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Abstract—This paper proposes an intelligent broker ap-
proach to service composition and collaboration. The broker
employs a planner to generate service composition plans ac-
cording to service usage and workflow knowledge, dynamically
searches for services according to the plan, then invokes
and coordinates the executions of the selected services at
runtime. A prototype called I-Broker has been implemented to
support the approach, which can be instantiated by populating
the knowledge-base with domain specific knowledge to form
domain specific brokers. This paper also reports experiments
that evaluate the scalability of the approach.
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I. INTRODUCTION

Service composition is crucial to the success of service

oriented computing. A great amount of effort has been

reported in the literature. However, it is still one of the

remaining most challenging issues. Existing approaches ad-

vanced in the literature include service orchestration and

choreography through workflow definitions and models exe-

cuted on workflow engines, and employment of AI planning

systems. An alternative is to employ service brokers for

services discovery, mediation and collaboration. As Sycara

et al. argued [1], [2], broker is a promising approach because

of its high flexibility and wide applicability.

However, existing web service brokers [1]–[4], have not

delivered the promise, yet, because their functionalities are

limited to the following:

• Interpreting the semantics of service queries and the

registered capabilities of service providers;

• Searching for the service providers that matches a

requester’s query and sometime selecting the one with

best track record of quality of services;

• Invoking the selected service provider on the requester’s

behalf and interacting with the provider if necessary to

fulfil the query; and

• Returning query results to the requester.

Although a significant amount of reasoning is performed

by such brokers to fulfil these functions, existing brokers

are still not intelligent enough to deal with the complexity of

dynamic service composition and collaboration. It is because

a service request can rarely be fulfilled by one service

provider directly. In such cases, a requested service needs to

be decomposed into a number of subtasks and fulfilled by a

number of different services.
Addressing this problem, this paper proposes a framework

to enhance the power of service brokers with the capability

of:

• decomposing requested services into a number of sub-

tasks,

• searching for the best fit services for each subtask, and

• composing and coordinating these services in execu-

tion.

This is achieved by developing a planning technique. We

have implemented a prototype framework called I-Broker
and conducted a case study and experiments on its scalabil-

ity.
The paper is organised as follows. Section 2 presents the

proposed approach. Section 3 describes the prototype im-

plementation of the framework. Section 4 briefly reports the

experiments with the prototype system. Section 5 concludes

the paper with a discussion of related work and future work.

II. THE PROPOSED APPROACH

A. Overview
The proposed approach is based on Semantic Web Ser-

vices. It is assumed that services are registered at a match-

maker with semantics descriptions in a given ontology.

Service brokers are also services that are registered with

matchmakers. They also invoke the matchmaker to fulfil its

functionality.
Similar to other service brokers, our broker receives

service requests represented in the form of XML with

vocabulary defined in the ontology of the application do-

main. Once received a task, it searches in the semantic WS

registry for services that are capable of fulfilling the task,

where the capability is also expressed in the ontology. The

matching between requested task and service capability is

performed as ontology reasoning via invoking the semantic

WS matchmaker [1].
However, it differs from existing brokers in case when

there is no good match found in the registry. Our broker fur-

ther analyses the requested task according to a knowledge-

base about how tasks can be fulfilled by performing a
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Figure 1. Architecture of the Intelligent Broker

number of subtasks. It decomposes the task into several

subtasks if possible, and sets up an abstract service com-

position plan, which defines which kinds of subtasks and

how they should be composed together to complete the

original task. The broker then instantiates the abstract plan

into an executable concrete composition plan by searching

the registry to discover the services that are capable of

fulfilling each subtask and selecting the best one if more

than one candidates are available. The services selected are

invoked and the information is passed between them via the

broker. In this process, the broker may assemble data from

various sources into messages and/or use them as parameters

of service calls. Finally, the broker returns service results to

the requester.

B. Architecture of Intelligent Service Brokers

Fig. 1 shows the overall structure of the broker, which

contains the following components.

