
An Intelligent Broker Approach to Semantics-based Service Composition

Yufeng Zhang
National Lab. for Parallel and Distributed Processing

Department of Computing Science
National Univ. of Defense Technology, Changsha, China

Email: yufengzhang@nudt.edu.cn

Hong Zhu
Department of Computing and Electronics

Oxford Brookes University
Oxford OX33 1HX, UK

Email: hzhu@brookes.ac.uk

Abstract—This paper proposes an intelligent broker ap-
proach to service composition and collaboration. The broker
employs a planner to generate service composition plans ac-
cording to service usage and workflow knowledge, dynamically
searches for services according to the plan, then invokes
and coordinates the executions of the selected services at
runtime. A prototype called I-Broker has been implemented to
support the approach, which can be instantiated by populating
the knowledge-base with domain specific knowledge to form
domain specific brokers. This paper also reports experiments
that evaluate the scalability of the approach.

Keywords-Service oriented computing; Service composition;
Service broker; Planning;

I. INTRODUCTION

Service composition is crucial to the success of service
oriented computing. A great amount of effort has been
reported in the literature. However, it is still one of the
remaining most challenging issues. Existing approaches ad-
vanced in the literature include service orchestration and
choreography through workflow definitions and models exe-
cuted on workflow engines, and employment of AI planning
systems. An alternative is to employ service brokers for
services discovery, mediation and collaboration. As Sycara
et al. argued [1], [2], broker is a promising approach because
of its high flexibility and wide applicability.

However, existing web service brokers [1]–[4], have not
delivered the promise, yet, because their functionalities are
limited to the following:
• Interpreting the semantics of service queries and the

registered capabilities of service providers;
• Searching for the service providers that matches a

requester’s query and sometime selecting the one with
best track record of quality of services;

• Invoking the selected service provider on the requester’s
behalf and interacting with the provider if necessary to
fulfil the query; and

• Returning query results to the requester.
Although a significant amount of reasoning is performed

by such brokers to fulfil these functions, existing brokers
are still not intelligent enough to deal with the complexity of
dynamic service composition and collaboration. It is because
a service request can rarely be fulfilled by one service

provider directly. In such cases, a requested service needs to
be decomposed into a number of subtasks and fulfilled by a
number of different services.

Addressing this problem, this paper proposes a framework
to enhance the power of service brokers with the capability
of:
• decomposing requested services into a number of sub-

tasks,
• searching for the best fit services for each subtask, and
• composing and coordinating these services in execu-

tion.
This is achieved by developing a planning technique. We
have implemented a prototype framework called I-Broker
and conducted a case study and experiments on its scalabil-
ity.

The paper is organised as follows. Section 2 presents the
proposed approach. Section 3 describes the prototype im-
plementation of the framework. Section 4 briefly reports the
experiments with the prototype system. Section 5 concludes
the paper with a discussion of related work and future work.

II. THE PROPOSED APPROACH

A. Overview
The proposed approach is based on Semantic Web Ser-

vices. It is assumed that services are registered at a match-
maker with semantics descriptions in a given ontology.
Service brokers are also services that are registered with
matchmakers. They also invoke the matchmaker to fulfil its
functionality.

Similar to other service brokers, our broker receives
service requests represented in the form of XML with
vocabulary defined in the ontology of the application do-
main. Once received a task, it searches in the semantic WS
registry for services that are capable of fulfilling the task,
where the capability is also expressed in the ontology. The
matching between requested task and service capability is
performed as ontology reasoning via invoking the semantic
WS matchmaker [1].

However, it differs from existing brokers in case when
there is no good match found in the registry. Our broker fur-
ther analyses the requested task according to a knowledge-
base about how tasks can be fulfilled by performing a

To appear in Proc. of COMPSAC 2011 05/04/2011

-- 2 --

performing a number of subtasks. It decomposes the
task into several subtasks if possible, and sets up an
abstract service composition plan, which defines which
kinds of subtasks and how they should be composed
together to complete the original task. The broker then
instantiates the abstract plan into an executable con-
crete composition plan by searching the registry to
discover the services that are capable of fulfilling each
subtask and selecting the best one if more than one
candidates are available. The services selected are in-
voked and the information is passed between them via
the broker. In this process, the broker may assemble
data from various sources into messages and/or use
them as parameters of service calls. Finally, the broker
returns service results to the requester.

2.2 Architecture of Intelligent Service Brokers
Fig. 1 shows the overall structure of the broker, which
contains the following components.
• Communicator
It provides an interface to submit service requests in the
form of tasks and receive results of the service invoca-
tion, if the task is performed successfully. It transforms
messages into the internal representations for further
processing. The results are also assembled into SOAP
messages as responses to the requester.
• Knowledge-base
It contains codified knowledge on how a task can be
fulfilled by a number of subtasks. Each type of tasks is
defined by a set of parameters. There are two kinds of
parameters: descriptive parameters and functional pa-
rameters. The former describes the functionality of the
task, such as the activity of the task, the execution en-
vironment of the task, the pre/post-conditions, and so
on. The latter gives the data to be transformed by the
task, including input and output data. The values of
these parameters are concepts defined in the ontology
of the application domain. The knowledge is repre-
sented in the form of rules:

1 11 1,1 1, ,1 ,(, ...,) ' (, ...,);...; ' (,...,)
kn n k k k nT p p T p p T p p=>

where T is a task and p1, …, pn are its parameters. It
means that the task T can be decomposed into k subtasks
T’i with ni parameters ,1 ,,...,

ii i np p , i=1,2…, k.
It is required that the parameter pi,j of subtask T’i is

constructed from p1, …, pn and the output parameters of
the previous subtasks, i.e. a subset of {px,y | x<i, y≤ni}.
This means that the subtasks can be executed in the
order as they occur in the rule. The value of a parameter
will be passed from one to the next according to the
parameters dependency between subtasks.

