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Abstract—With the advent of embedded and mobile computing 
techniques, software systems are increasingly operated in open 
and dynamic environments. Such systems desire self-adaptive 
capabilities. This paper proposes an agent-oriented approach 
to the modeling and simulation of distributed adaptive systems. 
The approach enables the designers to construct structural and 
behavioral models at a high abstraction level, and to validate 
the models at design stage through simulation. The modeling 
language supports devising decentralized adaption logic that 
enables various types of adaptions at both component and 
system levels. The simulation of adaptation processes can 
demonstrate how a system dynamically re-organizes in 
response to the changes in the operating context. Case studies 
show that our approach can support various self-adaptation 
mechanisms in which a multi-agent system adapts to internal 
failures, unexpected environment, or user's changing 
requirements. 
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I.  INTRODUCTION  
With the advent of embedded and mobile computing 
techniques, software systems are increasingly operated in 
open and dynamic environments. Self-adaptive capabilities 
enhance such systems' reliability and robustness in their 
ever changing environments. A system is adaptive if it is 
able to adjust its structure and behavior at run time so as to 
recover from internal failures, to work in unexpected 
environment, or to meet user's changing requirements.  

Agent-oriented paradigm, which regards a software 
system as a set of interacting autonomous computing 
elements (i.e. agents), is a promising approach to the 
construction of decentralized self-adaptive systems [1]. A 
multi-agent system with self-adaptive features is called an 
Adaptive Multi-Agent System (AMAS) [2]. The recent 
years have witnessed a rapid growth in the AI-related 
research on AMAS, which endeavors to improve agents' 
adaptability with more expressive logic and higher 
reasoning capabilities [3, 4]. However, how to engineer 
AMAS remains an open problem. In the framework of an 
agent-oriented software engineering (AOSE) paradigm, this 
paper advances a model-driven approach based on our 
previous work of modeling MAS.  

Simulation of models is particularly valuable for AMAS 
development, verification and validation, because self-
adaptation emerges at system level dynamically. Neither 

modeling nor simulation of AMAS is an easy task. The 
model has to describe how a system adapts at both the 
component level and the organization level, while the 
adaption logic scatters in various agents instead of centrally 
controlled. Simulation should enable the designer to tell 
whether a large number of agents can collaboratively 
achieve the adaption requirements. 

The existing work on modeling AMAS can be classified 
into two categories. In the first category, existing agent-
oriented software development methodologies for MAS are 
extended to meet the requirements of developing AMAS, 
such as Gaia [5], O-MaSE [6], ADELET [2] and SOTA [7]. 
These methodologies, however, provide neither language 
facilities for expressing designs of adaption at component 
level and system level, nor techniques for evaluating the 
designs. Researches in the second group propose conceptual 
models of AMAS based on the notion of organizations, e.g. 
LAO (Logic for Agent Organization) [4], reorganization 
protocol stack [3]. The existing formalisms of 
reorganization are mostly action-based, which works better 
on planning and reasoning than on software development. 

This paper presents an approach for modeling and 
simulating AMAS with CAMLE, a caste-centered agent-
oriented modeling language and environment proposed in 
our previous work [8, 9]. We report a series of case studies 
conducted to demonstrate how to model various self-
adaption mechanisms in the CAMLE modeling language, 
and how to use the simulator tool of the CAMLE modeling 
environment in the verification of self-adaptive behaviors 
against various requirements. 

II. THE CAMLE LANGUAGE AND ENVIRONMENT 
CAMLE is a multiple-view graphic modeling language 
based on a consistent conceptual model of multi-agent 
systems.  

A. The Conceptual Model 
With CAMLE, an AMAS is modeled as a collection of 
agents that coordinate with each other, monitor the changes 
in the environment, and adapt their behaviors and 
organizational structure in a distributed setting. The main 
concepts of the CAMLE language are summarized in Figure 
1.  

For example, a rescuer robot can be defined as a caste 
named Robot, as shown in Figure 2. Agents can be created 
as instances of the caste when the parameters are given 



specific values: integer values are assigned to id as the 
identifier, to iStartX and iStartY as the initial coordinates. A 
set of attributes represents the knowledge/state of the agent. 
For example, iPosX and iPosY represent a robot's current 
position. A set of actions enables the agent to perform 
certain tasks. For example, Walk() enables a robot to change 
its own location. 
 

