
Tool Support to Model-based Quality Analysis of Software Architecture
 Qian Zhang, Jian Wu Hong Zhu
 Department of Computer Science Department of Computing
National University of Defense Technology Oxford Brookes University
 Changsha, China Oxford OX33 1HX, UK

Email: zhangqian@nudt.edu.cn Email: hzhu@brookes.ac.uk

ABSTRACT
This paper presents an automated software tool

SQUARE (Software QUality and ARchitecture model-
ling Environment). It is designed and implemented to
support the analysis of software quality from software
architectural designs. The tool is based on a model-
based method and follows a structured process to sys-
tematically derive quality models from software archi-
tectural designs by adapting and applying the princi-
ples of system hazard analysis. Through identification
of potential quality hazards and their consequences,
the quality related properties of the components and
connectors and the causal relationships between them
are derived and then translated into a quality model
represented in a graphical notation. The tool enables
automated analysis of the quality models in the graphi-
cal notation to recognize a number of types of software
quality features including quality sensitive compo-
nents, quality risks and quality trade-off points, etc. A
case study with a real e-commerce system is also re-
ported.
Keywords: Automated software tools, Software archi-
tecture design, Software quality models, Analysis of
software architecture

1. Introduction
Software quality is an elusive concept [1]. A great

amount of effort has been made over the past a few
decades to define software quality models in order to
understand the concept, to measure software systems’
quality and to improve software quality. Existing soft-
ware quality models fall into two types: hierarchical
models and relational models. Hierarchical models,
such as McCall model [2], Boehm model [3], ISO
model [4], and the more recent Bansiya and Davis’
model of OO software design [5], define a set of qual-
ity related properties and organise them into a hierar-
chical structure to express the positive relationships
between them. However, they are incapable of express-
ing negative relations between quality related proper-
ties. A relational model usually defines a number of
stereo types of relationships between quality attributes,
such as positive, negative and neutral relations. Typical
examples of such quality models include Perry Model
[6] and Gillies Model [7, 8]. There are also a number

of quality models of information systems [9].
These quality models can help software developers

to improve software quality by providing guidelines to
software development activities, such as in the elicita-
tion of quality requirements. However, as pointed out
by Dromey [10, 11], they fail to take software struc-
tures into account. Moreover, they are incapable to
deal with complicated relationships between quality
attributes. They provide little help to the design of
software systems.

In the past a decade or so, a significant progress has
been made in the analysis of software architectures. A
number of methods have been advanced in the litera-
ture to analyse the quality of software architectural
designs [12,13,14,15,16,17]. Among the most well-
known are SAAM [15, 16] and ATAM [17], etc.; see
[18] for a survey. Almost all of these methods are sce-
nario-based. They examine software architectures in
the context of a set of scenarios, although the ways that
scenarios are elicited and used vary. They have a num-
ber of advantages, including the examination of soft-
ware behaviour in realistic situations, reduction of
complexity of analysis through focusing on typical
scenarios, etc. However, there are difficulties to build
an overall picture of the system’s quality especially
when there are intensive and complicated interactions
between scenarios. The elicitation of a complete and
representative set of scenarios is by no means a trial
task, which is currently still a brainstorming process.
The result of quality analysis may heavily depend on
the selection of scenarios as reported in practices [19].

In our previous work [20,21], we proposed an al-
ternative approach to the quality analysis of software
architectures. It is a model-based method aiming at
systematically analyzing the architectural designs
through building a quality model for the system under
scrutiny. A graphical notation of software quality mod-
els are devised so that detailed and complex relation-
ships between quality attributes in the context of the
architecture can be represented. In this paper, we fur-
ther investigate how quality issues can be automati-
cally identified from such a quality model. We present
a software tool that supports quality model construc-
tion and analysis. A case study of the method and the
tool is also reported.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

The remainder of the paper is organised as follows.
Section 2 outlines the quality modelling and analysis
method HASARD, which stands for Hazard Analysis
of Software ARchitectural Designs. It includes a num-
ber of improvements of the method proposed in our
previous work. Section 3 describes the supporting tool
SQUARE, which stands for Software QUality and AR-
chitecture modelling Environment. Section 4 reports a
case study. Section 5 concludes the paper with a dis-
cussion of the directions for further work.