It is also required that each of the output parame-
ters of task T is constructed from the set of output pa-
rameters of subtasks T’i (i=1,2…, k). This is to ensure

that task T is realized by the subtasks in the rule.
Therefore, a rule is not only a logic decomposition

of a task into several subtasks, but also an expression of
the workflow and the collaborations between various
kinds of services to complete a specific kind of task.
Moreover, from computational point of view, these
rules also provide heuristic rules for narrowing the
search space for generating service composition plans.
• Planner
It analyzes the requested service and searches the reg-
istry to determine, first, if it can be fulfilled by services
existing in the registry directly. If not, it searches the
knowledge-base to find how it can be decomposed into
subtasks and generates abstract service composition
plans. For a given requested service, there may be mul-
tiple plans that can fulfill it. In particular, it compares
the requested service with the rules in the knowl-
edge-base. When a service request matches the task on
the left-hand-side of ‘=>’ of a rule, i.e., the parameters
of the requested service match the parameters of the
task, the rule is applicable. The parameters of the cor-
responding subtasks of the rule will then be instantiated
with the corresponding values assigned to the parame-
ters of the task. An abstract composition plan is thus
generated.
• Search Engine
Given an abstract service composition plan, the search
engine calls the matchmaker of semantic WS registry to
find appropriate services for each subtask. The search
request is constructed according to the description of the
subtasks generated by the task planner as in the abstract
service composition plan and submitted to the match-
maker. The search result returned by the matchmaker
may include multiple candidates. Each of them is tagged
with a score that represents its fitness to the searched
capability. The higher the score is, the more suitable to
fulfill the subtask, and hence the higher priority to be
selected to perform the corresponding subtask. Through
selecting service candidates to fulfill the subtasks, the
abstract service composition plan is instantiated into an
executable concrete service composition plan. To
achieve a higher flexibility and fault tolerance, the
candidates that have lower scores but above a threshold

Fig. 1 Architecture of the Intelligent Broker Figure 1. Architecture of the Intelligent Broker

number of subtasks. It decomposes the task into several
subtasks if possible, and sets up an abstract service com-
position plan, which defines which kinds of subtasks and
how they should be composed together to complete the
original task. The broker then instantiates the abstract plan
into an executable concrete composition plan by searching
the registry to discover the services that are capable of
fulfilling each subtask and selecting the best one if more
than one candidates are available. The services selected are
invoked and the information is passed between them via the
broker. In this process, the broker may assemble data from
various sources into messages and/or use them as parameters
of service calls. Finally, the broker returns service results to
the requester.

B. Architecture of Intelligent Service Brokers

Fig. 1 shows the overall structure of the broker, which
contains the following components.

1) Communicator: It provides an interface to submit
service requests in the form of tasks and receive results of
the service invocation, if the task is performed successfully.
It transforms messages into the internal representations for
further processing. The results are also assembled into SOAP
messages as responses to the requester.

2) Knowledge-base: It contains codified knowledge on
how a task can be fulfilled by a number of subtasks. Each
type of tasks is defined by a set of parameters. There are two
kinds of parameters: descriptive parameters and functional
parameters. The former describes the functionality of the
task, such as the activity of the task, the execution envi-
ronment of the task, and so on. The latter gives the data
to be transformed by the task, including input and output
data. The values of these parameters are concepts defined in
the ontology of the application domain. The knowledge is
represented in the form of rules:

T (p1, · · · , pn)⇒ T ′1(p1,1, · · · , p1,n1); · · · ;T
′
k(pk,1, · · · , pk,nk

)

where T is a task and p1, · · · , pn are its parameters. It means
that the task T can be decomposed into k subtasks T ′i with
ni parameters pi,1, · · · , pi,ni , i = 1, 2, · · · k.

It is required that the parameter pi,j of subtask T ′i is
constructed from p1, · · · , pn and the output parameters of its
previous subtasks, i.e. a subset of {px,y |x < i, y ≤ nx}. This
means that the subtasks can be executed in the order as they
occur in the rule. The value of a parameter will be passed
from one to the next according to the parameters dependency
between subtasks.

It is also required that each of the output parameters of
task T is constructed from the set of output parameters of
subtasks T ′i (i = 1, · · · , k). This is to ensure that task T is
realized by the subtasks in the rule.

Therefore, a rule is not only a logic decomposition of
a task into several subtasks, but also an expression of the
workflow and the collaborations between various kinds of
services to complete a specific kind of task. Moreover,
from computational point of view, these rules also provide
heuristic rules for narrowing the search space for generating
service composition plans.

3) Planner: It analyses the requested service and searches
the registry to determine if it can be fulfilled by services
existing in the registry directly. If not, it searches the
knowledge-base to find how it can be decomposed into
subtasks and generates abstract service composition plans.
For a given requested service, there may be multiple plans
that can fulfil it. In particular, it compares the requested
service with the rules in the knowledge-base. When a service
request matches the task on the left-hand-side of ’⇒’ of a
rule, i.e., the parameters of the requested service match the
parameters of the task, the rule is applicable. The parameters
of the corresponding subtasks of the rule will then be
instantiated with the corresponding values assigned to the
parameters of the task. An abstract composition plan is thus
generated.