1) Communicator: It provides an interface to submit

service requests in the form of tasks and receive results of

the service invocation, if the task is performed successfully.

It transforms messages into the internal representations for

further processing. The results are also assembled into SOAP

messages as responses to the requester.

2) Knowledge-base: It contains codified knowledge on

how a task can be fulfilled by a number of subtasks. Each

type of tasks is defined by a set of parameters. There are two

kinds of parameters: descriptive parameters and functional

parameters. The former describes the functionality of the

task, such as the activity of the task, the execution envi-

ronment of the task, and so on. The latter gives the data

to be transformed by the task, including input and output

data. The values of these parameters are concepts defined in

the ontology of the application domain. The knowledge is

represented in the form of rules:

T (p1, · · · , pn) ⇒ T ′
1(p1,1, · · · , p1,n1 ); · · · ;T ′

k(pk,1, · · · , pk,nk
)

where T is a task and p1, · · · , pn are its parameters. It means

that the task T can be decomposed into k subtasks T ′
i with

ni parameters pi,1, · · · , pi,ni , i = 1, 2, · · · k.

It is required that the parameter pi,j of subtask T ′
i is

constructed from p1, · · · , pn and the output parameters of its

previous subtasks, i.e. a subset of {px,y |x < i, y ≤ nx}. This

means that the subtasks can be executed in the order as they

occur in the rule. The value of a parameter will be passed

from one to the next according to the parameters dependency

between subtasks.

It is also required that each of the output parameters of

task T is constructed from the set of output parameters of

subtasks T ′
i (i = 1, · · · , k). This is to ensure that task T is

realized by the subtasks in the rule.

Therefore, a rule is not only a logic decomposition of

a task into several subtasks, but also an expression of the

workflow and the collaborations between various kinds of

services to complete a specific kind of task. Moreover,

from computational point of view, these rules also provide

heuristic rules for narrowing the search space for generating

service composition plans.

3) Planner: It analyses the requested service and searches

the registry to determine if it can be fulfilled by services

existing in the registry directly. If not, it searches the

knowledge-base to find how it can be decomposed into

subtasks and generates abstract service composition plans.

For a given requested service, there may be multiple plans

that can fulfil it. In particular, it compares the requested

service with the rules in the knowledge-base. When a service

request matches the task on the left-hand-side of ’⇒’ of a

rule, i.e., the parameters of the requested service match the

parameters of the task, the rule is applicable. The parameters

of the corresponding subtasks of the rule will then be

instantiated with the corresponding values assigned to the

parameters of the task. An abstract composition plan is thus

generated.

4) Search Engine: Given an abstract service composition

plan, the search engine calls the matchmaker of semantic WS

registry to find appropriate services for each subtask. The

search request is constructed according to the description of

the subtasks generated by the task planner as in the abstract

service composition plan and submitted to the matchmaker.

The search result returned by the matchmaker may include

multiple candidates. Each of them is tagged with a score

that represents its fitness to the searched capability. The

higher the score is, the more suitable to fulfil the subtask,

and hence the higher priority to be selected to perform the

corresponding subtask. Through selecting service candidates

to fulfil the subtasks, the abstract service composition plan is

instantiated into an executable concrete service composition

plan. To achieve a higher flexibility and fault tolerance, the

candidates that have lower scores but above a threshold are

also preserved. When the selected service fails later on in

the invocation, the candidate with the second highest score,
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if any, is then selected.

5) Coordinator: It is responsible for the invocation of se-

lected services for the subtasks with appropriate parameters

and for the coordination of these services. In particular, the

results of previous services are re-assembled as parameters

for the following services according to their dependency.

6) Controller: It controls the execution of the broker.

Once it receives a request of a task from the communicator,

it invokes the planner to generate a set of abstract service

composition plans according to the knowledge-base. Then,

it selects a plan and invokes the service search engine to

search for appropriate services registered in the matchmaker

for each subtask in the selected abstract composition plan.

