Modeling and Simulating Adaptive Multi-Agent Systems with CAMLE

Lijun Shan, Chenglie Du

College of Computer Science,
Northwestern Polytechnical University,
Xi'an, China
lijunshancn@yahoo.com

Abstract—With the advent of embedded and mobile computing
techniques, software systems are increasingly operated in open
and dynamic environments. Such systems desire self-adaptive
capabilities. This paper proposes an agent-oriented approach
to the modeling and simulation of distributed adaptive systems.
The approach enables the designers to construct structural and
behavioral models at a high abstraction level, and to validate
the models at design stage through simulation. The modeling
language supports devising decentralized adaption logic that
enables various types of adaptions at both component and
system levels. The simulation of adaptation processes can
demonstrate how a system dynamically re-organizes in
response to the changes in the operating context. Case studies
show that our approach can support various self-adaptation
mechanisms in which a multi-agent system adapts to internal
failures, unexpected environment, or user's changing
requirements.

Keywords -- self-adaptive systems, multi-agent systems, modeling,
simulation

I. INTRODUCTION

With the advent of embedded and mobile computing
techniques, software systems are increasingly operated in
open and dynamic environments. Self-adaptive capabilities
enhance such systems' reliability and robustness in their
ever changing environments. A system is adaptive if it is
able to adjust its structure and behavior at run time so as to
recover from internal failures, to work in unexpected
environment, or to meet user's changing requirements.

Agent-oriented paradigm, which regards a software
system as a set of interacting autonomous computing
elements (i.e. agents), is a promising approach to the
construction of decentralized self-adaptive systems [1]. A
multi-agent system with self-adaptive features is called an
Adaptive Multi-Agent System (AMAS) [2]. The recent
years have witnessed a rapid growth in the Al-related
research on AMAS, which endeavors to improve agents'
adaptability with more expressive logic and higher
reasoning capabilities [3, 4]. However, how to engineer
AMAS remains an open problem. In the framework of an
agent-oriented software engineering (AOSE) paradigm, this
paper advances a model-driven approach based on our
previous work of modeling MAS.

Simulation of models is particularly valuable for AMAS
development, verification and validation, because self-
adaptation emerges at system level dynamically. Neither

Hong Zhu

Dept of Computing and Communication Technologies,
Oxford Brookes University,
Oxford, UK
hzhu@brookes.ac.uk

modeling nor simulation of AMAS is an easy task. The
model has to describe how a system adapts at both the
component level and the organization level, while the
adaption logic scatters in various agents instead of centrally
controlled. Simulation should enable the designer to tell
whether a large number of agents can collaboratively
achieve the adaption requirements.

The existing work on modeling AMAS can be classified
into two categories. In the first category, existing agent-
oriented software development methodologies for MAS are
extended to meet the requirements of developing AMAS,
such as Gaia [5], O-MaSE [6], ADELET [2] and SOTA [7].
These methodologies, however, provide neither language
facilities for expressing designs of adaption at component
level and system level, nor techniques for evaluating the
designs. Researches in the second group propose conceptual
models of AMAS based on the notion of organizations, e.g.
LAO (Logic for Agent Organization) [4], reorganization
protocol stack [3]. The existing formalisms of
reorganization are mostly action-based, which works better
on planning and reasoning than on software development.

This paper presents an approach for modeling and
simulating AMAS with CAMLE, a caste-centered agent-
oriented modeling language and environment proposed in
our previous work [8, 9]. We report a series of case studies
conducted to demonstrate how to model various self-
adaption mechanisms in the CAMLE modeling language,
and how to use the simulator tool of the CAMLE modeling
environment in the verification of self-adaptive behaviors
against various requirements.

II. THE CAMLE LANGUAGE AND ENVIRONMENT

CAMLE is a multiple-view graphic modeling language
based on a consistent conceptual model of multi-agent
systems.

A. The Conceptual Model

With CAMLE, an AMAS is modeled as a collection of
agents that coordinate with each other, monitor the changes
in the environment, and adapt their behaviors and
organizational structure in a distributed setting. The main
concepts of the CAMLE language are summarized in Figure
1.