4) Search Engine: Given an abstract service composition
plan, the search engine calls the matchmaker of semantic WS
registry to find appropriate services for each subtask. The
search request is constructed according to the description of
the subtasks generated by the task planner as in the abstract
service composition plan and submitted to the matchmaker.
The search result returned by the matchmaker may include
multiple candidates. Each of them is tagged with a score
that represents its fitness to the searched capability. The
higher the score is, the more suitable to fulfil the subtask,
and hence the higher priority to be selected to perform the
corresponding subtask. Through selecting service candidates
to fulfil the subtasks, the abstract service composition plan is
instantiated into an executable concrete service composition
plan. To achieve a higher flexibility and fault tolerance, the
candidates that have lower scores but above a threshold are
also preserved. When the selected service fails later on in
the invocation, the candidate with the second highest score,

if any, is then selected.
5) Coordinator: It is responsible for the invocation of se-

lected services for the subtasks with appropriate parameters
and for the coordination of these services. In particular, the
results of previous services are re-assembled as parameters
for the following services according to their dependency.

6) Controller: It controls the execution of the broker.
Once it receives a request of a task from the communicator,
it invokes the planner to generate a set of abstract service
composition plans according to the knowledge-base. Then,
it selects a plan and invokes the service search engine to
search for appropriate services registered in the matchmaker
for each subtask in the selected abstract composition plan.
If succeed, one service will be selected for each subtask.
Subsequently, it informs the coordinator to invoke and
coordinate the selected services according to the concrete
composition plan.

C. Control Process

Roughly speaking, the broker attempts to fulfil a service
request through the following five stages:

1) Planning: In this stage the broker generates an abstract
service composition plan;

2) Searching: In this stage the broker searches for appro-
priate services for each subtask;

3) Invocation: In this stage the selected services are
invoked in the order that parameters of the services
depends on each other;

4) Collecting: In this stage the broker collects results of
service invocations and passes data between them;

5) Delivery: The final stage is to return the results col-
lected from the services to the user.

This process is not always successful straightforwardly.
Therefore, we devised a backtracking mechanism to ensure
all possible compositions are tried before giving up. In
particular, if any of the steps in the attempt to fulfil a task
fails, the controller backtracks to an earlier step and tries an
alternative. Fig. 2 shows the control process of the broker
and how failures trigger backtracking.

D. The Prototype I-Broker

We have implemented a prototype framework called I-
Broker based on Semantic WS. Fig. 3 shows the relationship
between the components of the framework and the facilities
provided by Semantic WS infrastructure. We assume that
the semantic information of WS is described in the form
of service profiles in OWL-S. These services are registered
to an OWL-S/UDDI Matchmaker, which provides semantic-
based service search facility.

The framework implements the components in the broker
architecture presented in Section 2.2. These components
form a skeleton of a service broker. When the knowledge-
base is populated with rules about the workflow in a par-
ticular application domain, the skeleton is instantiated into

Submission to COMPSAC 2011 05/02/2011

-- 3 --

with the corresponding values assigned to the parame-
ters of the task.
• Search Engine
Given an abstract service composition plan, the search
engine calls the matchmaker of semantic WS registry to
find appropriate services for each subtask. The search
request is constructed according to the description of the
subtasks generated by the task planner as in the abstract
service composition plan and submitted to the match-
maker. The search result returned by the matchmaker
may include multiple candidates. Each of them is tagged
with a score that represents its fitness to the searched
capability. The higher the score is, the more suitable to
fulfill the subtask, and hence the higher priority to be
selected to perform the corresponding subtask. Through
selecting service candidates to fulfill the subtasks, the
abstract service composition plan is instantiated into an
executable concrete service composition plan. To
achieve a higher flexibility and fault tolerance, the
candidates that have lower scores but above a threshold
are also preserved. When the selected service fails later
on in the invocation, the candidate with the second
highest score, if any, is then selected.
• Coordinator
It is responsible for the invocation of selected services
for the subtasks with appropriate parameters and for the
coordination of these services. In particular, results
from previous service invocations are re-assembled and
passed to the next service.
• Controller
It controls the execution of the broker. Once it receives a
request of a task from the communicator, it invokes the
planner to generate a set of abstract service composition
plans according to the knowledge-base. Then, it selects
a plan and invokes the service search engine to search
for appropriate services registered in the matchmaker
for each subtask in the selected abstract composition
plan. If succeed, one service will be selected for each
subtask. Subsequently, it informs the coordinator to
invoke and coordinate the selected services according to
the concrete composition plan.

2.2. Control process
Roughly speaking, the broker attempts to fulfill a ser-
vice request through the following five stages:
a) Planning: In this stage the broker generates an

abstract service composition plan;
b) Searching: This stage searches for appropriate

services for each subtask;
c) Invocation: In this stage the selected services are

invoked in the order that parameters of the services
depends on each other;

d) Collecting: In this stage the broker collects results
of service invocations and passing data between the

services;
e) Delivery: The final stage is to return the results

collected from the services to the user.
This process is not always successful straightfor-

wardly. Therefore, we devised a backtracking mecha-
nism to ensure all possible compositions are tried before
giving up. In particular, if any of the steps in the attempt
to fulfill a task fails, the controller backtracks to an
earlier step and tries an alternative. Fig. 2 shows the
control process of the broker and how failures trigger
backtracking. In particular, the following four kinds of
failures are recognized.
a) A Task Failure occurs when the task or a subtask

cannot be fulfilled.
b) A Plan Failure occurs when a composition plan

cannot be carried out for some reasons, such as a
subtask cannot be performed because no service is
returned in the search result, or all the candidate
services fail to perform this subtask. In that case, an
alternative abstract service composition plan will be
selected or generated, if any; otherwise, a task fail-
ure is triggered.

c) A Search Failure occurs when the matchmaker
returns an empty result for a subtask, or the registry
is unavailable. In this case, a plan failure is triggered
subsequently, and an alternative composition plan
will be generated, if any.

d) A Service Failure occurs when a selected service
fails to fulfill a subtask. In this case, the concrete
service composition plan will be adapted through
re-selection of a service candidate for the failed
subtask and the plan will be continued from the
failure point; otherwise, a plan failure is triggered.