If succeed, one service will be selected for each subtask.

Subsequently, it informs the coordinator to invoke and

coordinate the selected services according to the concrete

composition plan.

C. Control Process

Roughly speaking, the broker attempts to fulfil a service

request through the following five stages:

1) Planning: In this stage the broker generates an abstract

service composition plan;

2) Searching: In this stage the broker searches for appro-

priate services for each subtask;

3) Invocation: In this stage the selected services are

invoked in the order that parameters of the services

depends on each other;

4) Collecting: In this stage the broker collects results of

service invocations and passes data between them;

5) Delivery: The final stage is to return the results col-

lected from the services to the user.

This process is not always successful straightforwardly.

Therefore, we devised a backtracking mechanism to ensure

all possible compositions are tried before giving up. In

particular, if any of the steps in the attempt to fulfil a task

fails, the controller backtracks to an earlier step and tries an

alternative. Fig. 2 shows the control process of the broker

and how failures trigger backtracking.

D. The Prototype I-Broker

We have implemented a prototype framework called I-

Broker based on Semantic WS. Fig. 3 shows the relationship

between the components of the framework and the facilities

provided by Semantic WS infrastructure. We assume that

the semantic information of WS is described in the form

of service profiles in OWL-S. These services are registered

to an OWL-S/UDDI Matchmaker, which provides semantic-

based service search facility.

The framework implements the components in the broker

architecture presented in Section 2.2. These components

form a skeleton of a service broker. When the knowledge-

base is populated with rules about the workflow in a par-

ticular application domain, the skeleton is instantiated into

Figure 2. Broker’s Control Process

Figure 3. Relation between I-Broker and Semantic WS

a functional broker. The knowledge-base is represented in

XML that consists of a number of rules. The broker itself

is a semantic WS. It can be registered to the matchmaker,

and searched for and invoked by users.

E. Running Example

As a running example, we have populated the knowledge-

base with the knowledge of software testing process and

built a broker specialized in software testing. Details of the

running example are omitted for the sake of space, which

can be found in [5].

III. EXPERIMENTAL EVALUATION

This section briefly reports our experiments with the

framework. The objectives of the experiments are to evaluate

the scalability of the proposed approach.
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A. Design of the experiments
There are three types of objects in the experiments.

• Services: They are registered to the semantic WS reg-

istry. Their capabilities are represented in the form of

service profiles. The test broker searches for services

by submitting requests to the Matchmaker.

• Rules in knowledge-base: They are the knowledge of

workflow in the application domain and the usages of

specific services. They are represented in the form of

XML files and stored locally within the broker as the

knowledge-bases.

• Service requests: They are the service requests submit-

ted to the brokers and represented in the format of XML

using the ontology.

The data mutation technique [6] is applied in the prepa-

ration of the objects for the experiments to overcome the

difficulties due to their structural complexity. In particular,

for each type of objects, we first select a set of real ones,

which are called the seeds in data mutation technique. Then,

we apply a set of data mutation operators systematically to

each seed to generate a set of mutants of the real ones so

that the mutants are of subtle differences from the seeds.
We designed a group of mutation operators that are

applicable to service profiles, which are used in service

capability registration, and the descriptions of tasks and

subtasks of rules in the knowledge base. Each operator

changes the value of one parameter in the seed according to

the ontology. The particular ontology used in the experiment

is STOWS, which stands for Software Testing Ontology for

Web Service [7].
Let x be any of the parameters in service profiles. The

data mutation operators are defined as follows.

• RxF: Replace the x parameter in the profile, which is a

class in the ontology, by its father class in the ontology;

• RxS: Replace the x parameter in the profile by one of

its subclasses in the ontology;

• RxB: Replace the x parameter in the profile by one of

its brother classes in the ontology;

• RxN: Replace the x parameter in the profile by a class

in the ontology that has no relation to the parameter.

