]

(5]

(6]

F. Bellifemmine, A. Poggi, G. Rimassa, and P. Turci. An
object-oriented framework to realize agent system®rin
ceedings of WOA 2000 Worksh@ages 52-57, 2000.

M. Coburn. JACK Intelligent Agents: User Guide, version
2.0. http://lwww.agent-software.com, 2001.

B. Moulin and M. Brassard. A scenario-based design method
and environment for developing multi-agent system&rimn
ceeding of First Australian Workshop on DAblume 1087

of LNAI, pages 216-232, 1996.

H. S. Nwana, D. T. Ndumu, and L. C. Lee. ZEUS: An ad-
vanced tool-kit for engineering distributed multi-agent sys-
tems. InProceedings of PAAM9®ages 377-391, 1998.

R. Shen, J. Wang, and H. Zhu. Scenario mechanism in agent-
oriented programming. IRroceedings of 11th Asia-Pacific
Software Engineering Conference (APSEC,(#gges 464—
471, Busan, Korea, 30 Nov - 3 Dec 2004.

Y. Shoham. Agent-oriented programmin@rtificial Intelli-
gence 60(1):51-92, 1993.

(11]

(12]

(13]

to Distributed Artificial Intelligence MIT Press, 1999.

M. Wooldridge and N. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review
10(2):115-152, 1995.

H. Zhu. Scenario analysis in an automated requirements
analysis tool.Journal of Requirements Engineerirg(1):2—

22, 2000.

0] H. Zhu. The role of caste in formal specification of MAS. In

Proceeding of PRIMA'20Q1volume 2132 ofLNCS pages
1-15, 2001.

H. Zhu. SLABS: A formal specification language for agent-
based systemsinternational Journal of SEKE11(5):529—
558, 2001.

H. Zhu. A formal specification language for agent-oriented
software engineering. IProceedings of the 2nd Interna-
tional Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS’Q3)ages 1174-1175, Melbourne,
Australia, 2003.

H. Zhu and D. Lightfoot. Caste: A step beyond object orien-
tation, in modular programming languagesPimceeding of
JMLC’2003 volume 2789 of NCS pages 59-62, 2003.