	
  
Figure 1 The conceptual model of CAMLE 

 
Figure 2 Caste Robot 

The concepts of role and organization have long been 
used in agent-oriented methodologies. In CAMLE, a caste 
can represent a role, an organization, etc. For example, the 
roles that an agent A plays can be defined as the sub-castes 
of A's caste. A sub-caste inherits all the attributes and 
actions from its super-caste, but carries new behavior rules, 
additional state variables and actions that are specific to the 
role. In the example of rescuer robotics, a Hierarchy 
organization contains Leader and Member as two sub-castes 
of Robot.  

An adaptive agent needs to change its role(s) at run time. 
For example, in the Hierarchy organization, when a Leader 
breaks down, a Member may change its role to Leader in 
order to keep the team working. Such changes of roles are 
naturally supported by CAMLE’s caste facility that enables 
an agent to dynamically change its casteship (i.e. 
membership to castes) by taking a join, quit, suspend or 
resume action [10].  

A system can accomplish a task through different 
organizations, and may change its organization at run-time 
to adapt to the context, though non-functional properties 
(such as efficiency and cost) may vary. For example, for the 
Searcher Robotics, a transfer from Hierarchy to Peer may 
enlarge the coverable area at the cost of higher 
communication traffic load. 

B. The Graphic Notation 
CAMLE provides three models, namely structure model, 
collaboration model and behavior model, to facilitate users 
to capture a system from different perspectives.  

1) Structure Model 

A structure model, consisting of a number of caste 
diagrams, gives an overview of the modeled AMAS by 
depicting castes, organizations and casteship transitions. 

As shown in Figure 3, the Searcher Robotics team can 
take either Hierarchy or Peer organization. The caste 
Hierarchy consists of three castes: User, Leader and 
Member, where the latter two are sub-castes of Robot. Peer 
consists two castes: User and Rescuer, where the latter is 
also a sub-caste of Robot. The system can transfer its 
organization from Hierarchy to Peer, or vice versa if 
necessary. A Member agent may become Leader under 
certain circumstances. Each caste's structural elements, 
including parameters, attributes, actions and environment 
are also specified in the caste model. The function body of 
the actions can be written in C code for the CAMLE 
simulator to execute. 

 

	
  
	
  
	
  
	
  

	
  
	
  
	
  

Figure 3 Caste diagram: example and notation 

2) Collaboration model 

 
 
 

 
Figure 4 Collaboration diagram: example and notation  

A collaboration model, consisting of a number of 
collaboration diagrams, describes typical interaction 
scenarios. As shown in Figure 4, in the Hierarchy 
organization, once the user assigns a value to its attribute 
iTotalVictim, which represents the total number of victims 
to find, the Leader robot observes that and assigns its own 
attribute currentTask accordingly. Then, every Member 
acquires the task by observing the Leader's attribute 
currentTask. The Leader constantly observes each 
Member's attribute findVictimID, which represents the 
recently found victim, to form a global view on the task's 

Agent = <Caste Instance> 
Caste = <Parameters, Attributes, Actions, Environment, 
 Behavior_Rule*> 
Environment = <Agent*> 
Interaction(A, B) = <A.Observation, B.PublicEvents> 
Behavior_Rule = <Scenario, Agent State, Action*> 

CASTE Robot (int id, int iStartX, int iStartY)  
{ 
      VAR: public: int iPosX; int iPosY; int iDirection;  
 int iFindVictimID; int iCurrentTask; 
  int allFoundVictimList[];  
      ACT:  internal: void SetTask(int i); 
} 

Caste 

Inheritance 

Move 

 Re-organization 

Agent Visible event 



progress. Each Member updates its record of the task status 
by observing the Leader's attribute allFoundVictimList. 

3) Behavior model 
A behavior model defines the behavior rules of each 

caste in an AMAS. A behavior rule consists of three parts: a 
scenario description about the state of the environment, the 
owner agent's current state, and the action(s) to take once 
the specified scenario and state are all satisfied.   

For example, Figure 5 gives the graphic notation of 
CAMLE’s behavior model and shows two behavior rules of 
the caste Leader. Figure 5 (A) states that if the value of the 
User's attribute iTotalVictim is greater than the value of the 
agent’s own attribute currentTask, the Leader agent updates 
its task accordingly. Figure 5 (B) states that when the 
Leader observes that a Member has found a new victim (the 
value of the Member robot's attribute findVictimID is neither 
-1 nor within the Leader's record of the found victims), the 
Leader adds this victim's ID to its record of the found 
victims. 