For instance, if the service classification of a profile is

TestCaseGeneration, applying RSB operator to this parame-

ter, we get several profiles whose service classifications are

TestCaseExecution and TestResultValidation, etc., provided

that they are the sibling classes of TestCaseGeneration in

the ontology.
Table I gives the set of services used as the seeds for

generating the service type of objects. Table II gives the

number of seeds and mutants of each type of subjects used

in the experiment.

B. Main Results of the Experiments
We have conducted the following 3 experiments to eval-

uate the broker’s scalability.

Table I
SEED SERVICES USED IN THE EXPERIMENT

Name Description
CASCAT Generate test cases from algebraic specifications
Test Translator Translate test cases from CASCAT format

into Test Executor format
Test Executor Execute tests for a numeric calculator WS
Klee Symbolic execution of C code
Magic Check component’s conformance to specification
XML Comparator Compare XML files
Java NCSS Metrics for Java program
Findbugs Find bugs in Java program by static analysis
PMD Find potential bugs in Java by static analysis
WSDL Test Gen Generate test cases from WSDL
WS Test Executor Execute tests generated by WSDL Test Gen

Table II
NUMBERS OF SEEDS AND MUTANTS

#Seeds #Mutants Total
Service 11 460 471
Rule 40 2049 2089
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Figure 4. Search for Services in Registries of Different Sizes

1) Scalability w.r.t. the number of services: In this ex-

periment, we fix the knowledge-base and a set of service

requests, but vary the number of services registered to the

registry (referred to as registry size in the sequel) to study

how the number affects the performance of the broker.

In particular, the registry size varies from 20 to 471. Each

registry contains 11 seeds plus a subset of their mutants

selected at random. Given a set of such service descriptions,

we form a registration state of the system. To alleviate

the fluctuation of the system performance brought by the

internet connection, we carried out the experiment in a

relatively stable internet environment. Moreover, in each

state of the system, the broker is run repeatedly for 30 times.

The average execution time is calculated.

The experiments results show that the average search time

increases with the number of services in the registry, but

in almost a linear manner; see Fig. 4. According to this

trend, the broker will only take a few seconds to search for

a service even if there are thousands of services available.

Thus, it is scalable with respect to the registry size.

2) Scalability w.r.t. the size of knowledge-base: In this

experiment, we fix the set of registered service and service
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Figure 5. Time Spent on Producing Plans

requests, but vary the number of rules in the knowledge-base

(referred to as knowledge size) to study how the number

affects the performance of the broker. In particular, the

knowledge size varies from 100 to 2089. Each time the

knowledge-base contains the seed rules plus a number of

randomly selected mutants of the seed rules. Because the

broker tries the rules in the knowledge-base sequentially,

we place the mutants on the top of the real ones to ensure

that the longest execution path that the planner will exer-

cise. With each such populated knowledge-base, we execute

repeatedly the broker on each service request for 20 times

and the average execution time is calculated.

The results of the experiment show that when the size of

knowledge-base increases, the time spent on producing ser-

vice composition plans increases in a quadratic polynomial

rate; see Fig. 5. We believe that in reality, the knowledge-

base can hardly reach the scale of 2000 rules. Even though,

the time spent on producing a service composition plan is

only about 300 mini-seconds. Therefore, it is scalable with

respect to the size of the knowledge-base.

3) Scalability w.r.t. to task complexity: In this experiment,

we fix the set of services and knowledge-base, but vary

the service requests to study how the complexity of service

requests affects the performance of the broker. In particular,

we use the original knowledge-base and the whole set of

471 seed and mutant services. The service requests were

classified into 5 subsets. Each subset contains test requests

of the same complexity. Here, the complexity is measured

by the number of different kinds of subtasks that the service

request should be decomposed into. Again, the broker is

executed repeatedly on each service request for 30 times and

the average execution time of the broker is calculated. Fig. 6

shows the average total execution time for processing service

requests of different complexities. A quadratic polynomial

figure fits very well the curve with R2 = 0.9999.

