
CATest: A Test Automation Framework for Multi-Agent Systems

Shufeng Wang
National Laboratory for Parallel and Distributed Processing

National University of Defense Technology
Changsha, 410073, China

Email: shufeng.wang@gmail.com

Hong Zhu
Dept of Computing and Communication Technologies

Oxford Brookes University
Oxford, OX33 1HX, UK

Email: hzhu@brookes.ac.uk

Abstract—Agents are difficult to test because it is notoriously
complicated to observe their proactive, autonomous and non-
deterministic behaviours and hard to judge their correctness
in dynamic environments. This paper proposes a specification-
based test automation framework and presents a tool called
CATest for testing multi-agent systems (MAS). The agent-based
formal specification language SLABS plays three roles in the
framework. First, it is used to guide the instrumentation of
the agent under test so that its behaviour can be observed
and recorded systematically. Second, the correctness of agent’s
behaviours recorded during test executions are automatically
checked against the formal specifications. Finally, the test
adequacy is measured by the coverage of the specification and
determined according to a set of adequacy criteria specifically
designed for testing MAS. An experiment with the tool has
demonstrated its capability of detecting faults in MAS.

Keywords-Software test automation; Test adequacy criteria;
Test oracle; Agent-oriented software; Specification-based test.

I. INTRODUCTION

Testing is labour intensive and expensive. It is imper-
ative to reduce the cost and improve the effectiveness of
testing by automation. In the past decades, a great amount
of research efforts has been reported and a significant
progress has been made; C.f., [1]. The advent of agent-
oriented development methodologies, which has been widely
perceived as a promising new paradigm suitable for the
Internet-based computing [2], raises the stakes for research
on test automation. Agent-oriented systems are extremely
difficult to test because they are poor on both controllability
and observability aspects of software testability [3]. The
challenge is: can automated testing tools deal with the
complexity of agent-oriented systems? This paper proposes
a new architecture of test automation framework (TAF) to
meet the challenge and presents a caste level agent testing
tools called CATest that realises the framework.

The paper is organized as follows. Section II reviews
the current state of the art in the research on related
topics. Section III outlines the proposed architecture of
TAF. It is followed by technical details of CATest. Section
IV reviews the formal specification language SLABS [4]
on which CATest is based. Section V is devoted to the
behaviour observation in testing agent-oriented software.
Section VI discusses how to check the correctness of an

agent’s behaviour against a formal specification. Section VII
defines a set of test adequacy criteria. Section VIII reports
the implementation of the tool CATest. Section IX reports
an experiment with CATest. Section X concludes the paper
with a discussion of future work.

II. CURRENT STATE OF ART

Let’s first briefly review the current state of the art.

A. Test Automation Frameworks

The current trend in the practice of software testing is to
automate testing activities via the employment of TAFs. A
large number of tools that support TAFs have been developed
and widely used in the industry, which include JUnit for
testing software written in Java, CppUnit for C++, NUnit
for .NET, RUnit for Ruby, PyUnit for Python, VbUnit for
Visual Basic, and Selenium for Web Services, just to mention
a few. As Meszaros summarised [5], the common features
of such TAFs are:
• associating each program unit (e.g. class) with a test

unit that contains a collection of test methods, each for
a test. For OO programming languages, the test unit
is a declared as a subclass of the class under test and
called test class.

• specifying the expected test results for each test in the
form of calls to assertion methods in the test class;

• aggregating a collection of tests into test suites that can
be run as a single operation by calling the test methods;

• executing test suites and reporting the results once the
code of the program is revised.

The automated tool that supports a TAF sets up au-
tomatically the environment in which test methods and
assertion methods are executed and enables test results to be
reported. It can significantly reduce test costs and increase
test efficiency, especially when the program code is revised
frequently and testing is repeated for many times such as
in agile development processes. Moreover, the test code
becomes a valuable and tangible asset and can be sold to
component consumers. Therefore, testing is no longer an
activity that only consumes resources, but it also produces
assets. This brings up a new economics of software testing.

It is no surprise that the adoption of TAFs in the IT industry
has gained a rapid increase in the past years.

However, existing TAFs have some fundamental weak-
nesses, which include:
• Manual coding of test classes.

It relies on programmers to write test code to represent
test cases in test methods and to translate specification into
assertion methods. This is not only labour intensive, but also
error prone.
• Lack of support to the measurement of test adequacy.

There is no facility in the existing TAFs that enables the
measurement of test adequacy.
• Weak in the support to correctness checking.

The assertion methods can only access the local variables
and methods of the unit under test. This means the correct-
ness cannot be checked against the context in which the
unit is called. Moreover, correctness checking cannot across
multiple executions of the unit under test.

These weaknesses root deeply in the architecture of TAFs.
Their applicability is limited to unit testing.

B. Testing Agent-based Software

In the past few years, research efforts have been reported
in the literature on testing MAS in the context of various
agent-oriented development methodologies and platforms.
They have addressed the following aspects of testing MAS:
• correctness of interaction and communication [6]–[10];
• correctness of processing internal states [11]–[14];
• generation of test cases [12], [15]; and
• control of test executions [16]–[18].
There is little research on adequacy criteria for testing

MAS. As far as we know, the work of Low et al. [14] is
the only exception. They proposed a set of coverage criteria
defined on the structure of plans for testing BDI (Belief-
Desire-Intention) agents.