Fig. 2 The control process
Figure 2. Broker’s Control Process

To appear in Proc. of COMPSAC 2011 05/04/2011

-- 3 --

are also preserved. When the selected service fails later
on in the invocation, the candidate with the second
highest score, if any, is then selected.
• Coordinator
It is responsible for the invocation of selected services
for the subtasks with appropriate parameters and for the
coordination of these services. In particular, the results
of previous services are re-assembled as parameters for
the following services according to their dependency.
• Controller
It controls the execution of the broker. Once it receives a
request of a task from the communicator, it invokes the
planner to generate a set of abstract service composition
plans according to the knowledge-base. Then, it selects
a plan and invokes the service search engine to search
for appropriate services registered in the matchmaker
for each subtask in the selected abstract composition
plan. If succeed, one service will be selected for each
subtask. Subsequently, it informs the coordinator to
invoke and coordinate the selected services according to
the concrete composition plan.

2.3. Control Process
Roughly speaking, the broker attempts to fulfill a ser-
vice request through the following five stages:
a) Planning: In this stage the broker generates an

abstract service composition plan;
b) Searching: This stage searches for appropriate

services for each subtask;
c) Invocation: In this stage the selected services are

invoked in the order that parameters of the services
depends on each other;

d) Collecting: In this stage the broker collects results
of service invocations and passes data between
them;

e) Delivery: The final stage is to return the results
collected from the services to the user.
This process is not always successful straightfor-

wardly. Therefore, we devised a backtracking mecha-
nism to ensure all possible compositions are tried before
giving up. In particular, if any of the steps in the attempt
to fulfill a task fails, the controller backtracks to an

earlier step and tries an alternative.

2.4. The Prototype I-Broker
We have implemented a prototype framework called
I-Broker based on Semantic WS. Fig. 2 shows the rela-
tionship between the components of the framework and
the facilities provided by Semantic WS infrastructure.
We assume that the semantic information of WS is
described in the form of service profiles in OWL-S.
These services are registered to an OWL-S/UDDI
Matchmaker, which provides semantic-based service
search facility.

The framework implements the components in the
broker architecture presented in Section 2.2. These
components form a skeleton of a service broker. When
the knowledge-base is populated with rules about the
workflow in a particular application domain, the
skeleton is instantiated into a functional broker. The
knowledge-base is represented in XML that consists of
a number of rules. The broker itself is a semantic WS.
It can be registered to the matchmaker, and searched for
and invoked by users.

2.5. Running Example
As a running example, we have populated the knowl-
edge-base with the knowledge of software testing
process and built a broker specialized in software test-
ing. Details of the running example are omitted for the
sake of space, which can be found in [5].

3. Experimental Evaluation
This section briefly reports our experiments with the
framework. The objectives of the experiments are to
evaluate the scalability of the proposed approach.

3.1. Design of the experiments
There are three types of objects in the experiments.
• Services: They are registered to the semantic WS

registry. Their capabilities are represented in the
form of service profiles. The test broker searches for
services by submitting requests to the Matchmaker.

• Rules in knowledge-base: They are the knowledge
of workflow in the application domain and the us-
ages of specific services. They are represented in the
form of XML files and stored locally within the
broker as the knowledge-bases.

• Service requests: They are the service requests
submitted to the brokers and represented in the
format of XML using the ontology.
The data mutation technique [6] is applied in the

preparation of the objects for the experiments to over-
come the difficulties due to their structural complexity.
In particular, for each type of objects, we first select a
set of real ones, which are called the seeds in data mu-Fig. 2 Relation between I-Broker and Semantic WS

Figure 3. Relation between I-Broker and Semantic WS

a functional broker. The knowledge-base is represented in
XML that consists of a number of rules. The broker itself
is a semantic WS. It can be registered to the matchmaker,
and searched for and invoked by users.

E. Running Example

As a running example, we have populated the knowledge-
base with the knowledge of software testing process and
built a broker specialized in software testing. Details of the
running example are omitted for the sake of space, which
can be found in [5].

III. EXPERIMENTAL EVALUATION

This section briefly reports our experiments with the
framework. The objectives of the experiments are to evaluate
the scalability of the proposed approach.

A. Design of the experiments
There are three types of objects in the experiments.
• Services: They are registered to the semantic WS reg-

istry. Their capabilities are represented in the form of
service profiles. The test broker searches for services
by submitting requests to the Matchmaker.

• Rules in knowledge-base: They are the knowledge of
workflow in the application domain and the usages of
specific services. They are represented in the form of
XML files and stored locally within the broker as the
knowledge-bases.

• Service requests: They are the service requests submit-
ted to the brokers and represented in the format of XML
using the ontology.

The data mutation technique [6] is applied in the prepa-
ration of the objects for the experiments to overcome the
difficulties due to their structural complexity. In particular,
for each type of objects, we first select a set of real ones,
which are called the seeds in data mutation technique. Then,
we apply a set of data mutation operators systematically to
each seed to generate a set of mutants of the real ones so
that the mutants are of subtle differences from the seeds.

We designed a group of mutation operators that are
applicable to service profiles, which are used in service
capability registration, and the descriptions of tasks and
subtasks of rules in the knowledge base. Each operator
changes the value of one parameter in the seed according to
the ontology. The particular ontology used in the experiment
is STOWS, which stands for Software Testing Ontology for
Web Service [7].

Let x be any of the parameters in service profiles. The
data mutation operators are defined as follows.
• RxF: Replace the x parameter in the profile, which is a

class in the ontology, by its father class in the ontology;
• RxS: Replace the x parameter in the profile by one of

its subclasses in the ontology;
• RxB: Replace the x parameter in the profile by one of

its brother classes in the ontology;
• RxN: Replace the x parameter in the profile by a class

in the ontology that has no relation to the parameter.
For instance, if the service classification of a profile is

TestCaseGeneration, applying RSB operator to this parame-
ter, we get several profiles whose service classifications are
TestCaseExecution and TestResultValidation, etc., provided
that they are the sibling classes of TestCaseGeneration in
the ontology.