It is worth noting that, the variation range of task com-

plexities is usually very small, say up to 10 different kinds

of subtasks. Therefore, in the extreme cases, the broker can

process a very complicated request within a minute. On

average, a test request usually has 2 or 3 different kinds
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Figure 6. Processing Tasks of Different Complexities

of subtasks. In such cases, the broker only takes less than

10 seconds. Therefore, it is scalable with respect to the

complexity of requests.

IV. CONCLUSION

This paper presented a broker-based approach to service

composition. A prototype framework is reported. It is ca-

pable of generating service composition plans dynamically

by decomposing service requests into a number of subtasks

according to the knowledge of workflow in the application

domain and the services existing in a semantic web service

registry. Experiments with the broker have been conducted to

evaluate its scalability, which clearly show that the broker

is capable of processing service requests with satisfactory

performance when a large number of services registered and

the knowledge-base used to generate service composition

plans are populated. Thus, it is scalable for practical uses.

A. Comparison with Related work

A great amount of research effort has been reported in

the literature on automatic service composition [8]–[10].

Existing works fall into two types, the workflow approaches

and planning approaches. The current achievements in the

former approach include standardized workflow definition

languages and implementation of workflow execution en-

gines such as BPEL4WS, and OWL-S, etc. Due to its

flexibility and computation power, planning approaches have

attracted increasing interests in recent years. Among the

most well-known are those adapting Golog [11], SWORD

[12], AIMO [13], SHOP2 [14], PORSCE II [15], OWLS-

XPlan [16], etc. However, existing planning approaches

suffer from the scalability problem. In general, planning

is NP-complete. As shown in [17], the time needed to

convert OWL-S service descriptions into planning domain

definitions is exponential to the number of services. Many

AI planners failed to generate plans for problems of low

and mid range complexity. Moreover, AI planners tend to

generate unnecessarily long composition plans [17].

Our approach differs from existing workflow based ap-

proaches in that we treat workflow as domain knowledge

and use it to generate service plan dynamically, rather
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than encoded statically. Such knowledge is represented in

the form of task decomposition rules, which is similar to

the input to HTN (Hierarchical task network) planners.

However, our approach is different from existing HTN based

WS planning approaches, such as SHOP2 and SWORD,

where the knowledge of workflow is simply converted from

OWL-S and plans are mostly generated by a brutal force of

inference. Our rules are at a higher level of abstraction and

more general. Planning is completed in two stages. At first,

we generate an abstract plan of the activities to be performed

without determining the specific services that carry out the

actions. Then, the registry is searched to make a concrete

plan that has the full details of the services to be invoked.

This significantly reduced the search space of planning.

Our preliminary experiments show that this is scalable and

efficient. Our approach is also different from the planning

approach by recognising the need of collaborations among

the services. We provide facilities to support such collabo-

rations as the workflow approaches do, which is neglected

by planning approaches. This is particularly important for

complicated services.

One of our main contributions is that we encapsulate

the domain knowledge of workflow and the capability of

planning, service discovery, invocation and collaboration

into brokers. We enable such brokers to collaborate with

each other in the same way as with other services. This is

actually a multi-agent problem solving architecture rather

than a centralised facility. Consequently, the search space

of planning is decomposed into subspaces according to the

application domains. This is one of the reasons why our

approach is scalable while existing planning approach is not.

B. Future work

For future work, we are considering alternative implemen-

tations of the framework to improve the performance and

capability of the I-broker prototype. It is desirable to enable

the users to write rules in a notation at a higher level of

abstraction rather than as XML files. We are also developing

a knowledge-base manager to support the writing, updat-

ing and testing the knowledge-base. A more powerful and

complicated rule language is also under research. Existing

service brokers in the literature often have the functionality

of keeping the track record of QoS of WS. Such functionality

can be easily incorporated into our framework.
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