In the research on testing agent-oriented software systems,
TAFs have also been proposed for various agent platforms
by extending OO TAFs with agent-specific features. Works
among the most well known are SUnit for Seagent by
extending JUnit [17], JAT for Jade [7], the testing facility
in INGENIAS for model-driven development of (MAS)
[18], and [13] for model-based development in Prometheus
methodology. However, these approaches inherited the fun-
damental weaknesses of OO TAFs. For the following rea-
sons, the weaknesses become more serious for testing MAS.

First, different from objects, agents are autonomous,
proactive, adaptive and context-aware. They often deliver
the functionality through emergent behaviours that involve
many agents. Thus, the correctness of their behaviours
must be judged in the context of the dynamic and open
environments and the histories that they have experienced
in previous executions. Correctness checking replying on

agent’s internal information and the data at a single time
point is insufficient.

Second, the specifications of the required behaviours are
often hard to translate into assertion methods manually. It is
highly desirable to use formal specifications of MAS directly
to reduce the cost as well as the errors of manual translation.

Moreover, most MAS are continuous running systems.
Given a test input, it is vital to determine when to stop
the test execution in order to achieve good test adequacy. A
support to measure test adequacy during testing executions
is essential for testing MAS. Therefore, it is necessary to
take a radical approach to TAF for agent-oriented software.

The architecture of TAF proposed in this paper takes a
specification-based approach to overcome these weaknesses.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

The basic idea of the architecture is to provide a much
stronger support to the observation of the software’s dy-
namic behaviours through systematic instrumentation of
the software under test. This is achieved by using formal
specifications or models of agent-based systems to guide
the instrumentation of the agent under test (AUT) so that
its behaviour can be systematically observed and efficiently
recorded. The recorded test behaviours are then automati-
cally checked for correctness against the specification. Thus,
the manual coding of assertion methods can be eliminated.
The recorded behaviours are also used in the measure-
ment of test adequacy by calculating the coverage of the
formal specification or model. Such measurements can be
performed dynamically during test executions and statically
after the test executions. More importantly, test executions
can be stopped automatically when a selected test adequacy
criterion is met. We will demonstrate the feasibility of the
approach by an automated testing tool CATest and show
its fault detecting ability by an experiment using mutation
analysis. It is also worth noting that the approach does not
only apply to unit testing, but all level of agent testing,
although this paper will only focus on agent unit testing.

A. Different Levels of Testing

To deal with the complexity in testing agent-based sys-
tems, we divide testing activities into four levels according
to the objectives of testing.

1) Infrastructure level: Agent communications are often
implemented by employing mechanisms and facilities dif-
ferent from what the traditional OO paradigm provides. For
example, MAS commonly use subscribe-and-publish, group
broadcast, brokers and mediators, and environment objects
etc., or a combination of them. The aim of infrastructure
level testing is to validate and verify the correctness of the
implementation of agent communication and interactions.

2) Caste level: Here, caste in agent-orientation is equiv-
alent to class in object-orientation. Agents often exhibit
complicated behaviours, contain complex internal states and
situate in dynamic environments. The correctness of an
agent’s behaviour in updating its internal state and taking
an action in response to an environment situation are funda-
mental to the correctness of the whole system. At this level,
testing focuses on validating and verifying the correctness
of each individual agent’s behaviour.

3) Cluster level: In MAS, a group of agents often play
various roles to achieve certain group goals while each
agent may have its own individual goals. A group of agents
may be regarded as one entity or a subsystem at a higher
level of abstraction. It is important to test how agents form
such groups, re-organise the group via role assignments,
membership changes, behaviour adaptations, etc. Testing at
cluster level aims at validating and verifying the correctness
of the behaviours of a group of agents in interaction and
collaboration processes.

4) Global level: Most MAS, such as ant colony opti-
misation systems, deliver their functionality as emergent
behaviours, which are the most elusive feature of MAS.
Testing whether a MAS has certain emergent behaviour
cannot be achieved by just observing one or a few agents.
It must take all agents in the system into consideration.
This is what global level testing is concerned with. It aims
at validating and verifying the correctness of the whole
system’s behaviour, especially the emergent behaviour.

At the different levels of agent testing, the specific aspects
of behaviour to be observed and the means of observation
are different. The specific test adequacy criteria and correct-
ness conditions are also different. However, the proposed
architecture is applicable for all these levels, although this
paper will only give details of the testing tool CATest for
caste level testing. CATest is only a part of our complete
TAF called CATE-Test, which supports testing MAS at all
levels.

B. Architecture of the Framework

The architecture of the proposed framework consists of
the following key components.
• Runtime facility for behaviour observation.

A runtime facility in the form of a testing library pro-
vides support to the observation of the dynamic behaviours.
Invocations of the library methods are inserted into the
source code of the AUT so that when the agent under
test is executed, its behaviour is observed and recorded
systematically, which enables both correctness checking and
adequacy measurement.
• Test oracle.

A test oracle takes a formal specification or model and a set
of recorded dynamic behaviours of an implementation of
the MAS as inputs and checks automatically the correctness

of the recorded behaviours of the AUT against the formal
specification.

• Test coverage calculator.

The framework employs a generic adequacy calculator to
measure the test coverage according to a set of test adequacy
criteria. It also takes a formal specification/model and a
set of recorded behaviour as inputs, but it calculates the
coverage of the specification/model while the correctness of
AUT’s behaviour is checked against its specification.

• Test execution controller.

