
H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 1 ~

Towards An Agent-Oriented Paradigm of Information Systems

Hong Zhu

Department of Computing, Oxford Brookes University,

Wheatley Campus, Oxford, OX33 1HX, UK

Tel: 0044 1865 484580, Fax: 0044 1865 484545

Email: hzhu@brookes.ac.uk

Abstract

This chapter presents a meta-model of information systems as a foundation for the

methodology of caste-centric agent-oriented software development, which is

suitable for applications on the Internet/Web platform and the utilisation of mobile

computing devices. In the model, the basic elements are agents classified into a

number of castes. Agents are defined as active computational entities that

encapsulate (a) a set of state variables, (b) a set of actions that the agents are

capable of performing, (c) a set of behaviour rules that determine when the agents

will change their states and when to take actions, and (d) a definition of their

environments in which they operate. Caste is the classifier of agents and the

modular unit of the systems. It serves as the template that defines the structure and

behaviour properties of agents as class does for objects. Agents can be declared

statically or created dynamically at runtime as instances of castes. This chapter

also illustrates the advantages of agent-oriented information systems by an example.

Introduction

The recent years has seen a rapid change in the hardware infrastructure and software

platforms on which information systems operate. Notably, the Internet/Web as well as mobile

devices such as notebook computers, PDA and 3G mobile phones and wireless networks, etc.

are becoming ubiquitous. Proposals for effective utilisation of such flexible devices and the

Internet infrastructure have been advanced, such as web services, semantic web and grid

computing, and so on. These techniques provide a bright vision for the future computer

applications, especially for management information systems. However, a big problem

remains open, i.e. how software should be developed.

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 2 ~

In the past two decades, object-orientation (OO) has been a successful mainstream paradigm

for the analysis, design and implementation of software, especially information systems.

However, software engineers are currently confronted with a number of challenges in the

development of web-based information systems, especially in the construction of service-

oriented systems, due to the new features of the Internet and WWW. One of the main

challenges comes from the autonomous feature of the hardware and software resources on the

Internet/Web. It is unnatural to model autonomous resources within the OO meta-model,

which considers everything as objects.

In the past two decades, agent technology has been developed mostly as an artificial

intelligence endeavour; Cf. (Huhns & Singh, 1997). It is partly inspired in the observations

and modelling of autonomous and emergent behaviours in the societies of human beings or

insects and animals. It has long been regarded as a viable solution to the development of

complicated applications in dynamic environments such as the Internet (Jennings &

Wooldridge, 1998). However, existing agent-based systems have been developed in ad hoc

methods without proper methodology, language and tool supports. It is widely recognised

that the lack of rigour has hampered the wide adoption of agent technology in IT industry.

In this chapter, we adapt and extend the principles of OO and propose a new meta-model of

information systems based on the concept of agents. We will first present a meta-model of

such agent-oriented information systems (AOIS), and then demonstrate the features of AOIS

with an example and compares agent-orientation (AO) with traditional approaches. The

readers are referred to (Shan, et al. 2006) for the aspects on the methodology, languages and

tools that support the development of such AOIS.

The remainder of the chapter is organised as follows. We will first give an informal

introduction to AOIS. It is followed by a formal definition of the meta-model. We will then

illustrate the features of AOIS with an example and compares it with traditional approaches

to the development of information systems. Finally, we conclude the chapter with a

discussion of the related works and further work.

Basic concepts

In our conceptual model, the basic unit that forms an information system is agent. Because

there is no widely accepted definition of the concept of agent and multi-agent systems (MAS),

it is worthy spending a few words to clarify what we mean by agent and MAS and how such

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 3 ~

systems work. Our conceptual model can be characterized by a set of pseudo-equations. Each

pseudo-equation defines a key feature of MAS.

The structures and operations of agents and multi-agent systems

Pseudo-equation (2.1) states that agents are defined as real-time active computational entities

that encapsulate data, operations and behaviours, and situate in their designated environments.

 , ,
Environment

Agent Data Operations Behaviour= (2.1)

Here, data represent an agent’s state. Operations are the actions that the agent can take.

Behaviour is described by a set of rules that determine how the agent behaves in the context

of its designated environment. By encapsulation, we mean that an agent’s state can only be

changed by the agent itself. Figure 1 illustrates the control structure of agent’s behaviour.

Figure 1. The control structure of agent’s behaviour

There is a fundamental difference between objects and agents. In the structure of objects,

there is no explicitly programmed behaviour rule. Instead, there is a fix behaviour rule for all

objects, i.e. to execute a method if and only if it receives a message that invokes the method.