2. The HASARD Method
The HASARD method consists of three main ele-

ments: a graphical notation for representation of soft-
ware quality models, a structured process of deriving
software quality models from architectural designs, and
a repository of algorithms that enables the automated
identification of quality features concealed in a quality
model.

2.1. Representation of software quality models
As shown in Figure 1, a quality model in the

graphical notation is a directed graph, which consists
of a set of nodes and a set of links between the nodes.

Figure 1. Graphical notation of quality models
Each node represents a quality related property of

the software system. It contains three parts specified in
three compartments. The property compartment gives
a property of the element specified in the component
compartment. Such a property can be a quality attrib-
ute, such as correctness, or a quality carrying property,
which is a property that may not be a quality attribute
but affect the quality of the system somehow, such as
the size of the component. The phenomenon compart-
ment further describes a particular observable phe-
nomenon of the property of the related element. The
element in the component compartment can be a com-
ponent or a connector of the software system, or a sub-
system even the system itself, or an external entity, etc.

For example, in Figure 2, the node A states that the
client-side subsystem of a web-based application in the
client-server architecture has a compatibility issue
which is demonstrated by the phenomenon that the
code is not executable on the user’s platform.

The links are directed arcs between the nodes. A
link from node A to node B means that the observation
of the phenomenon on node A implies the occurrence
of the phenomenon on node B. Each link may contain
an optional annotation for the reasons why the two
nodes are related. For example, in Figure 2, the link
between nodes A and B states that if the client-side
code cannot be executed on the user’s platform, the
system cannot be operated, because the interface can-
not be displayed on the user’s screen at all. In most
cases, the reasons are self-evident and obvious. How-
ever, the annotations on the links between two nodes
provide a means of validation of quality models.

2.2. Derivation of quality models
The HASARD method is inspired in the hazard

analysis techniques that have been widely used in the
development and deployment of safety critical systems
[22, 23, 24, 25]. They were developed to systemati-
cally identify, assess and control hazards before a new
work process, a piece of equipment, or other activity is
initiated. Some of the hazard analysis methods have
been adapted for software safety. In order to analyse a
wider range of software quality attributes not just
safety, the concept of hazard is extended and analysis
methods are adopted. In our context, the word hazard
means a situation that may cause undesirable effect on
software quality.

In the HASARD method, the construction of qual-
ity models takes software architectural models as the
input. It consists of the following four steps.
(1) Hazard identification. A hazard identification
method is applied to identify all quality sensitive ob-
servable phenomena of the components, connectors,
the system, etc.
(2) Cause-consequence analysis. The causal relation-
ships between the identified hazards are recognized.
(3) Model assembling. The information obtained in the
previous steps are assembled together and represented
in the graphical notation.
(4) Quality concern recognition. The quality carrying
properties/quality attributes that a phenomenon demon-
strates are recognized according to the nature of the
phenomenon.

The following describes the process step by step.
2.2.1. Hazard identification

The process of hazard analysis starts with the iden-
tification of the hazards. One of the most effective
methods of hazard identification is the so called Haz-
ard and Operability Studies, or shortly HAZOP [26].

Component

Property

Phenomenon

Annotation
of Reasons

Node, representing quality carrying
properties and quality attributes and
observable phenomena

Link without annotation, representing
logic relations between the nodes

Link with Annotation, providing addi-
tional information of the rationale of
the relation between nodes

System
Usability

Cannot be operated

Client side
Compatibility

Not executable on
user’s platform

The interface
cannot be
displayed

Node A Node B Link

Figure 1. Example of nodes and link

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

The method relies on determining answers to questions
of what-if nature. A set of guide words has been devel-
oped to systematically develop a collection of what-if
questions. They are applied to the attributes of various
components and connectors of the system being stud-
ied. If a deviation from the normal working of the
component is credible, the behaviour of the component
is considered as a possible hazard.