The test executions of the MAS are controlled by the runtime
execution controller. It stops the execution of the system on
a test case according to a user selected elemental adequacy
criterion by running the coverage calculator in parallel to
the system under test. It also stops the whole testing process
when the collective test adequacy is achieved.

Note that the same as all existing TAFs, the proposed
framework leaves test case generation as an open issue.
However, the architecture makes the integration of a test
case generator with the framework simple and easy because
its operation is completely independent of the test cases.

C. The Testing Process

Assume that test cases have been generated, e.g., by
applying the existing techniques mentioned in Section II.
Our testing process consists of the following steps.

1) Instrument the code of the AUT and the main class of
the MAS system.

2) If the MAS is non-terminating (i.e., it is designed to
execute forever), select an elemental adequacy crite-
rion to determine when a test execution of the system
on one test case will stop.

3) Select a collective adequacy criterion to determine
when a set of test executions are adequate and thus
the whole testing process can stop.

4) Execute the program on the test cases one by one
and record the behaviour until the collective adequacy
criterion is satisfied or all the test cases are executed.
Here, each test execution stops either when the ele-
mental adequacy criterion is satisfied, or the execution
terminates, or the collective test adequacy criterion is
satisfied.

5) Check whether the recorded behaviours are function-
ally correct w.r.t. to the specification.

6) Finally, check the probabilistic accuracy w.r.t. the
specification.

Note that, first, we require that the elemental adequacy
criterion can be always satisfied on every valid input. A
simple example of elemental adequacy criteria is the length
of time to execute on each test case. Another simple example
of such elemental adequacy criteria is the number of rule
firings to be made in each test execution. Second, if the

collective adequacy is not satisfied on a set of test cases,
there are three possible reasons.

1) The elemental adequacy criterion is not strong enough.
Then, it should be adjusted to execute the program for
a longer time on each test case.

2) The set of test cases is inadequate. Then, new test
cases should be generated.

3) The collective adequacy criterion is infeasible, e.g., it
requires executing infeasible statements. This situation
can be avoided if the adequacy criterion is finitely
applicable. The test adequacy criteria proposed in this
paper are all finitely applicable.

The caste level testing technique reported in the paper is
specification-based. We assume the existence of rule-based
specifications of MAS written in SLABS [4].

IV. BRIEF REVIEW OF SLABS
As in [4], an agent is defined as an active computational

entity that executes in a designated environment. It encapsu-
lates data, operations, behaviour rules and a description of
its environment. These elements are specified in SLABS as
follows.
• State Variables: The states that an agent can be in are

represented by a set of state variables. They are divided
into two kinds: visible and invisible. The value of a
visible variable, indicated by an asterisk symbol before
the identifier, can be viewed by other agents, but cannot
be changed by any external entities.

• Actions: The actions are what the agent is capable of
performing to change its state and to communicate with
other agents. They are also classified into two kinds:
visible and invisible. Taking a visible action produces
an event that other agents in the system can observe.

• Behaviour: The behaviour of an agent is governed by a
set of rules. It determines when the agent will take an
action and which action to take, and when to change
its state.

• Environment description: The environment in which
an agent inhabits is a collection of other agents (or
objects). An agent X is in the environment of agent A
means that agent A can observe X’s visible actions
as events, and view the values of X’s visible state
variables.

A type of agents that have the same structure and be-
haviour is called a caste, which is equivalent to class in
OO languages. However, different from class, an agent may
have membership to multiple castes and such casteships may
change at runtime through joining or quitting a caste. Fig.
1 shows the structure of caste specification in SLABS.

The environment of an agent is specified by a set of
clauses in the following forms.
• AgentID : CasteID: The specific agent with the

name AgentID in the caste CasteID is in the en-
vironment.

Caste C ⇐ C1, · · · , Ck; (* inheritance Relations *)
Environment (* environment declaration *)

E1, · · · , Ew;
Var (* state variables declarations *)
∗v1 : T1, · · · , ∗vm : Tm; (* visible variables*)
u1 : T ′

1, · · · , um′ : T ′
m′ ; (* invisible variables*)

Action (* action declarations *)
∗A1(p1,1, · · · , p1,n1), (* visible actions*)
· · · ,
∗As(ps,1, · · · , ps,ns);
B1(q1,1, · · · , q1,n′

1
), (* invisible actions*)

· · · ,
Bt(qt,1, · · · , qs′,n′

t
);

Behaviour (* specification of behaviour rules *)
R1, · · · , Rh.

End C.

Figure 1. Structure of Caste Specification

• AgentV ar : CasteID: An agent in the particular caste
CasteID determined by the variable AgentV ar’s
value is in the environment.

• All : CasteID: All the agents in the caste CasteID
are in the environment.

An agent’s environment is dynamic in the sense that
it may change during execution. For example, when its
environment description contains clause All : CasteX , the
environment changes if an agent joins or quits CasteX .

A behaviour rule is essentially a probabilistic if-then
statement. In SLABS, it is in the following form.

RuleName : Pattern | Probability → Action,

if Scenario,where Condition.

where Pattern describes the agent’s previous behaviour in
terms of a sequence of state changes and actions. Scenario
specifies the context in the environment, i.e., the situations
in the system outside the agent. The Pattern and Scenario
form the condition to apply the rule, hence they are called
the guard-condition of the rule. Probability is an arithmetic
expression that defines the probability that the rule is applied
when the guard-condition is satisfied. Action is the action
to be performed if the rule is applied. The where-clause
specifies the relationships between the internal state and the
external scenario before and after firing the rule. The Action
and where-clause together defines the effect of the rule,
which asserts the state of the agent after firing the rule. So,
behaviour rules can be transformed into the following form:

if GuardCond then PostCond with Probability.