Table I gives the set of services used as the seeds for
generating the service type of objects. Table II gives the
number of seeds and mutants of each type of subjects used
in the experiment.

B. Main Results of the Experiments
We have conducted the following 3 experiments to eval-

uate the broker’s scalability.

Table I
SEED SERVICES USED IN THE EXPERIMENT

Name Description
CASCAT Generate test cases from algebraic specifications
Test Translator Translate test cases from CASCAT format

into Test Executor format
Test Executor Execute tests for a numeric calculator WS
Klee Symbolic execution of C code
Magic Check component’s conformance to specification
XML Comparator Compare XML files
Java NCSS Metrics for Java program
Findbugs Find bugs in Java program by static analysis
PMD Find potential bugs in Java by static analysis
WSDL Test Gen Generate test cases from WSDL
WS Test Executor Execute tests generated by WSDL Test Gen

Table II
NUMBERS OF SEEDS AND MUTANTS

#Seeds #Mutants Total
Service 11 460 471
Rule 40 2049 2089

To appear in Proc. of COMPSAC 2011 05/04/2011

-- 4 --

tation technique. Then, we apply a set of data mutation
operators systematically to each seed to generate a set of
mutants of the real ones so that the mutants are of subtle
differences from the seeds.

We designed a group of mutation operators that are
applicable to service profiles, which is used in service
capability registration, and the descriptions of tasks and
subtasks of rules in the knowledge base. Each operator
changes the value of one parameter in the seed accord-
ing to the ontology. The particular ontology used in the
experiment is STOWS, which stands for Software
Testing Ontology for Web Service [7].

Let x be any of the parameters in service profiles.
The data mutation operators are defined as follows.
• RxF: Replace the x parameter in the profile, which is

a class in the ontology, by its father class in the on-
tology;

• RxS: Replace the x parameter in the profile by one of
its subclasses in the ontology;

• RxB: Replace the x parameter in the profile by one of
its brother classes in the ontology;

• RxN: Replace the x parameter in the profile by a
class in the ontology that has no relation to the pa-
rameter.
For instance, if the service classification of a profile

is TestCaseGeneration, applying RSB operator to this

parameter, we get several profiles whose service clas-
sifications are TestCaseExecution and TestResultVali-
dation, etc., provided that they are the sibling classes of

TestCaseGeneration in the ontology.
Table 1 gives the set of services used as the seeds

for generating the service type of objects. Table 2 gives
the number of seeds and mutants of each type of sub-
jects used in the experiment.

3.2. Main Results of the Experiments
We have conducted the following 3 experiments to
evaluate the broker’s scalability.

(1) Scalability w.r.t. the number of services

In this experiment, we fix the knowledge-base and a set
of service requests, but vary the number of services
registered to the registry (referred to as registry size in
the sequel) to study how the number affects the per-
formance of the broker.

In particular, the registry size varies from 20 to 471.
Each registry contains 11 seeds plus a subset of their
mutants selected at random. Given a set of such service
descriptions, we form a registration state of the system.
To alleviate the fluctuation of the system performance
brought by the internet connection, we carried out the
experiment in a relatively stable internet environment.
Moreover, in each state of the system, the broker is run
repeatedly for 30 times. The average execution time is
calculated.

The experiments results show that the average
search time increases with the number of services in the
registry, but in almost a linear manner; see Fig. 3. Ac-
cording to this trend, the broker will only take a few
seconds to search for a service even if there are thou-
sands of services available. Thus, it is scalable with
respect to the registry size.

y = 0.0004x2 + 6.1862x + 207.16
R² = 0.9948

0

500

1000

1500

2000

2500

3000

3500

0 60 120 180 240 300 360 420 480

Ti
m
e(
m
s)

The number of services

Search Services Time

Trend

Fig. 3 Search for service with different registry size

(2) Scalability w.r.t. the size of knowledge-base

In this experiment, we fix the set of registered service
and service requests, but vary the number of rules in the
knowledge-base (referred to as knowledge size) to study
how the number affects the performance of the broker.

In particular, the knowledge size varies from 100 to
2089. Each time the knowledge-base contains the seed
rules plus a number of randomly selected mutants of the
seed rules. Because the broker tries the rules in the

Table 1. Seed Services Used in the Experiment
Name Description
CASCAT A CASOCC-based test case generation tool

Test Case Format
Translator

Translate the test case generated by CASCAT
into the format recognizable by Calculator
Test Case Executor

Test Case Executor
Executes test case for a numeric calculator
web service

Klee
Generate and execute test cases from C source
code by symbolic execution

Magic
Check conformance between component
specifications and their implementations

XML Comparator Compare XML files

Java NCSS
Measure two standard metrics for Java pro-
gram

Findbugs Find bugs in Java program by static analysis

PMD
A static analysis tool for finding potential
bugs and other problems in Java source code

Test Generator A WSDL-based test case generation tool
Web Service Test
Case Executor

Execute the test case generated by WSDL
Based Test Case Generator

 Table 2. Numbers of Seeds and Mutants
 #Seeds #Mutants Total
Service 11 460 471
Rule 40 2049 2089

Figure 4. Search for Services in Registries of Different Sizes

1) Scalability w.r.t. the number of services: In this ex-
periment, we fix the knowledge-base and a set of service
requests, but vary the number of services registered to the
registry (referred to as registry size in the sequel) to study
how the number affects the performance of the broker.