Table 1 lists the guide words that we adapted for
analyzing software architectural designs. Each guide
word can be applied to one or more attributes. Its
meaning depends on the type of attribute and the con-
text in the system. For example, the guide word ‘NO’
can be applied to the data produced by a component. It
means no data is produced by the component. In haz-
ard identification, the analyst will be asked the what-if

question that ‘what would happen if the data is not
produced by the component?’. The same guide word
can also be applied to an architectural component. In
such a context, it means that the component is not con-
tained in the system.
2.2.2. Cause-consequence analysis

Cause-consequence analysis aims at understanding
the causal relationships between hazards. The identi-
fied hazards in the previous step are investigated of
their causes and consequences. It can be performed
backward or forward, or a combination of both.

Forward analysis searches for potential effects, i.e.
consequences, of a hazard until the consequence is
terminal. A hazard or failure mode is terminal if it does
not affect any other component of the system or does
not cause any other hazards/failures. In many cases, a
hazard or failure mode is regarded as terminal simply
because we are not interested in its further conse-
quences. Backward analysis starts with a hazard to
search for its causes until the hazard is primitive. A
hazard or failure mode is primitive if its causes cannot
be further identified without additional knowledge
about the system. A hazard/failure mode can also be
considered as primitive if we are not interested in its
causes. The results of cause-consequence analysis can
be recorded in a form for the use in the assembling of a
graph quality model at the next steps. Figure 3 shows
the structure of the form.

2.2.3. Constructing graphic model
The construction of a quality model takes the in-

formation charted in the cause-consequence analysis
records and translates them into graphical representa-
tion. Each hazard or failure mode in the record be-
comes a node with the component and phenomenon as
specified in the record. Each row in the record be-
comes a link from the node that represents the cause to
the node that represents the consequence. The explana-
tion column of the row forms the reason of the link.
2.2.4. Identification of quality concerns

For each node in the diagram generated so far, the
observable phenomenon is compared with the defini-

Table 1. Guide words for software hazard identification

Guide
word

Applicable
attribute Interpretations

Date/control
signals

No data / control signal exchanged; No data /
control signals produced/received.

Component
property/
function

The component / connector does not have the
designed property / function.

No

Component /
connector

The system does not contain the component /
connector.

More Quantitative
parameters

The value of the parameter is too large.

Less Quantitative
parameters

The value of the parameter is too small.

Event or
activity

The intended event / activity occurs, but in
addition, redundant data are sent. Data is sent
to the designated receiver as well as an unin-
tended receiver.

As
well
as

Component /
connector

In addition to the intended components / con-
nectors, other components / connectors are
added.

Structured
data

Only a part of the data produced, stored or
received.

Part
of

Structure
events

Only a part of the events happened.

Direction of
flow

The information flow in the opposite direc-
tion.

Re-
verse

Event The opposite event happened.
Data / control
signals,
quantitative /
qualitative
parameters

Incorrect data / control signals produced;
The parameter has a value different from the
design.

Component /
system’s
function/
property

The component has a functionality / property
different from the designed.

Other
than

Component /
connector

Other kind of component / connector is con-
tained.

Early Periodical
events

The event happened earlier than expected.

Late Periodical
events

The event happened later than expected.

Be-
fore

Temporal
orders

The event happened in the order earlier than
designed.

After Temporal
orders

The event happened in the order later than
designed.

Figure 2. Structure of cause-consequence analysis records

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

tions of a set of quality attributes and quality-carrying
properties of the components. The quality attribute or
quality carrying property that the phenomenon demon-
strates is then identified, or a new attribute or property
is recognised. This property is filled into the slot of
each node. For example, ‘a hyperlink is broken’ dem-
onstrates the quality attribute correctness of the HTML
file. ‘Server is down’ is related to the availability of the
server.