In SLABS, a pattern is in the form of [E1, E2, · · · , En],
where Ei, i = 1, · · · , n, are the most recent actions taken
by the agent or predicates that specify the past states of the
agent. A scenario expression is constructed from patterns

using quantifiers and logic connectors. Readers are referred
to [4] for details.

Fig. 2 is an example of formal specification in SLABS.
It specifies the Salt World system, in which a number of
turtles collect the salt grains initially distributed randomly
in a field and put them on piles of salt grains.

specification SaltWorld;
caste Turtle;
environment all: Point;
var *saltKind: integer; *position: Point;
state: {FindingSalt,FindingPile,GettingAway};
action *move; *pickSalt; *dropSalt;
behavior
<Move> [!state==FindingSalt & position==p

& saltKind == 0]
|-> move !position==p1 & state==FindingSalt

& saltKind==0;
if p : [!saltKind==sk & neighbour==neigh &

(hasSalt==false | onPile(sk)==true)];
where p1 in neigh;

<Pick> [!state==FindingSalt & position==p
& saltKind==0]

|-> pickSalt !state==FindingPile &saltKind==sk
& sk != 0;
if p : [!saltKind==sk & hasSalt==true &

onPile(sk)==false];
<Search> [!state==FindingPile & position==p

& saltKind == sk & sk != 0]
|-> move ! position == p1 & state==FindingPile

& saltKind == sk;
if p : [!(onPile(sk)==false | hasSalt==true)

& neighbour == neigh];
where p1 in neigh;

<Drop> [!state == FindingPile & position == p
& saltKind == sk & sk != 0]

|-> dropSalt !state==GettingAway &saltKind==0;
if p: [!onPile(sk)==true & hasSalt==false];

<GetAway> [!state==GettingAway & position==p]
|-> move !position == p1 & state==FindingSalt;

end Turtle;
caste Point;
environment all: Turtle;
var *saltkind: integer; *hasSalt: boolean;
*onPile(saltkind: integer): boolean;
*neighbour: Set<Point>;
behavior ... (*omitted for the sake of space*)
end Point;
caste Field
var *width: 1..100; *height: 1..100;
*member: Set<Point>;

end Field
end SaltWorld

Figure 2. Specification of Salt World

V. RUNTIME FACILITY FOR BEHAVIOUR OBSERVATION

This section presents the runtime facility for observing
and recording agent’s dynamic behaviours.

A. Runtime Facility

We have developed a library of Java classes that sup-
ports recording agents’ dynamic behaviours at runtime. The
recorded data are strings in a data file that can be parsed and
analysed by the correctness checker and adequacy calculator,

and other parts of the framework. Fig. 3 gives the syntax
definition of the data records in the format of ANTLR parser
generator rules [19].

record : ID ’:’ˆ data;
data : state | function | action;
action : ID | ID params->ˆ(ACTION ID params);
state : ID ’=’ˆ value;
function : ID params ’=’ value

-> ˆ(FUNCTION ID params ’=’ value);
params : ’(’! valueList ’)’!;
valueList: value (’,’! value)*;
value : literal | ID
| ’-’ literal -> ˆ(’-’ literal)
| ’<’ valueList ’>’ -> ˆ(GROUP valueList)
| ’{’ ’}’ -> ˆ(SET)
| ’{’ valueList ’}’ -> ˆ(SET valueList)
| ’[’ ’]’ -> ˆ(COMPLEXTYPE)
| ’[’ valueList ’]’->ˆ(COMPLEXTYPE valueList);

literal : booleanLiteral | integerLiteral
| FLOAT | STRING;

Figure 3. Syntax Definition of The Data Recorded In Testing

The library consists of an interface and three classes as
follows.
• Instrumenter interface provides four sets of meth-

ods for recording agent’s behaviour during testing. Each
set supports the behaviour observation at one level of
testing. The following are the methods for caste level
testing. The methods for other levels are omitted for
the sake of space.
public void record_state(String agentId,
String stateName, Object value);

public void record_cycle(int iteration);
public void record_action(String agentId,
String actionName, Object...params);

public void record_function(String agentId,
String funcName, Object value,
Object...params);

• InstrumentObject class implements Instru-

menter, but the virtual methods in the interface are
left to be implemented by its subclasse.

• FileInstrumenter class inherits Instrument-

Object and really implements the virtual methods
defined in Instrumenter.

• InstrumenterFactory class is the factory class of
Instrumenter for the creation of the records of the
AUT. The main function of the class is the following
method.
public static Map<String, Instrumenter>
create(String FileName) throws IOException;

In summary, the data file is created and initialised by an
Instrumenter object. It is in turn created by the factory
class InstrumenterFactory.