In particular, the registry size varies from 20 to 471. Each
registry contains 11 seeds plus a subset of their mutants
selected at random. Given a set of such service descriptions,
we form a registration state of the system. To alleviate
the fluctuation of the system performance brought by the
internet connection, we carried out the experiment in a
relatively stable internet environment. Moreover, in each
state of the system, the broker is run repeatedly for 30 times.
The average execution time is calculated.

The experiments results show that the average search time
increases with the number of services in the registry, but
in almost a linear manner; see Fig. 4. According to this
trend, the broker will only take a few seconds to search for
a service even if there are thousands of services available.
Thus, it is scalable with respect to the registry size.

2) Scalability w.r.t. the size of knowledge-base: In this
experiment, we fix the set of registered service and service

To appear in Proc. of COMPSAC 2011 05/04/2011

-- 5 --

knowledge-base sequentially, we place the mutants on
the top of the real ones to ensure that the longest exe-
cution path that the planner will exercise. With each
such populated knowledge-base, we execute repeatedly
the broker on each service request for 20 times and the
average execution time is calculated.

The results of the experiment show that when the
size of knowledge-base increases, the time spent on
producing service composition plans increases in a
quadratic polynomial rate; see Fig. 4. We believe that in
reality, the knowledge-base can hardly reach the scale
of 2000 rules. Even though, the time spent on producing
a service composition plan is only about 300 mini-
seconds. Therefore, it is scalable with respect to the size
of the knowledge-base.

y = 4E‐05x2 + 0.0609x + 20.044
R² = 0.9873

0

50

100

150

200

250

300

350

0 200 400 600 800 1000120014001600180020002200

Ti
m
e(
m
s)

The number of task plan templates

Average Time

Trend

Fig. 4 Time Spent on producing plans

(3) Scalability w.r.t. to task complexity

In this experiment, we fix the set of services and
knowledge-base, but vary the service requests to study
how the complexity of service requests affects the per-
formance of the broker.

In particular, we use the original knowledge-base
and the whole set of 471 seed and mutant services. The
service requests were classified into 5 subsets. Each
subset contains test requests of the same complexity.
Here, the complexity is measured by the number of
different kinds of subtasks that the service request
should be decomposed into. Again, the broker is exe-
cuted repeatedly on each service request for 30 times
and the average execution time is calculated.

Fig. 5 shows the average total execution time for
processing service requests of different complexities. A
quadratic polynomial figure fits very well the curve
with R2=0.9999.

It is worth noting that, the variation range of task
complexities is usually very small, say up to 10 different
kinds of subtasks. Therefore, in the extreme cases, the
broker can process a very complicated request within a
minute. On average, a test request usually has 2 or 3
different kinds of subtasks. In such cases, the broker
only takes less than 10 seconds. Therefore, it is scalable
with respect to the complexity of requests.

y = 10.601x2 + 3168.2x + 119.49
R² = 0.9999

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5

Ti
m
e(
s)

The number of subtasks

Total
Search for Services
Invocation of Subtasks
Task Planning
Trend

Fig. 5 Processing Tasks of Different Complexity

4. Conclusion
This paper presented a broker-based approach to service
composition. A prototype framework is reported. It is
capable of generating service composition plans dy-
namically by decomposing service requests into a
number of subtasks according to the knowledge of
workflow in the application domain and the services
existing in a semantic web service registry. Experiments
with the broker have been conducted to evaluate its
scalability, which clearly show that the broker is capa-
ble of processing service requests with satisfactory
performance when a large number of services registered
and the knowledge-base used to generate service com-
position plans are populated. Thus, it is scalable for
practical uses.

4.1. Comparison with Related work
A great amount of research effort has been reported in
the literature on automatic service composition [8,9,
10]. Existing works fall into two types, the workflow
approaches and planning approaches. The current
achievements in the former approach include standard-
ized workflow definition languages and implementation
of workflow execution engines such as BPEL4WS, and
OWL-S, etc. Due to its flexibility and computation
power, planning approaches have attracted increasing
interests in recent years. Among the most well-known
are those adapting Golog [11], SWORD [12], AIMO
[13], SHOP 2 [14], PORSC II [15], OWLS-XPlan [16],
etc. However, existing planning approaches suffer from
the scalability problem. In general, planning is
NP-complete. As shown in [17], the time needed to
convert OWL-S service descriptions into planning do-
main definitions is exponential to the number of ser-
vices. Many AI planners failed to generate plans for
problems of low and mid range complexity. Moreover,
AI planners tend to generate unnecessarily long com-
position plans [17].

Our approach differs from existing workflow
based approaches in that we treat workflow as domain
knowledge and use it to generate service plan dynami-

Figure 5. Time Spent on Producing Plans

requests, but vary the number of rules in the knowledge-base
(referred to as knowledge size) to study how the number
affects the performance of the broker. In particular, the
knowledge size varies from 100 to 2089. Each time the
knowledge-base contains the seed rules plus a number of
randomly selected mutants of the seed rules. Because the
broker tries the rules in the knowledge-base sequentially,
we place the mutants on the top of the real ones to ensure
that the longest execution path that the planner will exer-
cise. With each such populated knowledge-base, we execute
repeatedly the broker on each service request for 20 times
and the average execution time is calculated.

The results of the experiment show that when the size of
knowledge-base increases, the time spent on producing ser-
vice composition plans increases in a quadratic polynomial
rate; see Fig. 5. We believe that in reality, the knowledge-
base can hardly reach the scale of 2000 rules. Even though,
the time spent on producing a service composition plan is
only about 300 mini-seconds. Therefore, it is scalable with
respect to the size of the knowledge-base.