 
 (A) Set Task (B) Finding a new victim 

 
 
 
 
 
 
 
 
 

Figure 5 Behavior diagram: example and notation 

C. Simulation Tool in CAMLE  
The CAMLE modeling environment presented in [8] 
contains a set of tools for model construction, model 
consistency checking and model to formal specification 
transformation. To provide better support to the development 
of AMAS, we have further developed a dynamic simulation 
tool that interprets the graphic model. In addition to the 
diagrams, the simulation tool also takes a specification of 
system’s initial configuration as input, which is written in C 
programming language. The specification defines global 
variables and organizations that are employed in the system, 
and describes the system's initialization. Each organization is 
specified by a function which defines how agents join castes 
by performing the primitive action MOVE(). The term 
A.MOVE(C) means that an agent A becomes a member of 
caste C and quits its previous caste if there is. 

III. CASE STUDY 
To demonstrate how the CAMLE method supports 
modeling and simulating of AMAS, we conduct a series of 
experiments following the types of reorganization activities 
as classified in [4]. The system under study is a Searcher 
Robot team which can adapt to various situations.  

A. Ideal Situation 
A team of N robots is deployed to find a number of victims 
distributed over an arena shown in Figure 6, where robots 
are represented by green round dots, and victims are red 
square spots.  

 

 
Figure 6 The arena for searching 

The arena can be a dangerous place such as firing 
building or battle field. Ideally, the arena to explore is small 
enough for a robot to communicate with the other robots; 
the wireless communication condition is good enough to 
withstand any traffic load; the arena is so favorable that all 
robot works well all the time; the task is fixed once assigned 
to the robot team. In this situation, both Hierarchy and Peer 
organizations perform well. The results of the simulation 
with different configurations are summarized in Table I, 
where P(N) represents a Peer organization with N robots, 
and H(X, Y) represents a Hierarchy organization with X 
Leaders and Y Members. The timeout limit of an execution 
is set to be 500 seconds in the sequel.  

TABLE I PERFORMANCE IN THE IDEAL SITUATION 

  P(2) P(21) H(1, 1) H(1, 20) 
1st Min 14605 3424 12897 2320 

Max 99795 13504 141686 10509 
Avg 52286 7062 65330 6648 

5th Min 97561 19749 223751 17241 
Max Timeout (1) 58724 Timeout (5) 99988 
Avg 310192 33408 373192  39785 

Table I gives the time (millisecond) spent to find the first 
and the last victim in 10 executions of each model, where 
the row Avg shows the average time which counts only the 
non-timeout values. Table I shows that the searching 
process is quicker with more robots. Given the same number 
of total robots, the Hierarchy organization is slower than 
Peer, because Hierarchy needs one Leader robot, which 
does not participate in searching victims.  
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B. Staffing 
Staffing is a simple type of re-organization in which the 
number of agents changes [4]. Two activities can be taken: 
staff+: adding new agents to the system, and staff-: deleting 
agents from the system. Suppose that the initial organization 
is H(1, 20), i.e. with 1 Leader and 20 Members. The 
following cases are considered, respectively.  
(1) Stable: The organization keeps unchanged.  
(2) Staff+: An User agent, with the behavior rule shown in 

Figure 7 (A), brings 10 more robots as Members when 
the first victim is found. This is modeled by one 
behavior rule. The action CreateRobot() in the 
behavior rule firstly instantiates new agents from the 
caste Robot, then attach them to the caste Member by 
taking the action MOVE(Member). 

(3) Staff-: An User agent, with a behavior rule shown in 
Figure 7 (B), takes 10 member robots out of the team 
when the first victim is found. The action 
RemoveRobot() in the behavior rule deletes an agent A 
from the system by taking the action DEL(A). 

 	
  
(A) Adding Member robots (B) Removing Member robots 

Figure 7 User's behavior rules for  

The results of the models' simulation, as summarized in 
Table II, show that the task's average finish time drops when 
robots are added during the execution, and the time rises if 
robots are removed at run time. 

TABLE II SEARCHER ROBOTICS: STAFFING  

  H(1, 20) H(1, 20) 
=>H(1, 30) 

H(1, 20) 
=>H(1, 10) 

1st Min 2164 4010 3632 
Max 11030 13741 8795 
Avg 5551 6804 5232 

5th Min 19369 14313 14275 
Max 91924 42234 98535 
Avg 36604 23603 48841 

C. Re-staffing  
Re-staffing means relocating agents to other existing roles 
within the organization [4]. Three activities may happen: 
enact: assigning a new role to an agent; deact: removing a 
role from an agent; move: combining the above two.  

In CAMLE, an agent deacts a role by taking an action 
QUIT(). In particular, if an agent has only one caste, 
deacting results in an inactive agent. An agent joins a caste 
by taking an action JOIN(). However, consistency between 

different the new role and the old role(s) must be ensured 
during the design. For instance, if a designer specifies that a 
leader robot joins the caste Member without quitting Leader, 
the behavior rule "moving around" of the caste Member 
contradicts with the behavior rule "staying at the initial 
position" of the caste Leader. Such contradictions may be 
not easily detected at the design stage, and will cause 
problems during the system's execution. The simulator helps 
to solve this problem.  