B. Instrumentation Using the Runtime Facility

Given a specification of a caste C in SLABS, it can be
implemented in Java or Java-based agent-oriented program-
ming languages by a class in the structure shown in Fig. 4,

where the Ai-stmt statement in the body of the Ai method
implements visible action Ai; similarly, Bi-stmt imple-
ments invisible action Bi; the Body-stmt in the method
cycle() implements the behaviour rules. Each invocation
of the cycle() method will search for one applicable
behaviour rule and fire the rule if any.

import E1; ... ; import Ew;
public class C {

... /* infrastructure code */
public C(p1,..., pn)

{Constructor for creating agents};
public T1 v1;...; public Tm vm;
private T’1 u1,...; private T’m’ um’;
public void A1(p11,..., p1n1){A1-stmt}

...
public void As(ps1,..., psns){As-stmt}
private void B1(q11,..., q1n1){B1-stmt}

...
private void Bs1(qt1,..., qtnt1){Bs1-stmt}
public void cycle()
{ Body-stmt for behaviour rules}

};

Figure 4. OO Implementation of Caste

We use the runtime facility to instrument the implemen-
tation of the MAS as follows.

1) Setting up the global execution platform: In the main
class of the system, import the Instrumenter interface
and InstrumenterFactory class in order to link the
runtime support library to the system under test. In the class
of AUT, insert the public method setInstrumenter to
setup the Instrumenter object and insert statements that
invoke methods of the InstrumenterFactory class to
create, initialise and finalise the Instrumenter object.

2) Setting up the local observation and recording plat-
form: In the class of AUT, import the Instrumenter in-
terface and EmptyInstrumenter, which is a stud class
of Instrumenter interface, and declare a set of private
variables for recording the state of test executions.

3) Instrumentation for recording AUT’s behaviours: In
the body of the constructor method of the class of AUT, in-
sert statements that calls record_state methods to record
the initial values of the agent’s state variables. Insert a state-
ment into the cycle() method before the Body-stmt for
recording the the time point of observation. For each method
that implements the visible action Ai and invisible action Bi,
insert a statement that calls the record_action method
into the body of the method after the Ai-stmt . For each
visible state variable vi and invisible variable ui, insert a
statement that calls the record_state method into the
body of method cycle() after the Body-stmt to record
the values of state variables.

4) Instrumentation for recording AUT’s perception of its
environment: For each visible state variable vi,j included
in the scenarios of the behaviour rules, insert a state-
ment that calls the record_state method into the body
of method cycle() after the codes the agent perceives

the state. For each action Ai,j included in the scenarios
of the behaviour rules, insert a statement that calls the
record_action method in the body of cycle() after the
codes the agent perceives the action.

ITERATION 0
turtle0 : state = FindingSalt
turtle0 : saltKind = 0
turtle0 : position = p1528
ITERATION 1
p1528 : caste = Point
p1528 : hasSalt = false
p1528 : saltKind = 0
p1528 : neighbour = {p1428, p1427, p1429, p1628, p1627, p1629,
p1527, p1529, p1528}
p1528 : onPile(0) = false
turtle0 : move
turtle0 : state = FindingSalt
turtle0 : saltKind = 0
turtle0 : position = p1627
ITERATION 2
p1627 : caste = Point
p1627 : hasSalt = false
p1627 : saltKind = 0
p1627 : neighbour = {p1527, p1526, p1528, p1727, p1726, p1728,
p1626, p1628, p1627}
p1627 : onPile(0) = false
turtle0 : move
turtle0 : state = FindingSalt
turtle0 : saltKind = 0
turtle0 : position = p1727
ITERATION 3
…

Figure 5. Example of Recorded Dynamic Behaviour: Turtle in Salt World

Fig. 5 gives a segment of the recorded dynamic behaviour
of a Turtle with its view of the environment.

VI. TEST ORACLE

In this section, we discuss how to check the correctness
of the behaviour of an AUT against a formal specification
written in SLABS.

Existing work on specification based testing mostly treat
the logic statements of specification as pre/post conditions
on functional requirements. However, as mentioned above,
a behaviour rule can be regarded as a probabilistic if-then
statement. The condition in the if part should be considered
as a guard-condition rather than a pre-condition. Checking
the correctness of an agent’s behaviour with regard to such
a set of guard/post-condition pairs is significantly different
from the pre/post-condition semantics. It is incorrect to treat
such a rule as a pair pre/post-conditions. This is complicated
by the non-determinism due to the possible overlaps between
the guard conditions and the probabilistic feature of the
rules. Therefore, we distinguish two types of correctness:
functional correctness and probabilistic accuracy.

A. Functional Correctness

The guard-condition and the post-condition of a rule can
be written in the form of A1 ∧ · · · ∧ An, where Ai (i =
1, · · · , n) is either an assertion of the agent’s state or an
assertion of the occurrence of an action. For example, for
the move behaviour rule in Fig. 2, the guard-condition is:

state = FindingSalt ∧ position = p ∧ saltKind = 0 ∧
p : [!saltKind = sk ∧ neighbour = neigh ∧
(hasSalt = false ∨ onPile(sk) = true)],

and the post-condition is:

(move = true ∧ position = p1 ∧
state = FindingSalt ∧ saltKind = 0 ∧ p1 ∈ neigh).

At any given time point in a test execution, a behaviour
rule evaluates to true if both the guard-condition and the
post-condition are true, or both of them are false. However,
if the guard-condition and post-condition have different
values, it does not necessarily imply that the rule is violated,
because several behaviour rules may have overlapped guard-
conditions. The behaviour rules are violated only in the
following two situations.
• Commission error: If a post-condition is true at time

moment t + 1, but all of its corresponding guard-
conditions are false at time moment t, this means an
action is committed when it is not supposed to. Thus,
there is a commission error.

• Omission error: If for the set of guard-conditions that
are true at time moment t, none of its corresponding
post-conditions is true at time moment t+1, this means
an action is missed. Thus, there is an omission error.