3) Scalability w.r.t. to task complexity: In this experiment,
we fix the set of services and knowledge-base, but vary
the service requests to study how the complexity of service
requests affects the performance of the broker. In particular,
we use the original knowledge-base and the whole set of
471 seed and mutant services. The service requests were
classified into 5 subsets. Each subset contains test requests
of the same complexity. Here, the complexity is measured
by the number of different kinds of subtasks that the service
request should be decomposed into. Again, the broker is
executed repeatedly on each service request for 30 times and
the average execution time of the broker is calculated. Fig. 6
shows the average total execution time for processing service
requests of different complexities. A quadratic polynomial
figure fits very well the curve with R2 = 0.9999.

It is worth noting that, the variation range of task com-
plexities is usually very small, say up to 10 different kinds
of subtasks. Therefore, in the extreme cases, the broker can
process a very complicated request within a minute. On
average, a test request usually has 2 or 3 different kinds

To appear in Proc. of COMPSAC 2011 05/04/2011

-- 5 --

knowledge-base sequentially, we place the mutants on
the top of the real ones to ensure that the longest exe-
cution path that the planner will exercise. With each
such populated knowledge-base, we execute repeatedly
the broker on each service request for 20 times and the
average execution time is calculated.

The results of the experiment show that when the
size of knowledge-base increases, the time spent on
producing service composition plans increases in a
quadratic polynomial rate; see Fig. 4. We believe that in
reality, the knowledge-base can hardly reach the scale
of 2000 rules. Even though, the time spent on producing
a service composition plan is only about 300 mini-
seconds. Therefore, it is scalable with respect to the size
of the knowledge-base.

y = 4E‐05x2 + 0.0609x + 20.044
R² = 0.9873

0

50

100

150

200

250

300

350

0 200 400 600 800 1000120014001600180020002200

Ti
m
e(
m
s)

The number of task plan templates

Average Time

Trend

Fig. 4 Time Spent on producing plans

(3) Scalability w.r.t. to task complexity

In this experiment, we fix the set of services and
knowledge-base, but vary the service requests to study
how the complexity of service requests affects the per-
formance of the broker.

In particular, we use the original knowledge-base
and the whole set of 471 seed and mutant services. The
service requests were classified into 5 subsets. Each
subset contains test requests of the same complexity.
Here, the complexity is measured by the number of
different kinds of subtasks that the service request
should be decomposed into. Again, the broker is exe-
cuted repeatedly on each service request for 30 times
and the average execution time is calculated.

Fig. 5 shows the average total execution time for
processing service requests of different complexities. A
quadratic polynomial figure fits very well the curve
with R2=0.9999.

It is worth noting that, the variation range of task
complexities is usually very small, say up to 10 different
kinds of subtasks. Therefore, in the extreme cases, the
broker can process a very complicated request within a
minute. On average, a test request usually has 2 or 3
different kinds of subtasks. In such cases, the broker
only takes less than 10 seconds. Therefore, it is scalable
with respect to the complexity of requests.

y = 10.601x2 + 3168.2x + 119.49
R² = 0.9999

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5

Ti
m
e(
s)

The number of subtasks

Total
Search for Services
Invocation of Subtasks
Task Planning
Trend

Fig. 5 Processing Tasks of Different Complexity

4. Conclusion
This paper presented a broker-based approach to service
composition. A prototype framework is reported. It is
capable of generating service composition plans dy-
namically by decomposing service requests into a
number of subtasks according to the knowledge of
workflow in the application domain and the services
existing in a semantic web service registry. Experiments
with the broker have been conducted to evaluate its
scalability, which clearly show that the broker is capa-
ble of processing service requests with satisfactory
performance when a large number of services registered
and the knowledge-base used to generate service com-
position plans are populated. Thus, it is scalable for
practical uses.

4.1. Comparison with Related work
A great amount of research effort has been reported in
the literature on automatic service composition [8,9,
10]. Existing works fall into two types, the workflow
approaches and planning approaches. The current
achievements in the former approach include standard-
ized workflow definition languages and implementation
of workflow execution engines such as BPEL4WS, and
OWL-S, etc. Due to its flexibility and computation
power, planning approaches have attracted increasing
interests in recent years. Among the most well-known
are those adapting Golog [11], SWORD [12], AIMO
[13], SHOP 2 [14], PORSC II [15], OWLS-XPlan [16],
etc. However, existing planning approaches suffer from
the scalability problem. In general, planning is
NP-complete. As shown in [17], the time needed to
convert OWL-S service descriptions into planning do-
main definitions is exponential to the number of ser-
vices. Many AI planners failed to generate plans for
problems of low and mid range complexity. Moreover,
AI planners tend to generate unnecessarily long com-
position plans [17].

Our approach differs from existing workflow
based approaches in that we treat workflow as domain
knowledge and use it to generate service plan dynami-

Figure 6. Processing Tasks of Different Complexities

of subtasks. In such cases, the broker only takes less than
10 seconds. Therefore, it is scalable with respect to the
complexity of requests.

IV. CONCLUSION

This paper presented a broker-based approach to service
composition. A prototype framework is reported. It is ca-
pable of generating service composition plans dynamically
by decomposing service requests into a number of subtasks
according to the knowledge of workflow in the application
domain and the services existing in a semantic web service
registry. Experiments with the broker have been conducted to
evaluate its scalability, which clearly show that the broker
is capable of processing service requests with satisfactory
performance when a large number of services registered and
the knowledge-base used to generate service composition
plans are populated. Thus, it is scalable for practical uses.

A. Comparison with Related work

A great amount of research effort has been reported in
the literature on automatic service composition [8]–[10].
Existing works fall into two types, the workflow approaches
and planning approaches. The current achievements in the
former approach include standardized workflow definition
languages and implementation of workflow execution en-
gines such as BPEL4WS, and OWL-S, etc. Due to its
flexibility and computation power, planning approaches have
attracted increasing interests in recent years. Among the
most well-known are those adapting Golog [11], SWORD
[12], AIMO [13], SHOP2 [14], PORSCE II [15], OWLS-
XPlan [16], etc. However, existing planning approaches
suffer from the scalability problem. In general, planning
is NP-complete. As shown in [17], the time needed to
convert OWL-S service descriptions into planning domain
definitions is exponential to the number of services. Many
AI planners failed to generate plans for problems of low
and mid range complexity. Moreover, AI planners tend to
generate unnecessarily long composition plans [17].