For example, a rescuer robot can be defined as a caste
named Robot, as shown in Figure 2. Agents can be created
as instances of the caste when the parameters are given

specific values: integer values are assigned to id as the
identifier, to iStartX and iStartY as the initial coordinates. A
set of attributes represents the knowledge/state of the agent.
For example, iPosX and iPosY represent a robot's current
position. A set of actions enables the agent to perform
certain tasks. For example, Walk() enables a robot to change
its own location.

Agent = <Caste Instance>

Caste = <Parameters, Attributes, Actions, Environment,
Behavior Rule*>

Environment = <Agent*>

Interaction(A, B) = <A.Observation, B.PublicEvents>

Behavior Rule = <Scenario, Agent State, Action*>

Figure 1 The conceptual model of CAMLE

CASTE Robot (int id, int iStartX, int iStartY)

VAR: public: int iPosX; int iPosY; int iDirection;
int iIFindVictimID; int iCurrentTask;
int allFoundVictimList[];
ACT: internal: void SetTask(int i);

Figure 2 Caste Robot

The concepts of role and organization have long been
used in agent-oriented methodologies. In CAMLE, a caste
can represent a role, an organization, etc. For example, the
roles that an agent 4 plays can be defined as the sub-castes
of A's caste. A sub-caste inherits all the attributes and
actions from its super-caste, but carries new behavior rules,
additional state variables and actions that are specific to the
role. In the example of rescuer robotics, a Hierarchy
organization contains Leader and Member as two sub-castes
of Robot.

An adaptive agent needs to change its role(s) at run time.
For example, in the Hierarchy organization, when a Leader
breaks down, a Member may change its role to Leader in
order to keep the team working. Such changes of roles are
naturally supported by CAMLE’s caste facility that enables
an agent to dynamically change its casteship (i.e.
membership to castes) by taking a join, quit, suspend or
resume action [10].

A system can accomplish a task through different
organizations, and may change its organization at run-time
to adapt to the context, though non-functional properties
(such as efficiency and cost) may vary. For example, for the
Searcher Robotics, a transfer from Hierarchy to Peer may
enlarge the coverable area at the cost of higher
communication traffic load.

B. The Graphic Notation

CAMLE provides three models, namely structure model,
collaboration model and behavior model, to facilitate users
to capture a system from different perspectives.

1) Structure Model

A structure model, consisting of a number of caste
diagrams, gives an overview of the modeled AMAS by
depicting castes, organizations and casteship transitions.

As shown in Figure 3, the Searcher Robotics team can
take either Hierarchy or Peer organization. The caste
Hierarchy consists of three castes: User, Leader and
Member, where the latter two are sub-castes of Robot. Peer
consists two castes: User and Rescuer, where the latter is
also a sub-caste of Robot. The system can transfer its
organization from Hierarchy to Peer, or vice versa if
necessary. A Member agent may become Leader under
certain circumstances. Each caste's structural elements,
including parameters, attributes, actions and environment
are also specified in the caste model. The function body of
the actions can be written in C code for the CAMLE
simulator to execute.

I

“ Leader ”(——A“ Member || User “ Rescuer
P
=1 Robot
L
> Inheritance
————— > Move
=====> Re-organization

Figure 3 Caste diagram: example and notation

2) Collaboration model

iTotalVictim findVictimID

[e

Figure 4 Collaboration diagram: example and notation

currentTask; allFoundVictimList

—>

Visible event

A collaboration model, consisting of a number of
collaboration diagrams, describes typical interaction
scenarios. As shown in Figure 4, in the Hierarchy
organization, once the user assigns a value to its attribute
iTotalVictim, which represents the total number of victims
to find, the Leader robot observes that and assigns its own
attribute currentTask accordingly. Then, every Member
acquires the task by observing the Leader's attribute
currentTask. The Leader constantly observes each
Member's attribute findVictimID, which represents the
recently found victim, to form a global view on the task's

progress. Each Member updates its record of the task status
by observing the Leader's attribute allFoundVictimList.

3) Behavior model

A behavior model defines the behavior rules of each
caste in an AMAS. A behavior rule consists of three parts: a
scenario description about the state of the environment, the
owner agent's current state, and the action(s) to take once
the specified scenario and state are all satisfied.