2.3. Analysis of quality features
Given a graphic quality model, a number of differ-

ent types of quality features of an architectural design
can be derived. The following discusses a few such
quality features that can be automatically recognized
by using the algorithms that have already been imple-
mented in our quality analysis tools. Details of these
algorithms can be found in [27].
2.3.1. Contribution factors of a quality attributes

In the analysis of software architectural designs, we
often want to know how a quality issue is addressed.
We want to know which components, connectors or the
configuration are related to the quality issue and how
they collectively provide the solution to meet quality
requirements. The contribution factors of a quality at-
tribute is a set of properties of the components and/or
connectors and the configuration of the architecture
that affect the quality issue according to the design. For
example, consider the quality model given in Figure 4.
We can derive the sub-graph shown in Figure 5 for the
contribution factors of server’s responsiveness.
2.3.2. Impacts of design decisions

Another frequently asked question in the analysis
of a software architectural design is “what are the con-
sequences of a design decision on the properties and
functionality of a component or connector?’ In such
cases, we need to find out what are the quality attrib-
utes that are affected by the design decision. Such in-
formation can also be derived from a well constructed
quality model. For example, consider the quality model
depicted in Figure 4. We can obtain the sub-graph
shown in Figure 6 that represents the impacts of the
quality carrying property of HTML files’ size on other
quality attributes. It shows that the size of HTML files
affects the navigability and responsiveness of the sys-
tem, which further affects the usability of the system.

2.3.3. Quality risks
A design decision may have positive as well as

negative effects on a quality attribute. The negative
effects may impose quality risks to the system. There-
fore, it is often desirable to know where the quality
risks are within an architectural design. This can also
be derived from a quality model.

A negative effect of a design decision can be rec-
ognised by searching for the links in the quality model
that have a negative effect. For example, in the quality
model depicted in Figure 4, there is a link between the
node of HTML with the property of large file size and
the node of web server with a property of responsive-
ness. The link is negative since the larger the size of
the file, the poorer the responsiveness of the web
server. Therefore, a design decision of large file size is
a risk to the quality attribute of responsiveness. The

Figure 3. An example of quality model

HTML files
Structuredness

Large size

HTML files
Navigability

Small number
of hyperlinks

System
Usability

Easy to find
required info

Web Server
Responsiveness
Long response

time

HTML files
Correctness

Contains broken
links

Online Help
Availability

Not available

Client side
Compatibility

Not executable
on user’s platform

System
Usability

Cannot find
required info

Server side
Performance

Execution speed
is slow

Server side
Load

Highly demanded

Files are considered
as unavailable when

time-out Simpler hyperlink
network usually

easier to navigate

Less nodes
means less links

Need long time to
transmit the files

Web page cannot
be displayed

Unable to obtain
files through
hyperlinks

Unable to get help
when experiencing

difficulty

Figure 4. Factors of server’s responsiveness

Web Server
Responsiveness

Long response time

Need long time
to transmit the

Server side
Performance

Execution speed is slow

Server side
Load

Highly demanded

HTML files
Structuredness

Large size

Figure 5. Relation of usability to the size of HTML file

HTML files
Structuredness

Large size

HTML files
Navigability

Small number of hyperlinks

Web Server
Responsiveness

Long response time

System
¬ Usability
Cannot find
required info

System
Usability

Easy to find required info

Less nodes
means less links

Need long time to
transmit the files

Files are considered
as unavailable when

time-out
Simpler hyperlink
network usually

easier to navigate

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

further consequences of a quality risk can be identified
and analyzed. In certain cases, a negative effect, i.e. a
quality risk, is not the consequence of a single design
decision. Instead, it can be the consequence of a num-
ber of other design decisions. In that case, all the
causes must be identified so that a better design can be
made. This can also be derived from the quality model.
2.3.4. Relationships between two quality issues

An important question to be answered in quality
analysis is the interrelationship between two quality
issues. For example, how server’s performance is re-
lated to the system’s usability? Answers to such ques-
tions can be found from the quality model by searching
for all paths from a node that represents one quality
issue to the node that represents the other quality issue.
2.3.5. Trade-off points

In many situations, a quality risk cannot be re-
solved without compromising on other quality issue(s)
because these quality issues are conflicting with each
other. In such cases, trade-offs between the quality
attributes must be made and a balance between them
must be achieved through appropriate design decisions.