In contrast, agents’ behaviours are not simply driven by messages, although they can be so.

For example, an agent can have a behaviour rule that enables it to take an action when it has

not received any message for a certain period of time. Moreover, when an agent receives a

message that requests the agent to take a specific action, the agent can decide whether to do

so, for instance, according to its internal state or the origin of the request. In other words, the

agent can decide ‘when to go’ and ‘whether to say no’ according to an explicitly specified set

of behaviour rules. In this sense, an agent can be not only reactive as driven by the external

events, but also be proactive, i.e. being able to initiate interactions with the outside.

Despite of this fundamental difference, objects can be considered as agents in a degenerate

form as argued in (Zhu, 2001a). In particular, object is a special case of agent in the sense

that it has a fixed rule of behaviour, i.e. “execute the corresponding method when receives a

Begin
 Initialise state;
 Loop
 Perceive the visible actions and states of the agents in its

environment;
 Take actions and change state according to the situation in

the environment and its internal state;
 end of loop;

end

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 4 ~

message”. Consequently, in our conceptual model, a MAS consists of agents and nothing but

agents as stated in pseudo-equation (2.2).

 { } ,nMAS Agent n Integer= ∈ (2.2)

Organisations of multi-agent systems

In our conceptual model, the classifier of agents is called caste. Caste is the basic building

blocks in the design and implementation of MAS. As a modular language facility, a caste

serves as a template that describes the structure and behaviour properties of agents. Pseudo-

equation (2.3) states that a caste at time t defines a set of agents that have the same structural

and behavioural characteristics.

 { }| & tCaste Agent Structure Behaviour properties= (2.3)

While a collection of castes represent various types of participants in the problem domain, the

structure of the problem domain is captured with certain relationships between castes.

Caste membership and migration relations

Agents are classified into various castes in the way similar to that data are classified into

types and objects are classified into classes. In other words, agents are instances of castes just

like objects are instances of classes. In the development of AOIS, caste is the modular

programming unit that serves as the template of agents so that agents can be created as

instance of a caste at runtime or declared statically. When an agent is created as an instance

of a caste, it will have all the structural and behavioural features defined by the caste.

However, different from the notion of class in OO, caste allows dynamic classification. That

is, an agent can change its caste membership (called casteship in the sequel) at run-time. The

weakness of static object-class relationship in current mainstream OO programming has been

widely recognized. Proposals have been advanced, for example, to allow objects’ dynamic

reclassification (Drossopoulou et al., 2002). In our model, dynamic classification is an

integral part of agents’ behaviour capability, which can be naturally represented through

agents’ behaviour rules to change its casteship. An agent can take an action to join a caste or

retreat from a caste at run-time. When an agent retreats from a caste, it will lose the structural

and behavioural features of the caste. When it joins a caste, it will obtain the structural and

behavioural features. Dynamic casteship allows users to model the real world with MAS

naturally and to maximize the flexibility and power of agent technology. For example, Zhu

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 5 ~

and Lightfoot (2003) demonstrated that agents’ ability to dynamically change their roles can

be naturally represented by dynamic casteship.

A migration relation that represents agents’ dynamic casteship can, therefore, be defined on

castes. There are two types of migration relations, migrate and participate. A participate

relation from caste A to caste B means that agents of caste A can join caste B without quitting

from caste A. A migrate relation from caste A to caste B means that agents of caste A can join

caste B and then quit from caste A. For example, in a university information system, we

would have castes MSc_Student, PhD_Student and Staff, etc. to represent the components

that collect the information about and deliver the services to various types of users. A

participate relation from PhD_Student to Staff can be defined to represent the possibility that

a PhD student may be employed as a staff, such as a teaching assistant, while registered as a

student. When an agent of PhD_Student joins the Staff caste, it will obtain all the structural

and behavioural features of the caste Staff without losing its original structural and

behavioural features defined in the caste PhD_Student. For example, suppose that the Staff

caste defines a state variable Salary while PhD_Student does not. When an agent of

PhD_Student joins Staff, it will have an additional state variable Salary as defined in the Staff

caste. A migrate relation can be defined from caste MSc_Student to PhD_Student since a

MSc student may become a PhD student after graduation, but it cannot be a MSc student and

a PhD student at the same time. The agent will lose all the structural and behavioural features

defined in the caste MSc_Student, but obtain all the structural and behavioural features that

are defined by the PhD_Student caste. Suppose that the PhD_Student caste has a state

variable Office_Address, while the MSc_Student caste has a state variable Laboratory. When

an agent of MSc_Student moves to PhD_Student, it will lose the variable Laboratory and

obtain a new variable Office_Address.