For example, Figure 5 gives the graphic notation of
CAMLE’s behavior model and shows two behavior rules of
the caste Leader. Figure 5 (A) states that if the value of the
User's attribute iTotalVictim is greater than the value of the
agent’s own attribute currentTask, the Leader agent updates
its task accordingly. Figure 5 (B) states that when the
Leader observes that a Member has found a new victim (the
value of the Member robot's attribute findVictimID is neither
-1 nor within the Leader's record of the found victims), the
Leader adds this victim's ID to its record of the found
victims.

| User_SetTask | Member_FindVictim |

SetTask($.iTotalVictim)

(A) Set Task

(S-findVictimID>-1)&
(S findVictimIDnotINiAllFoundVictim[])

| AddFoundVictim($.findVictimID)

(B) Finding a new victim

_______ A

I | Pattern
[S
——> Reslting Scenario
—> Temporal Sequence -
R Logic relation

Figure 5 Behavior diagram: example and notation

C. Simulation Tool in CAMLE

The CAMLE modeling environment presented in [8]
contains a set of tools for model construction, model
consistency checking and model to formal specification
transformation. To provide better support to the development
of AMAS, we have further developed a dynamic simulation
tool that interprets the graphic model. In addition to the
diagrams, the simulation tool also takes a specification of
system’s initial configuration as input, which is written in C
programming language. The specification defines global
variables and organizations that are employed in the system,
and describes the system's initialization. Each organization is
specified by a function which defines how agents join castes
by performing the primitive action MOVE(). The term
A.MOVE(C) means that an agent 4 becomes a member of
caste C and quits its previous caste if there is.

1. CASE STUDY

To demonstrate how the CAMLE method supports
modeling and simulating of AMAS, we conduct a series of
experiments following the types of reorganization activities
as classified in [4]. The system under study is a Searcher
Robot team which can adapt to various situations.

A. Ideal Situation

A team of N robots is deployed to find a number of victims
distributed over an arena shown in Figure 6, where robots
are represented by green round dots, and victims are red
square spots.

Figure 6 The arena for searching

The arena can be a dangerous place such as firing
building or battle field. Ideally, the arena to explore is small
enough for a robot to communicate with the other robots;
the wireless communication condition is good enough to
withstand any traffic load; the arena is so favorable that all
robot works well all the time; the task is fixed once assigned
to the robot team. In this situation, both Hierarchy and Peer
organizations perform well. The results of the simulation
with different configurations are summarized in Table I,
where P(N) represents a Peer organization with N robots,
and H(X, Y) represents a Hierarchy organization with X
Leaders and Y Members. The timeout limit of an execution
is set to be 500 seconds in the sequel.

TABLE I PERFORMANCE IN THE IDEAL SITUATION

PQ2) P(21) H1, 1) H(1, 20) |

1" Min 14605 3424 12897 2320
Max 99795 13504 141686 10509

Avg 52286 7062 65330 6648

5™ Min 97561 19749 223751 17241
Max Timeout (1) 58724 Timeout (5) 99988

Avg 310192 33408 373192 39785

Table I gives the time (millisecond) spent to find the first
and the last victim in 10 executions of each model, where
the row Avg shows the average time which counts only the
non-timeout values. Table I shows that the searching
process is quicker with more robots. Given the same number
of total robots, the Hierarchy organization is slower than
Peer, because Hierarchy needs one Leader robot, which
does not participate in searching victims.

B. Staffing

Staffing is a simple type of re-organization in which the
number of agents changes [4]. Two activities can be taken:
staff+: adding new agents to the system, and szaff-: deleting
agents from the system. Suppose that the initial organization
is H(1, 20), i.e. with 1 Leader and 20 Members. The
following cases are considered, respectively.

(1) Stable: The organization keeps unchanged.

(2) Staff+: An User agent, with the behavior rule shown in
Figure 7 (A), brings 10 more robots as Members when
the first victim is found. This is modeled by one
behavior rule. The action CreateRobo#() in the
behavior rule firstly instantiates new agents from the
caste Robot, then attach them to the caste Member by
taking the action MOVE(Member).

(3) Staff~: An User agent, with a behavior rule shown in
Figure 7 (B), takes 10 member robots out of the team
when the first victim is found. The action
RemoveRobot() in the behavior rule deletes an agent 4
from the system by taking the action DEL(A).

| Leader_FindVictim |
| Leader_FindVictim |

I CreateRobot{typeMember,iNum) | | RemoveRobot(typeMember, iNum) |

(A) Adding Member robots (B) Removing Member robots

Figure 7 User's behavior rules for

The results of the models' simulation, as summarized in
Table 11, show that the task's average finish time drops when
robots are added during the execution, and the time rises if
robots are removed at run time.