For example, consider the quality model in Figure 4.
The size of HTML files positively affects the naviga-
bility of the hypertext network, but negatively affects
responsiveness of the web server. Therefore, navigabil-
ity is in conflict with responsiveness. A trade-off be-
tween them must be made so that responsiveness is
within a tolerable range while navigability is also ac-
ceptable. Such a trade-off occurs in the form of decid-
ing on a suitable size of HTML file. In other words,
HTML file size is a trade-off point. Trade-off points
can also be derived from quality models automatically.
Once a trade-off point is recognised, we can derive all
quality attributes that the trade-off point affects, and to
find all the factors that affect the trade-off point as dis-
cussed above.

3. The SQUARE Tool
To support the construction and analysis of software

architectural designs using HASARD method, we de-
veloped a software tool called SQUARE, which stand
for Software QUality and ARchitecture modeling En-
vironment. It provides three main functions: modeling
of software architecture in a graphical visual notation,
analysing software architecture models using
HAZARD method to derive software quality models in
the graphical notation presented in section 2, and ana-
lysing quality models. As shown in Figure 7, the
SQUARE tool consists of the following components.
(1) The Architecture Model Editor supports software
architecture modeling through an interactive graphical
user interface and represents software architectural
models in the Software Architecture Visual Notation
proposed by Bass, Clements, and Kazman in [16].

(2) The Hazard Analysis Tools help the developers to
analyze software architectures using HASARD
method. It records the analysis results and automati-
cally transforms them into the graphic representation of
quality models. It consists of three tools. The hazard
identification tool helps the users to apply guide words
to various attributes of components/connectors in soft-
ware architecture models so that hazards are systemati-
cally identified. The cause-consequence analysis tool
helps the user to identify the causal relationships be-
tween the hazards. The quality model generation tool
automatically transforms the results of hazard analysis
into a quality model in graphical notation. Figure 3
shows the interfaces of the hazard analysis tools.
(3) The Quality Model Editor provides an interactive
graphical user interface to the users for the display and
modification of software quality models.
(4) The Quality Model Analysis Tools automatically
recognize and identify the quality features of the soft-
ware designs from a quality models when invoked by
the user as discussed in section 2. The results of the
analysis are also displayed as a diagram in the graphi-
cal notation of software quality models. An example of
such a generated sub-diagram is shown in Figure 9.
(5) The Model Repository stores the architecture and
quality models, which can be reused across different
development projects.

4. Case Study
A case study of the HASARD method and the

SQUARE tool has been conducted with a real e-
commerce software system to evaluate the usability of
the approach. This section reports the case study.

4.1. The subject system
The subject of the case study is an e-commerce sys-

tem of online trading of medicine. The system is oper-
ated by the local medicine trading regulation authority
to supply medicines to all state-owned hospitals in the
province. Its main functions include customer relation-
ship management, product catalogue management,
online trade management, online auction of medicine
supplies, online information advertisement, a search
engine for medicine information, and so on. The sys-
tem was implemented in J2EE. The structure of its user
management subsystem is shown in Figure 8.