Suppose the Searcher Robotics team initially has the 
structure H(1, 20). When the environment is adverse, the 
robots has a high probability of breaking down. For example, 
in a fire field the robots are exposed to a high temperature, 
or in a battlefield the robots may be captured and destroyed 
by the enemies. Assume that the robots break down with a 
possibility of 0.1% per 0.1 second. We construct models for 
the following two cases: 
(1) No role change: No robot can change its role. Once the 

Leader breaks down, the team stops working.  
(2) Member becoming Leader: On detecting the Leader’s 

failure, a live Member robot becomes a Leader, and 
stays at its current position. This is realized through a 
behavior rule of the Member caste, as shown in Figure 
8. This case illustrates that an agent can change its role 
when some failure occurs in the system. 

	
  
Figure 8 Member's behavior rule for becoming Leader 

As summarized in Table III, without automatic role 
changing, no victim is found in two executions, because the 
Leader breaks down before the team finds any victim. In 
comparison, when the members are able to taking new roles, 
the task can be finished in all the ten executions. 

TABLE III H(1,20) ROBOTS MAY BREAK DOWN 

  No role change Member->Leader 
1st Min 5171 3590 

Max Timeout (2) 13261 
Avg 6937 7826 

5th Min 14672 14941 
Max Timeout (4) 89849 
Avg 56863 44065 

D. Structuring  
Structuring means the system’s structure is reshaped [4]. It 
involves four types of activities: position+/position-:  to add/ 
remove a position (i.e. role); struct+/struct-: to add/remove 
dependencies between existing positions.  



Since struct+/struct- changes the interaction relationship 
between a specific pair of roles, while the other agents are 
not affected, the two activities can be modeled as agents' 
caste shifting.  

So far, the above cases can be regarded as component-
level adaption: staffing changes the number of agents of a 
certain caste, re-staffing changes an agent's casteship, and 
struct+/struct- changes the dependencies between some 
castes. Such re-organization activities neither alter the 
interaction protocol of the organization, nor change the 
behavior of other agents. In contrast, position+/position- 
affects the rest of the organization. When a new caste is 
added, or an existing caste is removed, the other agents' 
behaviors are possibly affected. Therefore, they have to alter 
their casteships accordingly. 

In the Searcher Robotics example, suppose the arena is a 
square whose side length is 2*S (S denotes a robot's 
communicational distance). Initially, the user, knowing 
neither the arena's area nor the wireless communication 
condition, assigns the hierarchy organization H(1, 20) to the 
team. We consider the following three situations: 
(1) No re-organization: The team cannot change its 

organization. Once a Member cannot see the Leader, it 
returns along its passed route until it can see the 
Leader again.  

(2) Hierarchy to Peer: Once the Leader finds that a 
Member robot goes too far to communicate with, it 
alters the system's organization to Peer. This is realized 
through the Leader taking an action Peer(), as shown 
in the behavior rule in Figure 9 (A). This case 
illustrates that an agent can initiate the system's 
organization change to adapt to the unexpected 
environment. 

(3) Hierarchy to Hybrid: Once a Member goes far enough 
(with one more step it cannot see any Leader), it 
becomes a Leader. Consequently, the organization 
becomes H(X, N-X), and X may increase during the 
execution. This is realized through a behavior rule in 
the Member caste, as shown in Figure 9 (B). This case 
illustrates that an agent can autonomously change its 
casteship due to some change in its own state (a 
variable indicates whether it can communicate with a 
Leader), which effectively leads to re-organization of 
the system. 
 

	
  
(A) Leader's   (B)Member's 

Figure 9 behavior rule for re-organization 

The simulation results of the above models are 
summarized in Table IV. Among the three different 
organizations, the Peer structure can cover the biggest area. 
When some Member robots become Leader, the searching 
area is enlarged, but still some victims are not found within 
the time limit. Since Leaders do not move, increasing 
Leader robots reduces the number of Member robots. 
Consequently, the team needs to spend more time to find all 
the victims.  

This case also shows that adaption can be achieved 
through different re-organization mechanisms. 