For example, consider the Salt World system given in
Fig. 2. Assume that when a turtle is in a state that
state = Findingsalt, position = p1528 and saltKind =
0, and its environment has the condition p.saltKind =
0, p.hasSalt = false and p.onP ile(0) = false, it takes
an action move, and changes the value of position to Point
p1627, which is in adjacent to Point p1528, and the values
of state and saltKind remain unchanged. The behaviour
of the turtle at this time point is correct according to
the behaviour rules in the specification. In particular, both
of the guard-condition and post-condition of the move be-
haviour rule are true. For the GetAway behaviour rule, the
evaluation of the guard-condition results in false, but the
post condition is true. This is because its post-condition has
overlap with the rule move. So, it does not imply that the
behaviour is incorrect with respect to the rule GetAway.
Its behaviour is correct with respect to all the other rules
because for each of them, both the guard-condition and the
post-condition are evaluated to false, which means, when the
guard condition is not satisfied, the action is not taken by
the agent.

Note that, sometimes, a predicate cannot be evaluated
because a state variable in the rule has no value. In such
cases, we define the value of the assertion to be false.

B. Probabilistic Accuracy

Assume that the AUT is tested on a number of test cases
and a set of behaviours are recorded. We now evaluate

the correctness of the AUT in terms of the accuracy of
the probabilistic distributions with respect to the probability
specified in the behaviour rules.

Suppose that we have a behaviour rule whose probability
is r. Let a be the number of time points in the set of recorded
behaviours at which the rule’s guard-condition P is true and
b be the number of time points at which both guard-condition
g and the post-condition p are true. The behaviour rule is
satisfied w.r.t. its probability specification r with a tolerable
deviation δ, if |r − b/a| ≤ δ. The implementation of the
AUT is probabilistically accurate w.r.t. the specification if
it satisfies all the behaviour rules w.r.t. to the probability
specifications with a tolerable deviation δ set by the user.

VII. TEST ADEQUACY CRITERIA

This section is devoted to the test adequacy problem. We
propose a set of coverage criteria to measure test adequacy
according to the formal specifications in SLABS.

For the sake of convenience, in the sequel, we call a
recorded dynamic behaviour during one test execution of the
MAS a test case. In other words, a test case is a sequence
of records of state changes and actions. We write pu(t), if
predicate p is true at time point u on test case t. We write
p(t) if pu(t) for some time point u.

Let P be a set of predicates. Let T be a set of test cases.
We say that T covers all predicates in P if for each p ∈ P ,
there exist at least one test case t in T such that p(t) is true,
if p is feasible, and there exist at least one test case t′ in T
such that p(t′) is false, if ¬p is feasible.

Let p and q be the guard and post-condition of a behaviour
rule R in Sp. We write Cov(R) to denote the set {p 7→
q, p 7→ ¬q,¬p 7→ q,¬p 7→ ¬q} of predicates, where each
predicate represents one of the possible situations that the
rule is evaluated during execution. In particular,
• p 7→ q means that the rule is applied;
• p 7→ ¬q means the rule is applicable but not applied;
• ¬p 7→ q means that the rule is not applicable, but the

post-condition is satisfied for some reasons;
• ¬p 7→ ¬q means that the rule is not applicable and it

is not applied.
We write Guard(Sp) and Post(Sp) to denote the sets of

predicates that are the guard-conditions and post-conditions
of the behaviour rules in Sp, respectively. We also write
Cov(Sp) for Cov(Sp) =

⋃
R∈Sp Cov(R).

Definition 1: (Rule Coverage)
A test set T is adequate in testing against specification

Sp according to the rule coverage criterion, if T covers
Cov(Sp). 2

The rule coverage criterion requires that testing exercises
all of the four possibilities that a rule can be evaluated if
it is feasible. This requirement on test adequacy is stronger
than the coverage of the set of predicates {Guard(R) 7→
Post(R)|R ∈ Sp} in the traditional rule coverage, which is
called loose rule coverage here.

Definition 2: (Condition Coverage)
A test set T is adequate in testing against specification

Sp according to the guard-condition coverage criterion, if T
covers the predicate in Guard(Sp). It is adequate according
to post-condition coverage criterion if T covers the predicate
in Post(Sp). 2

Let P be any given set of predicates. Clause(P) denotes
the set of clauses contained in P . A clause is a predicate
that does not contain any logic connectors. It can be either
a state assertion or an action assertion.

Definition 3: (Clause Coverage)
A test set T is adequate in testing against specification Sp

according to the guard-condition clause coverage, or post-
condition clause coverage, or rule clause coverage criterion,
if T covers Clause(Guard(Sp)), Clause(Post(Sp)), or
Clause(Cov(Sp)), respectively. 2

Let Clause(p) = {c1, · · · , cn} be the set of clauses in
a predicate p. A combination b of the clauses in p is an
expression in the form of c′1 ∧ · · · ∧ c′n, where c′i is either ci
or ¬ci. In the sequel, we write Comb(p) to denote the set
of all combinations of the clauses of a predicate p, and also
write Comb(P) to denote the set

⋃
p∈P Comb(p) for a set

P of predicates.
Definition 4: (Clause Combination Coverage)
A test set T is adequate in testing against specifica-

tion Sp according to the guard-condition clause combi-
nation coverage, or post-condition clause combination, or
rule clause combination coverage criterion, if T covers
Comb(Pre(Sp)), Comb(Post(Sp)), or Comb(Cov(Sp)),
respectively. 2

The above adequacy criteria have the subsumption re-
lations shown in Fig. 6. They have been implemented in
CATest.