Inheritance relation

Inheritance relations can be specified between castes. A caste A inherits caste B means that

any agents of caste A have all structural, behavioural and environmental features of caste B.

Our model also allows multiple classifications, i.e. an agent can belong to more than one

caste at the same time. Consequently, a caste can inherit more than one caste.

Whole-part relations

In our model, an agent may contain a number of components that are also agents. The former

is called compound agent of the latter. In such a case, there exists a whole-part relationship

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 6 ~

between the compound and the component agents. We identify three types of whole-part

relationships between agents according to the ways a component agent is bound to the

compound agent.

The strongest binding between a compound agent and its components is composite. A

composition relation from caste A to caste B means that an agent b in caste B contains an

agent a in caste A. The compound agent b is responsible for creation and destruction of its

component a. If the compound agent b no longer exists or quits from caste B, the component

agent a will be destroyed and hence not exist.

The weakest binding is aggregate. An aggregate relation from caste A to caste B means that,

although an agent b in caste B contains a component agent a of caste A, the component agent

a is independent of the compound agent b in the sense that b does not affect a’s existence or

casteship. If agent b is destroyed or quits from caste B, agent a can still survive and be a

member of caste A.

The third whole-part relation is called congregate. It means that if the compound agent is

destroyed, the component agent will still exist, but it will lose the casteship of the component

caste. For example, a university consists of a number of individuals as its members. If the

university is destroyed, the individuals should still exist. However, they will lose the

membership of the university. Therefore, in the university information system, the whole-part

relationship between the caste University and the caste University Member is a congregation

relation. This relationship is different from the relationship between a university and its

departments. Departments are components of a university. If a university is destroyed, its

departments will no long exist. The whole-part relationship between the castes University and

Department is therefore a composition relation. The composition and aggregation relation in

our conceptual model is similar to the composition and aggregation in UML, respectively.

However, congregation is a novel concept, which has not been recognized in the research on

OO modelling of whole-part relations; cf. (Barbier, 2003).

Communications and environment

In our conceptual model, an agent’s state variables and actions are divided into two kinds:

visible ones and invisible (or internal) ones. When an agent takes a visible action, it generates

an event that can be observed by other agents in the system. An agent taking an internal

action generates an event that can only be perceived by its components, which are also agents.

Similarly, the value of a visible state variable can be observed by other agents, while the

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 7 ~

value of an internal state can only be observed by its components. Notice that, our use of the

term ‘visibility’ is different from the traditional concept of scope used in OO languages.

The concept of visibility of an agent’s actions and state variables forms the basic

communication mechanism in our conceptual model. Agents communicate with each other by

taking visible actions and changing visible state variables, and by observing other agents’

visible actions and visible states, as shown in pseudo-equation (2.4).

 . & .A B A Action B Observation→ = (2.4)

An agent’s visible actions are not necessarily observed by all agents in the system. They are

only observed by those agents who are interested in the agent’s behaviour and regard the

agent as a part of their environments. The environment of an agent in a MAS at time moment

t is a subset of the agents in the system. As illustrated in pseudo-equation (2.5), from a given

agent’s point of view, only those in its environment are visible. In particular, from agent A’s

point of view, agent B is visible means that agent A can perceive the visible actions taken by

agent B and obtain the value of agent B’s visible state variables at run-time.

 (,) { }tEnvironment Agent MAS MAS Agent⊆ − (2.5)

In our model, the environment of an agent is required to be explicitly defined so that the

agents in a MAS are designed and implemented with a designated environment. In other

words, the environment of an agent is specified but allowed to vary within a certain range

when an agent is designed. We can describe the environment of a caste, for example, as the

set of agents in a number of particular castes. An environment such described is neither

closed, nor fixed, nor totally open. Once an agent joins a caste, its environment is combined

with the specified environment of the caste. Hence, the agents in the caste’s environment

become visible. The environment also changes when other agents join the caste in the agent’s

environment.

Formal definition of the meta-model

We now formally define the conceptual model using mathematical notions and notations.

Readers can skip over this section if not interested in the formal treatment of the subject.