TABLE II SEARCHER ROBOTICS: STAFFING

H(, 20) H(1, 20) H(1, 20) ‘

=>H(1, 30) =>H(1, 10)

¥ Min 2164 4010 3632
Max 11030 13741 8795
Avg 5551 6304 5232
5" Min 19369 14313 14275
Max 91924 42234 98535
Avg 36604 23603 48841

C. Re-staffing

Re-staffing means relocating agents to other existing roles
within the organization [4]. Three activities may happen:
enact: assigning a new role to an agent; deact: removing a
role from an agent; move: combining the above two.

In CAMLE, an agent deacts a role by taking an action
QUIT(). In particular, if an agent has only one caste,
deacting results in an inactive agent. An agent joins a caste
by taking an action JOIN(). However, consistency between

different the new role and the old role(s) must be ensured
during the design. For instance, if a designer specifies that a
leader robot joins the caste Member without quitting Leader,
the behavior rule "moving around" of the caste Member
contradicts with the behavior rule "staying at the initial
position" of the caste Leader. Such contradictions may be
not easily detected at the design stage, and will cause
problems during the system's execution. The simulator helps
to solve this problem.

Suppose the Searcher Robotics team initially has the
structure H(1, 20). When the environment is adverse, the
robots has a high probability of breaking down. For example,
in a fire field the robots are exposed to a high temperature,
or in a battlefield the robots may be captured and destroyed
by the enemies. Assume that the robots break down with a
possibility of 0.1% per 0.1 second. We construct models for
the following two cases:

(1) No role change: No robot can change its role. Once the
Leader breaks down, the team stops working.

(2) Member becoming Leader: On detecting the Leader’s
failure, a live Member robot becomes a Leader, and
stays at its current position. This is realized through a
behavior rule of the Member caste, as shown in Figure
8. This case illustrates that an agent can change its role
when some failure occurs in the system.

ibBroken &

| Leader_Broken
id==iLeaderlD + nWaitLeaderTimer

| EXIST a:Leader |
—— |

Y
—

MOVE(Leader)

Figure 8 Member's behavior rule for becoming Leader

As summarized in Table III, without automatic role
changing, no victim is found in two executions, because the
Leader breaks down before the team finds any victim. In
comparison, when the members are able to taking new roles,
the task can be finished in all the ten executions.

TABLE IIT H(1,20) ROBOTS MAY BREAK DOWN

No role change Member->Leader

1% Min 5171 3590
Max Timeout (2) 13261
Avg 6937 7826
5" Min 14672 14941
Max Timeout (4) 89849
Avg 56863 44065

D. Structuring

Structuring means the system’s structure is reshaped [4]. It
involves four types of activities: position+/position-: to add/
remove a position (i.e. role); structt/struct-: to add/remove
dependencies between existing positions.

Since struct+/struct- changes the interaction relationship
between a specific pair of roles, while the other agents are
not affected, the two activities can be modeled as agents'
caste shifting.

So far, the above cases can be regarded as component-
level adaption: staffing changes the number of agents of a
certain caste, re-staffing changes an agent's casteship, and
structt+/struct- changes the dependencies between some
castes. Such re-organization activities neither alter the
interaction protocol of the organization, nor change the
behavior of other agents. In contrast, positiont/position-
affects the rest of the organization. When a new caste is
added, or an existing caste is removed, the other agents'
behaviors are possibly affected. Therefore, they have to alter
their casteships accordingly.

In the Searcher Robotics example, suppose the arena is a
square whose side length is 2*S (S denotes a robot's
communicational distance). Initially, the user, knowing
neither the arena's area nor the wireless communication
condition, assigns the hierarchy organization H(1, 20) to the
team. We consider the following three situations:

(1) No re-organization: The team cannot change its
organization. Once a Member cannot see the Leader, it
returns along its passed route until it can see the
Leader again.