Our approach differs from existing workflow based ap-
proaches in that we treat workflow as domain knowledge
and use it to generate service plan dynamically, rather

than encoded statically. Such knowledge is represented in
the form of task decomposition rules, which is similar to
the input to HTN (Hierarchical task network) planners.
However, our approach is different from existing HTN based
WS planning approaches, such as SHOP2 and SWORD,
where the knowledge of workflow is simply converted from
OWL-S and plans are mostly generated by a brutal force of
inference. Our rules are at a higher level of abstraction and
more general. Planning is completed in two stages. At first,
we generate an abstract plan of the activities to be performed
without determining the specific services that carry out the
actions. Then, the registry is searched to make a concrete
plan that has the full details of the services to be invoked.
This significantly reduced the search space of planning.
Our preliminary experiments show that this is scalable and
efficient. Our approach is also different from the planning
approach by recognising the need of collaborations among
the services. We provide facilities to support such collabo-
rations as the workflow approaches do, which is neglected
by planning approaches. This is particularly important for
complicated services.

One of our main contributions is that we encapsulate
the domain knowledge of workflow and the capability of
planning, service discovery, invocation and collaboration
into brokers. We enable such brokers to collaborate with
each other in the same way as with other services. This is
actually a multi-agent problem solving architecture rather
than a centralised facility. Consequently, the search space
of planning is decomposed into subspaces according to the
application domains. This is one of the reasons why our
approach is scalable while existing planning approach is not.

B. Future work

For future work, we are considering alternative implemen-
tations of the framework to improve the performance and
capability of the I-broker prototype. It is desirable to enable
the users to write rules in a notation at a higher level of
abstraction rather than as XML files. We are also developing
a knowledge-base manager to support the writing, updat-
ing and testing the knowledge-base. A more powerful and
complicated rule language is also under research. Existing
service brokers in the literature often have the functionality
of keeping the track record of QoS of WS. Such functionality
can be easily incorporated into our framework.

ACKNOWLEDGEMENT

The work reported in this paper is partly supported by
the National Basic Research Program of China (Grant No.
2011CB302603) and the National Natural Science Founda-
tion of China (Grant No. 60725206).

REFERENCES

[1] K. Sycara, M. Paolucci, A.Ankolekar, and N. Srinivasan, “Au-
tomated discovery, interaction and composition of semantic

web services,” J. Web Semantics, vol. 1, no. 1, pp. 27–46,
2003.

[2] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan, “Dy-
namic discovery and coordination of agent-based semantic
web services,” IEEE Internet Computing, vol. 8, no. 3, pp.
66–73, May/June 2004.

[3] T. Koponen and T. Virtanen, “A service discovery: a service
broker approach,” in Proc. of ICSS’04, 2004, p. 7.

[4] X. Bai, S. Lee, R. Liu, W. Tsai, and Y. Chen, “Collaborative
web services monitoring with active service broker,” in Proc.
of COMPSAC’08, 2008, pp. 84–91.

[5] H. Zhu and Y. Zhang, “Collaborative testing of web services,”
IEEE Transactions on Service Computing, In press, available
at http://cms.brookes.ac.uk/staff/HongZhu/Publications/TR-
DOCE-AFM-2010-02.pdf.

[6] L. Shan and H. Zhu, “Generating structurally complex test
cases by data mutation: A case study of testing an automated
modeling tool,” The Computer Journal. Aug. 2009; Vol. 52,
No. 5:, vol. 52, no. 5, pp. 571–588, 2009.

[7] Y. Zhang and H. Zhu, “Ontology for service oriented testing
of web services,” in Proc. of SOSE, 2008, pp. 129–134.

[8] J. Rao and X. Su, “A survey of automated web service
composition methods,” in Proc of SWSWPC’04, 2004, pp.
43–54.

[9] S. Dustdar and W. Schreiner, “A survey on web services
composition,” Int’l Journal of Web and Grid Services, vol. 1,
no. 1, pp. 1–30, August 2005.

[10] M. ter Beek, A. Bucchiarone, and S. Gnesi, “Web service
composition approaches: From industrial standards to formal
methods,” in Proc. of ICIW’07, 2007, p. 15.

[11] S. Mcilraith and T. C. Son, “Adapting GOLOG for composi-
tion of semantic web services,” in Proc. of ICKRR’02, 2002,
pp. 482–493.

[12] S. R. Ponnekanti and A. Fox, “SWORD: A devel-oper toolkit
for web service composition,” in Proc. of WWW’02, Hon-
olulu, HI, USA, 2002, pp. 83–107.

[13] S. Tabataei, W. kadir, and S. Ibrahim, “Automatic discovery
and composition of semantics web services using AI planning
and web service modeling ontology,” Int’l J. of Web Service
Practices, vol. 4, no. 1, pp. 1–10, 2009.

[14] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN
planning for web service composition using SHOP2,” Journal
of Web Semantics, vol. 1, no. 4, pp. 377–396, 2004.

[15] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopou-los,
and I. Vlahavas, “The PORSCE II framework: Using AI
planning for automated semantic web service composition,”
Knowledge Engineering Reviews, 2010.

[16] M. Klusch and A. Gerber, “Semantic web service composition
planning with OWLS-XPlan,” in Proc of SASW’05, 2005, pp.
52–66.

[17] ——, “Evaluation of service composition planning with
OWLS-XPlan,” in Proc. of WI-IATW’06, 2006, pp. 117–120.