Figure 6. The structure of SQUARE tool

Hazard
Analysis

Tools

Quality
Analysis

Tools

Quality
Model
Editor

Architecture
Model Editor

SA
Model

Quality
Model

Quality
Analysis
Results

Model Re-
pository

Project
Manager

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

4.2. Process of case study
The case study was con-

ducted after the system was
released and in operation for
more than one year. It consists
of the following activities.
(1) Reverse engineering of the
system to construct the architec-
tural model of the system. The
design documents were re-
viewed as well as parts of the
source code. The system’s de-
sign document consists of four
main parts: (a) a simple and
schematic J2EE architecture
showing that the system uses
J2EE as implementation tech-
nology; (b) interface design,
which consists of a lot of
HTML files; (c) database design,
which consists of about 70 database tables; (d) a simple
UML class diagram that contains a dozen of classes
and shows the logical view of the system. As some
design information was not well documented, parts of
the source code was reviewed for constructing an ar-
chitecture model of the system, which was reviewed
and corrected by some of the chief developers of the
system, and then approved of its accuracy. Figure 8
shows a part of the architectural model for the user
management sub-system.
(2) Application of HASARD method and construction
of quality model. The architectural model of the system
was then analysed using the HASARD method. The
hazards of the components and connectors of the sys-
tem were identified. The cause-consequence relation-
ships between the hazards were recognised. The infor-
mation was then transformed into a quality model in
the graphical notation. After several iterations with the
developers’ reviews and revision, a quality model was
constructed, which contains 70 nodes and 64 links be-
tween the nodes. For the sake of space, the details of
the quality model are omitted in this paper.
(3) Analysis of the quality model. The quality model
developed in the previous step was analysed by apply-
ing the SQUARE analysis tools to identify quality
risks, quality trade-off points, and to derive the impacts
of design decision on certain quality attributes and the
contribution factors to certain quality attributes. More
details are given in the next subsection.
(4) Validation of analysis results. The results obtained
from quality analysis of the system were feed back to
the developers of the system. A workshop was run to
validate whether the outcomes of the quality analysis
matches the reality in the development and operation

of the system. It was found that all our findings were
consistent with what has been observed in the opera-
tion of the system. Some of the phenomena observed in
the operation of the system were first time satisfacto-
rily explained through the architecture and quality
model of the system. Based on the analysis results, a
number of specific suggestions on the improvement of
the system’s architecture were made. Some of them
were taken by the development team in the develop-
ment of the new release of the system. Some would
result in major changes of system’s architecture and
regrettably cannot be implemented within the budget of
the new releases.

4.3. Main findings of quality analysis
In the analysis of the quality model using the tools

provided by SQUARE, we discovered a number of
quality issues. The following are some examples of the
discovered quality issues.
(1) Sensitive quality issues. When concerned with the

Figure 7. Architecture of user management subsystem

Figure 8. Quality factors that affect server’s availability

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

problem that ‘users cannot find desired information’,
we analyzed factors that may cause the problem by
analysing the factors that affect the component “User”
with usability as the component’s property and “Can-
not find info” as its phenomenon. The tool generated a
sub-diagram that contains 35 nodes out of the 70 nodes
in the quality model. This means that most components
affect usability of the system. Consequently, we con-
cluded that usability is a very sensitive quality issue in
the design of the system. The generated sub-diagram
provided detailed information about how properties of
various components affect the usability of the whole
system. Hence, it provided useful direction for how to
enhance the usability.
(2) Contribution factors that affect a quality attribute.
Intuitively, the server’s availability is of particular im-
portance to a number of other quality attributes. To
find out what are the factors that affect server’s avail-
ability, we applied the tool and generated the sub-
diagram shown in Figure 9. The diagram shows that
the factors that affect this quality attribute include
hardware reliability, software reliability, power supply,
system security, and maintenance. Therefore, we can
conclude that necessary measures must be adopted to
prevent hackers from attacking the server, to ensure a
reliable power supply and the stability of server's
hardware and software system to avoid the server
crashes, and to provide maintenance tools to enable
online maintenance facilities to reduce the time that the
system has to be shut down for maintenance tasks.
(3) Relationships between two quality attributes. The
quality model helped us to understand the relationships
between quality attributes. For example, the quality
model demonstrated that usability of the client side is
affected by performance of the web server. So we must
consider carefully on the system’s hardware configura-
tion and the deployment of software components onto
the hardware cluster to balance the communication and
computation load according to operation profiles.
(4) Quality trade-off points. In the analysis of the rela-
tionships between quality attributes, we found that the
size of HTML files is a trade-off point. Because when
the size is large, it has two different impacts on other
quality attributes. One side, the HTML files of large
sizes will make users find necessary information
through fewer clicks. On the other side, the HTML
files of large sizes also make the response time longer.
Both of these are related to the usability of the system,
but one has positive impact while the other is negative.
Therefore, it is a trade-off
point. Another trade-off
point identified in the
quality analysis is the
granularity of the session
beans. A small-sized ses-