Multi-agent systems

Agents behave in real-time concurrently and autonomously. A time moment is an element in

a time index set T, which is defined as a subset of real numbers 0[,)t ∞ , i.e. { }0| &T t t R t t= ∈ > ,

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 8 ~

where t0 can be any real number. The structure of agents consists of four elements, i.e. each

agent A is 4-tuple , , , ,, , ,A t A t A t A tS R E∑ , where

(a) ,A tS is the state space. We also write ,
V
A tS and ,

I
A tS to denote the visible and internal parts of

the state space ,A tS , respectively. Thus, , , ,
V I

A t A t A tS S S= × .

(b) ,A tΣ is the set of actions that the agent is capable of performing. We write ,
V
A tΣ and ,

I
A tΣ to

denote the sets of visible and internal actions, respectively. Thus, , , ,
V I

A t A t A tΣ = Σ ∪ Σ , where

, ,
V I
A t A tΣ ∩ Σ = ∅ .

(c) RA,t is the set of behaviour rules that determine how the agent changes its state and which

action to take at what circumstances.

(d) EA,t is the designated environment of the agent.

In general, the set of agents in a MAS may change during execution as agents may be quit

from the system or join the system at runtime. Let { }1 2, , , n t
A A A" be the set of agents in the

system at time moment t. These agents are members of castes 1 2, , , mC C C" . The casteship of

agent A at time moment t to caste C is denoted by tA C∈ . We write ()tCaste A to denote the set

of castes that agent A belongs to at time moment t, i.e. { }() |t tCaste A C A C= ∈ . An agent can

join a caste C by taking the action of JOIN(C) and quit from a caste C by taking the action

QUIT(C).

An inheritance relation between castes is defined as partial ordering relation denoted by ≺ .

We have that at all times t, ' 't tA C C C A C∈ ∧ ⇒ ∈≺ . We assume that the set of castes and the

inheritance relations between them do not change at runtime. Each caste describes its agents’

structure, behaviour and environment in the form shown in Figure 2.

Caste C <= C1, …, Ck; (* inheritance relationship*)

 ENVIRONMENT E1, …, Ew; (*description of the environment*)

 VAR *v1:T1, …, *vm:Tm; (* visible state variables *)

 u1:S1, …, ul:Sl; (* invisible state variables *)

 ACTION *A1(p1,1, …, p1,n1), …, *As(ps,1,…, ps,ns); (* visible actions *)

 B1(q1,1,…, q1,m1), …, Bt(qt,1,…, qt,mt); (* invisible actions*)

 RULES R1, R2, …, Rh (* Behaviour rules *)

End C.

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 9 ~

Figure 2. Structure of caste description

In Figure 2, the clause 1 2' , , , ' kC C C C⇐ " specifies that caste C inherits castes 1 2, , , kC C C" .

Therefore, , 1, ,iC C i k=≺ " . The VAR clause declares a set of state variables of the caste in

addition to what it inherits, where the visible variables SV(C) and invisible variables SI(C) of

the caste C are:

 { }1 1
1

() : , , : ()
k

V V
m m i

i

S C v T v T S C
=

= ∪" ∪ (3.1)

 { }1 1
1

() : , , : ()
k

I I
j j i

i

S C u S u S S C
=

= ∪" ∪ . (3.2)

The ACTION clause defines a set of actions of the caste. The visible actions ΣV(C) and

invisible actions ΣI(C) of caste C are:

 { }11 1,1 1, ,1 ,
1

() (, ,), , (, ,) ()
s

k
V V

n s s s n i
i

C A p p A p p C∑ ∑
=

= ∪" " " ∪ (3.3)

 { }11 1,1 1, ,1 ,
1

() (, ,), , (, ,) ()
t

k
I I

m t t t m i
i

C B q q B q q C∑ ∑
=

= ∪" " " ∪ . (3.4)

It is assumed that variables and action identifiers are unique in each caste declaration.

Duplicated declarations of identifiers in a caste are not allowed.

The environment of the agents of a caste is explicitly specified in the ENVIROMENT clause

in the following forms:

(a) ‘agent name’ indicates a specific agent in the system;

(b) ‘All: caste-name’ means all the agents of the caste;

(c) ‘agent-variable: caste-name’ is a variable that ranges over the caste. It can be assigned

to any agent in the caste.