(2) Hierarchy to Peer: Once the Leader finds that a
Member robot goes too far to communicate with, it
alters the system's organization to Peer. This is realized
through the Leader taking an action Peer(), as shown
in the behavior rule in Figure 9 (A). This case
illustrates that an agent can initiate the system's
organization change to adapt to the unexpected
environment.

(3) Hierarchy to Hybrid: Once a Member goes far enough
(with one more step it cannot see any Leader), it
becomes a Leader. Consequently, the organization
becomes H(X, N-X), and X may increase during the
execution. This is realized through a behavior rule in
the Member caste, as shown in Figure 9 (B). This case
illustrates that an agent can autonomously change its
casteship due to some change in its own state (a
variable indicates whether it can communicate with a
Leader), which effectively leads to re-organization of
the system.

‘ Member_LostSight

A_ —
Peer(RobotList) MOVE(Leader)

(A) Leader's (B)Member's

Figure 9 behavior rule for re-organization

The simulation results of the above models are
summarized in Table IV. Among the three different
organizations, the Peer structure can cover the biggest area.
When some Member robots become Leader, the searching
area is enlarged, but still some victims are not found within
the time limit. Since Leaders do not move, increasing
Leader robots reduces the number of Member robots.
Consequently, the team needs to spend more time to find all
the victims.

This case also shows that adaption can be achieved
through different re-organization mechanisms.

TABLE IV THREE MODELS FOR BIG ARENA

No change H(1, 20) -> H(, 20) -> ‘
P(21) H(X, 21-X)

1 Min 3528 2460 3644
Max 28989 20034 32218
Avg 15018 6966 12848

5™ Min Timeout 9690 24123
Max Timeout 45074 Timeout (6)
Avg Timeout 26232 34001

E. Strategy and Duty

A change in an organization’s strategy and duty means the
objectives of the organization is altered [4]. Here, we
classify such changes into two types: (a) modifying some
parameters of the objectives or tasks, (b) adding/removing
certain objectives or tasks.

For the Searcher Robotics system, the first type of
changes in systems’ objectives may happen when the user
changes the task's parameter at run time. For example,
initially the user assigns a task of finding 3 victims to the
robot team. Later on, when new information emerges, the
number of known victims increases to 5. Then, the user re-
assign task to the team to finding 5 victims. The behavior
rule of the Leader robot given in Figure 5 (A) states that the
robot constantly reads the user's command at run time.
Similarly, all Member robots read the leader's task
instruction regularly. Therefore, the team can have their task
updated according to the user.

Adding/removing a task requires the system to re-
organize. Assume that a Searcher robot alone is unable to
carry one victim, but two robots can collaboratively do it.
Initially the Searcher Robot team is assigned to the task of
locating the victims, and another team of robots that
specialize in rescuing is expected to come when all the
victims are found. However, after the searching task is
finished, the wuser finds that the rescuer robots are
unavailable for some reason, and assigns the rescuing task
to the Searcher Robots. To simplify the implementation, for
this case we assume that no barrier exists in the arena.

A Searcher Robotics team H(1, 20) is deployed. To meet
the user's new requirement, the Leader has to initiate a re-
organization that turns the Hierarchy structure to
CarrierTeam, as shown in Figure 10 (A).

| User_AssignNewTask |

| CarrierTeam(RobotList) ‘

(A) Leader's behavior rule (B) Simulation result

Figure 10 Re-organizing to a CarrierTeam

The CarrierTeam organization comprises two roles:
CarrierLeader and Carrier. After re-organizing, the Leader
robot becomes the CarrierLeader, and all Members become
Carriers. The CarrierLeader assigns a pair of Carrier robots
to rescuer each victim to a certain destination. The details of
the behavior rules are omitted for the sake of space. A
simulation of the model is shown in Figure 10 (B), where
the bond lines denote the traces of robots after the system is
assigned with the new objective of sending the victims back.

This case illustrates that given a new task, the system has
to re-organize such that the agents move to new castes that
have capabilities to fulfill the task.

Two more types of re-organization are identified in [4]:
(a) changing the duty assignment in the organization, and (b)
changing the knowledge of the organization. The only
difference between a change of duty and a change of
objective is that the subject of duty is the role of a system,
while the subject of an objective is a system. In CAMLE,
both the roles in a system and the system itself are modeled
by castes. Therefore, there is no need to distinguish
objectives from duties. For example, when the Searcher
Robotics team is assigned a new objective, the robots re-
organize so as to fulfill the new requirement, at the same
time each robot takes a new duty.