TABLE IV THREE MODELS FOR BIG ARENA 

  No change H(1, 20) -> 
P(21) 

H(1, 20) -> 
H(X, 21-X) 

1st Min 3528 2460 3644 
Max 28989 20034 32218 
Avg 15018 6966 12848 

5th Min Timeout  9690 24123 
Max Timeout  45074 Timeout (6) 
Avg Timeout 26232 34001 

E. Strategy and Duty 
A change in an organization’s strategy and duty means the 
objectives of the organization is altered [4]. Here, we 
classify such changes into two types: (a) modifying some 
parameters of the objectives or tasks, (b) adding/removing 
certain objectives or tasks.  

For the Searcher Robotics system, the first type of 
changes in systems’ objectives may happen when the user 
changes the task's parameter at run time. For example, 
initially the user assigns a task of finding 3 victims to the 
robot team. Later on, when new information emerges, the 
number of known victims increases to 5. Then, the user re-
assign task to the team to finding 5 victims. The behavior 
rule of the Leader robot given in Figure 5 (A) states that the 
robot constantly reads the user's command at run time. 
Similarly, all Member robots read the leader's task 
instruction regularly. Therefore, the team can have their task 
updated according to the user. 

Adding/removing a task requires the system to re-
organize. Assume that a Searcher robot alone is unable to 
carry one victim, but two robots can collaboratively do it. 
Initially the Searcher Robot team is assigned to the task of 
locating the victims, and another team of robots that 
specialize in rescuing is expected to come when all the 
victims are found. However, after the searching task is 
finished, the user finds that the rescuer robots are 
unavailable for some reason, and assigns the rescuing task 
to the Searcher Robots. To simplify the implementation, for 
this case we assume that no barrier exists in the arena.  

A Searcher Robotics team H(1, 20) is deployed. To meet 
the user's new requirement, the Leader has to initiate a re-
organization that turns the Hierarchy structure to 
CarrierTeam, as shown in Figure 10 (A).  



  
(A) Leader's behavior rule  (B) Simulation result 

Figure 10 Re-organizing to a CarrierTeam 

The CarrierTeam organization comprises two roles: 
CarrierLeader and Carrier. After re-organizing, the Leader 
robot becomes the CarrierLeader, and all Members become 
Carriers. The CarrierLeader assigns a pair of Carrier robots 
to rescuer each victim to a certain destination. The details of 
the behavior rules are omitted for the sake of space. A 
simulation of the model is shown in Figure 10 (B), where 
the bond lines denote the traces of robots after the system is 
assigned with the new objective of sending the victims back. 

This case illustrates that given a new task, the system has 
to re-organize such that the agents move to new castes that 
have capabilities to fulfill the task.  

Two more types of re-organization are identified in [4]: 
(a) changing the duty assignment in the organization, and (b) 
changing the knowledge of the organization. The only 
difference between a change of duty and a change of 
objective is that the subject of duty is the role of a system, 
while the subject of an objective is a system. In CAMLE, 
both the roles in a system and the system itself are modeled 
by castes. Therefore, there is no need to distinguish 
objectives from duties. For example, when the Searcher 
Robotics team is assigned a new objective, the robots re-
organize so as to fulfill the new requirement, at the same 
time each robot takes a new duty.    

In CAMLE, knowledge is represented as the attributes of 
castes and the reasoning about knowledge is modeled by 
internal actions. Different knowledge structure and different 
formal systems of knowledge reasoning can be encapsulated 
into castes, and the changes in such knowledge structure and 
reasoning capability can then be modeled through dynamic 
casteship changes. 

IV. CONCLUSION 
This paper reports a model-driven approach to the design 
and verification of AMAS using CAMLE. The simulation 
technique and tool that supports the verifification of 
decentralized adaptive AMAS is demonstrated with a 
systematic case study. 

In [11], Weyns et al. identified five key requirements on 
the specification of self-adaptation capabilities: (1) to 
specify how the system monitors the environment (i.e., 
context-awareness); (2) to specify how the system monitors 

itself (i.e., self-awareness); (3) to specify how the system 
adapts itself; (4) to specify how the system coordinates 
monitoring and adaptation in a distributed setting; (5) to 
support extending and refining primitives for additional 
concerns and domain-specific concepts. Our case study 
shows that the CAMLE language and its automated tools 
meet these requirements and provide a strong support to 
modeling self-adaption. Agents collaborate through mutual 
observation. By observing the environment and its own state, 
an agent is both context-aware and self-aware. An agent 
conducts its actions, including adaption activities, as a 
reaction to the environment following the prescribed 
behavior rules. The systematic case study demonstrates that 
CAMLE is capable of modeling a wide range of adaption 
mechanisms and simulating highly complicated emergent 
behaviors. No similar work of such case studies has been 
reported in the literature as far as we know.  

One of the future work is to design and implement 
statistical model checking functionality in the CAMLE 
environment. 
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