Figure 6. Subsumption Relations between Adequacy Criteria

VIII. THE TOOL CATEST

We have developed an automatic testing tool, called
CATest, implemented as an Eclipse plug-in, to support the
testing process. As shown in Fig. 7, the tool consists of the
following components.
• Execution platform: The instrumented program is ex-

ecuted on this platform with the support of a runtime
library to record the dynamic behaviour of AUT.

Figure 7. Architecture of CATest

• Behaviour Recorder: It enables recorded dynamic be-
haviours to be saved into a data file so that incremental
testing results can be cumulated.

• Data parser: It enables previously saved dynamic be-
haviour records to be parsed and loaded into the system
for the analysis of correctness and test adequacy.

• Spec parser: It parses specifications in SLABS and
checks the syntax correctness of the specification.

• Rule analyser: It analyses the semantics of the rules in
the specification and generates two sets of predicates:
one for checking the correctness of observed behaviours
and the other for calculating the test adequacy.

• Correctness Checker: It checks the correctness of the
recorded dynamic behaviours according to the be-
haviour rules represented in the form of a set of
predicates generated by the rule analyser.

• Adequacy calculator: It measures the test adequacy by
evaluating the user selected adequacy criteria repre-
sented in the form of a set of predicates on the recorded
dynamic behaviour.

• Test report generator: It generates a test report based on
the results of correctness checker and adequacy checker
and display it in GUI; see Fig. 9.

Fig. 8 shows the user interface of the CATest tool. It
enables the user to set various parameters of the testing
environment such as to select the adequacy criteria.

IX. EXPERIMENT

In order to investigate the fault detecting ability of the
testing method and the adequacy criteria, we conducted an
experiment using mutation testing [20].

In the experiment, we used two MAS that are reported
in the literature on agent-oriented software development

Figure 8. GUI of CATest: Setting Test Parameters

Figure 9. GUI of CATest: Displaying Test Results

methodologies. They are Salt World and Ant Colony [4].
Table I shows the data about their implementations in Java.

In the experiment, we tested Turtle and Point in the
Salt World, and Ant in the Ant Colony as the AUT. For each
of them, the experiment followed the process below.

1) Generation of mutants. The muJava testing tool [20]
is used to generate mutants of the Java class that
implements the caste under test.

2) Analysis of mutants. Each mutant is compiled and
those contain syntax errors are deleted. Those equiv-
alent to the original are also removed.

3) Test on mutants. The original class is replaced by the
mutants one by one and tested using our tool. The test
cases were generated at random. The test executions
stop when the Rule Coverage Criterion is satisfied, or
the execution stops abnormally when an interrupting
exception occurs.

4) Analysis of Data. A mutant is regarded as killed if

Table I
THE SUBJECTS OF THE EXPERIMENT

Class #Methods #Attributes #Lines
Salt World
Turtle 9 6 133
StateType 2 1 17
Point 19 7 150
World 14 12 221
SaltWorld GUI 7 19 339
GraphCanvas 2 7 58
Subtotal 43 62 918
Ant Colony
Ant 8 11 233
ModeName 2 1 16
Node 13 7 95
Arc 8 3 52
Field 15 11 255
ACOPanel 10 20 395
ArcIcon 6 5 87
NodeIcon 9 5 101
Visualizer 15 15 283
Subtotal 86 78 1517

an error is detected, i.e. when the specification is
violated. Otherwise, the mutant is regarded as alive.
Note that, this is different from traditional definition
of dead mutants, which does not work because the
non-deterministic nature of the system.

The results are showed in Table II.

Table II
RESULTS OF THE EXPERIMENT

Salt World Ant Colony
#All mutants 41 305
#Live mutants 5 53
#Dead mutants 30 176
#Abnormal mutants 6 76
Total valid mutants 35 229
Fault detecting rate 85.7% 76.9%

From the mutants that remain alive in the experiments,
we identified the following kinds of mutants that caste level
testing are not effective to kill.
• Mutants that change the code that initializes the AUT’s

states;
• Mutants that change the code that sends/receives mes-

sages to/from the others agents;
• Mutants that change the code inside the functions/

methods of actions;
• Mutants that change the infrastructure code.

These mutants correspond to faults that are either at a higher
or a lower level than caste level. Thus, testing at other levels
are necessary. However, mutants that represent faults at the
caste level, such as in the behaviour rules, are detected
100% in our experiments using the rule coverage criterion.
This implies that our specially designed adequacy criteria
are highly effective. The more stregent adequacy criteria are
only needed when the behaviour logic is highly complex.

X. CONCLUSION

The main contributions of the paper are as follows.
(A) A novel architecture of TAF.

This paper proposes a novel architecture of TAFs and
presents an automated test tool CATest for testing MAS at
caste level. In comparison with the existing TAFs, it has the
following three distinctive features.

1) It automatically checks the correctness of software dy-
namic behaviours against formal specifications without
the need to manually write assertion methods.

2) It fully supports automatic measurement of test ade-
quacy and use the adequacy measurement to control
test executions.

3) Test cases are not hard coded into the test code,
and therefore, test case generation tools can be easily
integrated to the framework.