In CAMLE, knowledge is represented as the attributes of
castes and the reasoning about knowledge is modeled by
internal actions. Different knowledge structure and different
formal systems of knowledge reasoning can be encapsulated
into castes, and the changes in such knowledge structure and
reasoning capability can then be modeled through dynamic
casteship changes.

IV. CONCLUSION

This paper reports a model-driven approach to the design
and verification of AMAS using CAMLE. The simulation
technique and tool that supports the verifification of
decentralized adaptive AMAS is demonstrated with a
systematic case study.

In [11], Weyns et al. identified five key requirements on
the specification of self-adaptation capabilities: (1) to
specify how the system monitors the environment (i.e.,
context-awareness); (2) to specify how the system monitors

itself (i.e., self-awareness); (3) to specify how the system
adapts itself; (4) to specify how the system coordinates
monitoring and adaptation in a distributed setting; (5) to
support extending and refining primitives for additional
concerns and domain-specific concepts. Our case study
shows that the CAMLE language and its automated tools
meet these requirements and provide a strong support to
modeling self-adaption. Agents collaborate through mutual
observation. By observing the environment and its own state,
an agent is both context-aware and self-aware. An agent
conducts its actions, including adaption activities, as a
reaction to the environment following the prescribed
behavior rules. The systematic case study demonstrates that
CAMLE is capable of modeling a wide range of adaption
mechanisms and simulating highly complicated emergent
behaviors. No similar work of such case studies has been
reported in the literature as far as we know.

One of the future work is to design and implement
statistical model checking functionality in the CAMLE
environment.

REFERENCES

[1] D. Weyns, and M. Georgeff: "Self-adaptation using multiagent
systems", Software, IEEE, 2010,vol. 27, (1), pp. 86-91

[2] C.Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard: "Adelfe: A
methodology for adaptive multi-agent systems engineering":
Engineering Societies in the Agents World III (Springer, 2003), pp.
156-169

[3] A. Artikis: "Dynamic specification of open agent systems", Journal
of Logic and Computation, 2012,vol. 22, (6), pp. 1301-1334

[4] F. Dignum, and V. Dignum: "A formal semantics for agent (re)
organization", Journal of Logic and Computation, 2013, pp. ext058

[S1] L. Cernuzzi, A. Molesini, A. Omicini, and F. Zambonelli:
"Adaptable multi-agent systems: the case of the gaia methodology",
International Journal of Software Engineering and Knowledge
Engineering, 2011,vol. 21, (04), pp. 491-521

[6] S.A. DeLoach, and J.C. Garcia-Ojeda: "O-MaSE: a customisable
approach to designing and building complex, adaptive multi-agent
systems", International Journal of Agent-Oriented Software
Engineering, 2010,vol. 4, (3), pp. 244-280

[71 D.B. Abeywickrama, N. Bicocchi, and F. Zambonelli: "SOTA:
Towards a general model for self-adaptive systems". Proc. IEEE 21st
International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), 2012, pp. 48-53

[8] L. Shan, R. Shen, J. Wang, and H. Zhu: "Caste-centric development
of agent-oriented information systems", in Rennard, J.-P. (Ed.):
Handbook of Research on Nature Inspired Computing for Economy
and Management (Information Science Reference, Idea Group, 2006,
September 13, 2006 edn.), pp. 692-707

[91 L. Shan, and H. Zhu: "CAMLE: a caste-centric agent-oriented
modelling language and environment", in Choren, R., Garcia, A.,
Lucena, C., and Romanovsky, A. (Eds.): Software Engineering for
Multi-Agent Systems III. LNCS 3390 (Springer-Verlag, 2005), pp.
144 - 161

[10] X. Mao, L. Shan, H. Zhu, and J. Wang: "An Adaptive Casteship
Mechanism for Developing Multi-Agent Systems", International
Journal of Computer Applications in Technology, 2008,vol. 31,
(1/72), pp. 17 - 34

[11] D. Weyns, S. Malek, and J. Andersson: "FORMS: Unifying
reference model for formal specification of distributed self-adaptive
systems", ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 2012,vol. 7, (1)