sion bean can only implement relatively simpler func-
tions in comparison to larger sized session beans.
Therefore, to complete a task, smaller session beans
need to invoke more methods of other beans. This re-
sults in more execution time to complete a task. Con-
sequently, the performance of the whole system also
declines due to the time spent on creating other in-
stances. On the other hand, if session beans are of a
larger size, to serve the same number of clients, more
memory will be consumed. Therefore, we can draw the
conclusion that the granularity of session beans is a
trade-off point between the response time of the system
and the consumption of the memory space.
(5) The impacts of a quality attribute. In the case study
we derived a large amount of information about the
impacts of a quality attribute. For example, if the com-
ponent of “Internet” has “heavy traffic”, the usability
and performance of the whole system will be affected.
(6) Key quality issues. In the analysis of the impact of a
quality attribute, we found that the impacts of data-
base’s reliability are extensive as shown in the sub-
diagram in Figure 10, which is created by SQUARE
tool. It has effects on a wide range of issues ranging
from business layer to presentation layer. So it’s neces-
sary to take some measures to avoid vicious attack and
to ensure the stability of database server.

The above findings in the quality analysis of the
system were all confirmed and agreed by the develop-
ment team who are responsible for the development
and maintenance of the e-commerce system.

5. CONCLUSION
In this paper, we represented the SQUARE auto-

mated software quality modeling and analysis tool
based on the HASARD method. It enables software
engineers to derive quality properties from software
architectural designs. The method has the following
features.

First, the quality models in the graph notation are
much more expressive than existing hierarchical and
relational representations of software quality models to
represent complicated relationships between quality
related properties. It can express system specific qual-
ity related information and relate quality issues to vari-
ous components and connectors of the system.

Second, the derivation of the quality model from
architectural design is a systematic and structured
process although it is not formal. It adapted and ex-

Figure 9. Effects of database’s availability

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

tended the mature engineering methods of hazard
analysis of safety critical systems to software systems.
The quality models in the graphical notation can also
be validated against design information. The annota-
tion of the links provides a means of model validation.

Third, from the quality model, various quality is-
sues can be automatically analysed, which include the
identification of key quality issues, the contribution
factors to a quality attribute, the impact of a quality
attributes on the others, the quality trade-off points, the
relationships between two quality attributes, etc. Such
quality related features can provide detailed informa-
tion for the assessment and improvement of software
architectural designs.

The software tool SQUARE supports the quality
model construction and analysis in the HASARD
method. The tool implemented a set of algorithms to
support automatic analysis of quality models. These
algorithms are simple graph algorithms and of high
performance. Details of the algorithms will be reported
separately due to the lack of space.

A case study of the HASARD method and the
SQUARE tool has been conducted. The case study
investigated the quality of a real e-commerce system
independent of the subject system’s development team.
Software developers confirmed that the findings of the
case study were consistency to their independent ob-
servations on the system during operation and mainte-
nance. It clearly demonstrated the applicability of the
method and the tool to real software systems.

We are further investigating the automation of
more activities in quality model construction and
analysis to improve the intelligence in the identifica-
tion of key quality issues, trade-off points, etc. The
SQUARE tool currently uses architectural models in
Software Architecture Visual Notation [16] that repre-
sents the conceptual view. We are also further investi-
gating how architectural models representing other
views can be analysed.

ACKNOWLEDGEMENT
The work reported in this paper is partly supported

by China High-Technology R&D Programme (863
Programme) under the grant 2002AA11607.

REFERENCES
[1] B. Kitchenham, and S. L. Pfleeger. Software Quality: The
Elusive Target. IEEE Software, 13(1):12-21, January 1996.
[2] J. McCall, P. Richards, and G. Walters. Factors in Soft-
ware Quality. Technical Report CDRL A003, US Rome Air
Development Centre, Vol.1, 1977.
[3] B.W. Boehm, J. Brown, H. Kaspar, M. Lipow, G.
MacLeod, and M. Merrit. Characteristics of Software Qual-
ity. TRW Series of Software Technology, Vol. 1, North-
Holland, New York, 1978.