This architecture overcomes the weaknesses of existing
TAFs by providing a higher degree of automation and
supporting a wider range of test activities. It applies to
all levels of testing. In fact, we have developed a test
environment called CATE-Test that supports all levels of
agent test. CATest is a part of the complete test framework
CATE-Test. Moreover, it can also be easily adapted for
testing traditional OO software. Of course, the architecture
manifests its benefits more clearly in testing MAS because
of the complexity of agent-oriented systems.
(B) A new hierarchy of test adequacy criteria.

We have also proposed a new hierarchy of adequacy
criteria for specification-based testing and implemented them
in the CATest tool. In comparison with existing works, the
unique features of these criteria include:

1) They treat guard-conditions differently from pre/post-
conditions, thus reflect better the semantics of guard-
conditions in testing.

2) They take full consideration of non-determinism of the
system in the definition of the criteria.

It is also worth noting that the hierarchy of adequacy
criteria is not only applicable to MAS, but also to all
systems that are running continuously, non-deterministically
and event-driven. In addition to MAS, other typical examples
of such systems include distributed and service-oriented
systems. They are normally specified by a set of behaviour
rules with guard-conditions.

We are currently doing more experiments with the system
to evaluate its fault detecting ability, usability and scalability.

For future work, it is important to develop techniques
that automatically insert instrumentation code, to control
the execution paths in a non-deterministic program, and to
integrate a test case generation tool into the framework.

ACKNOWLEDGEMENT

The work reported in this paper is partially funded by
China Ministry of Science and Technology in the 863

Programme under grant 2005AA113130 and in the 973
Programme under grant 2005CB321800, and China Natural
Science Foundation under grant 90612009.

REFERENCES

[1] Proceedings of The 6th IEEE/ACM International Workshop
on Automation of Software Test (AST 2011). Waikiki, Hawaii,
USA: IEEE CS Press, May 2011.

[2] N. R. Jennings, “On agent-based software engineering,” Ar-
tificial Intelligence, vol. 117, pp. 277–296, 2000.

[3] J. Voas and K. Miller, “Software testability: the new verifi-
cation,” IEEE Software, vol. 12, no. 3, pp. 17–28, 1995.

[4] H. Zhu, “SLABS: A formal specification language for agent-
based systems,” Int’l J. SEKE, vol. 11, no. 5, pp. 529–558,
2001.

[5] G. Meszaros, xUnit Test Patterns: Refactoring Test Code.
Addison Wesley, 2007.

[6] C. Rouff, “Testing and monitoring intelligent agents,” in Proc.
of WRAC’03. LNCS 2564. Springer-Verlag, pp. 155–164.

[7] R. Coelho, E. Cirilo, U. Kulesza, A. von Staa, A. Rashid, and
C. Lucena, “Jat: A test automation framework for multi-agent
systems,” in Proc. of ICSM’07, 2007, pp. 425–434.

[8] D. Poutakidis, L. Padgham, and M. Winikoff, “An exploration
of bugs and debugging in multi-agent systems,” in Proc. of
ISMIS’03, 2003, pp. 628–632.

[9] M. Liedekerke and N. Avouris, “Debugging multi-agent sys-
tems,” Information and Software Technology, vol. 37, no. 2,
pp. 103–112, 1995.

[10] H. Nwana, D. Ndumu, L. Lee, and J. Collis, “ZEUS: a toolkit
and approach for building distributed multi-agent systems,” in
Proc. of Agents’99, 1999, pp. 360–361.

[11] E. Ekinci, A. Tiryaki, O. Cetin, and O. Dikenelli, “Goal-
oriented agent testing revisited,” in Proc. of AOSE’08, 2008,
pp. 85–96.

[12] C. Nguyen, A. Perini, and P. Tonella, “A goal-oriented soft-
ware testing methodology,” in Proc. of AOSE’07. LNCS 4951.
Springer-Verlag, 2007, pp. 58–72.

[13] Z. Zhang, J. Thangarajah, and L. Padgham, “Automated unit
testing for agent systems,” in Proc. of ENASE’07, 2007, pp.
10–18.

[14] C. Low, T. Y. Chen, and R. Ronnquist, “Automated test case
generation for BDI agents,” Autonomous Agent and Multi-
Agent Systems, vol. 2, no. 4, pp. 311–332, 1999.

[15] C. Nguyen, A. Perini, and P. Tonella, “eCAT: a tool for
automating test cases generation and execution in testing
multi-agent systems,” in Proc. of AAMAS’08, 2008, pp. 1669–
1670.

[16] G. Caire, M. Cossentino, A. Negri, A. Poggi, and P. Turci,
“Multi-agent systems implementation and testing,” in Proc.
of the 4th Int’l Symposium: From Agent Theory to Agent
Implementation, Vienna, 2004, pp. 14–16.

[17] A. Tiryaki, S. Oztuna, O. Dikenelli, and R. Erdur, “SUNIT: A
unit testing framework for test driven development of multi-
agent systems,” in Proc. of AOSE’06. LNCS 4405. Springer-
Verlag, 2006, pp. 156–173.

[18] J. Gomez-Sanz, J. Bota, E.Serrano, and J. Pavon, “Testing and
debugging of MAS interactions with INGENIAS,” in Proc. of
AOSE’08. LNCS 5386. Springer-Verlag, 2008, pp.199–212.

[19] T. Parr, The Definitive ANTLR Reference: Building Domain-
Specific Languages. Pragmatic Bookshelf, May 2007.

[20] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: an automated
class mutation system,” Software Testing, Verification and
Reliability, vol. 15, no. 2, pp. 97–133, 2005.