[4] International Organisation for Standardization. ISO
9126: Information Technology--Software Product Evaluation
- Quality Characteristics and Guidelines for Their Use, 1992.
[5] J. Bansiya, and C. G. Davis. A Hierarchical Model for
Object-Oriented Design Quality Assessment. IEEE TSE,
28(1):4-17, January 2002.
[6] W.E. Perry. Quality Assurance for Information Systems:
Methods, Tools and Techniques. John Wiley & Sons, 1991.
[7] A. Gillies. Modelling Software Quality in The Commer-
cial Environment. Software Quality Journal, 1:175-191,1992.
[8] A. Gillies. Software Quality: Theory and Management,
2nd Edition. International Thomson Computer Press, 1997.
[9] Y. Zhang. Quality modelling and metrics of Web Infor-
mation Systems. PhD Thesis, Dept of Computing, Oxford
Brookes University, Oxford, UK, April 2005.
[10] R. G. Dromey. A Model for Software Product Quality.
IEEE TSE, 21(2): 146~162, February 1995.
[11] R.G. Dromey. Cornering the Chimera. IEEE Software,
13(1): 33~43, January 1996.
[12] N. Lassing, D. Rijsenbrij, and H. van Vlient. On Soft-
ware Architecture Analysis of Flexibility, Complexity of
Changes: Size Isn’t Everything. Proc. of Second Nordic Soft-
ware Architecture Workshop (NOSA’99), 1103–1581, 1999.
[13] S. Bot, C. -H. Lung, and M. Farrell. A Stakeholder-
Centric Software Architecture Analysis Approach. Proc. Int'l
Software Architecture Workshop (ISAW 2), pp152-154, 1996.
[14] J. Bosch. Design & Use of Software Architectures:
Adopting and Evolving a Product-Line Approach. Addison
Wesley, 2000.
[15] R. Kazman, G. Abowd, L. Bass, and P. Clements. Sce-
nario-based analysis of software architecture. IEEE Software,
November, 1996.
[16] L. Bass, P. Clements, and R. Kazman. Software Archi-
tecture in Practice. Addison Wesley, 1998.
[17] P. Clements, R. Kazman, and M. Klein. Evaluating
Software Architectures-Methods and Case Studies. Addison
Wesley, 2002.
[18] L. Dobrica, and E. Niemela. A survey on software archi-
tecture analysis methods. IEEE TSE, 28(7): 638–653, 2002.
[19] T. Kostelijk. Misleading Architecting Tradeoffs. IEEE
Computer, 38(5): 20-26, May 2005.
[20] H. Zhu, Y. Zhang, Q. Huo & S. Greenwood. Application
of Hazard Analysis to Software Quality Modelling. Proc. of
COMPSAC’02, pp139~144, August 2002 .
[21] H. Zhu. Software Design Methodology: From Principles
to Architectural Styles. Elsevier, 2005.
[22] T. Kletz. Computer control and Human Error. Gulf
Publishing Company, Houston,, 1995.
[23] N. G. Leveson. Safeware: System Safety and Computers.
Addison Wesley, Reading, MA, 1995.
[24] P. G. Neumann. Computer-Related Risks. ACM Press,
New York, 1995.
[25] N. Storey. Safety-Critical Computer Systems. Addison,
Reading, MA, 1996.
[26] Ministry of Defence. HAZOP Studies on Systems Con-
taining Programmable Electronics. Defence Standard 00-58,
Issue 2, 19 May 2000.
[27] Q. Zhang and H. Zhu, Automated Analysis of Software
Designs with Graphic Quality Models, Proc. of The 10th
WSEAS International Conference on Computers, Vouliag-
meni, Athens, Greece, July 13-15, 2006. (In press)

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