Let ENVt(C) denote the environment for caste C at time moment t, we have that

 a b
1 1

() ()
w k

t i t it
i i

ENV C E ENV C
= =

= ∪∪ ∪ , (3.5)

where , 1, ,iE i w= " are the environment description clauses in caste C’s definition, a bt
E denote

the semantics of an environment description clause E at time moment t. a bt
E is defined as

follows.

 a b { }, if is in the system at time ;
, if is not in the system at time .t

agent agent t
agent

agent t


=  ∅
 (3.6)

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 10 ~

 a b: { | }ttAll Caste X X Caste= ∈ ; (3.7)

 a b { }, if and is in the system at time ;
:

, otherwise.t

A x A A t
x C

=
=  ∅

 (3.8)

The set of rules RULE(C) that agents of caste C must obey is

 { }1 2
1

() , , , ()
k

h i
i

RULE C R R R RULE C
=

= ∪" ∪ . (3.9)

Let A be any given agent and { }1 2() , , ,t nCaste A C C C= " , the following equations define the

structural and behavioural properties of the agent at each time moment t.

 ,
1

()
n

V V
A t i

i

S S C
=

=∪ , and ,
1

()
n

I I
A t i

i

S S C
=

=∪ . (3.10)

 ,
1

()
n

V V
A t i

i

C
=

∑ = ∑∪ , and ,
1

()
n

I I
A t i

i

C
=

∑ = ∑∪ . (3.11)

 ,
1

()
n

A t t i
i

E ENV C
=

=∪ . (3.12)

 ,
1

()
n

A t i
i

R RULE C
=

=∪ . (3.13)

Dynamic semantics

A run r of a MAS is a mapping from time T to the set , ,
1

i i

n

A t A t
i

S
=

× Σ∏ . The behaviour of a MAS is

defined by the set R of possible runs. For any given run r of the system, a mapping h from T

to , ,A t A tS × Σ is a run of agent A in the context of r, if . () ()At T h t r t∀ ∈ = , where ()Ar t is the

restriction of r(t) on , ,A t A tS × Σ . In the sequel, we use { }|A AR r r R= ∈ to denote the behaviour of

agent A in the system. We assume that a MAS has the following properties.

• Actions are instantaneous, i.e. for all 1 2 1 2 1, , if , ()At t T t t r t∈ ≠ is regarded as different from rA(t2).

• An agent may take no action at a time moment t, i.e. the agent is silent at time t. We use

τ to denote silence.

• The actions taken by an agent are separable, i.e. for all runs r, all agents A, there exists a

real number ε>0 such that for all t, () (.(())),C C
A Ar t x T t x t r xτ ε τ≠ ⇒ ∀ ∈ < ≤ + ⇒ = where ()C

Ar t

denotes the action taken by agent A at time moment t in the run r.

With above assumptions, we can prove that an agent can take at most a finite number of non-

silent actions in any finite period of time and a countable number of non-silent actions in its

lifetime.

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 11 ~

Notice that, the global state Sg of the system at time t is the value of , ,
1

i i

n

A t A t
i

S
=

× Σ∏ . However,

each agent A can only view the visible states and actions of the agents in its environment, i.e.

the part of Sg in the space
,

, ,
A t

V V
X t X t

X E

S
∈

× ∑∏ .

A behaviour rule R for agent A defines a predicate PR on the set of all possible execution

histories of the agent in the context of the system’s runs. Here, the context is the agent’s view

of the history of the environment. Therefore, such a possible history is a mapping from the

time t∈T to the set ()
,

, , , ,
A t

V V
A t A t X t X t

X E

S S
∈

× ∑ × × ∑∏ . For a possible history ,A tψ of agent A up to time

moment t, ,()R A tP trueψ = means that agent A’s behaviour at time moment t satisfies the

behaviour rule R. An execution rA of agent A in the context of a run r is valid, if for all time

moment t and all behaviour rules R∈RA,t, agent A’s behaviour at time t satisfies rule R. A run

r of a MAS M is valid, if all agents A’s behaviours are valid in r.

The meta-model does not define how a behaviour rule should be defined. In fact, languages at

different levels of abstraction can have their own ways of defining behaviour rules. For

example, in the formal specification language SLABS, a behaviour rule are defined in the

following form.

<Pattern> | [<Probability>] −−> <Action>, [if <Scenario>]; [where <Pre-condition>]

where <Pattern> defines a pattern of the agent’s behaviour so far, <Scenario> specifies the

scenario in the environment, <Pre-condition> specifies the pre-condition that the rule applies,

<Action> specifies the action to be take by the agent, and <Probability> defines the

probability that the agent will take the action as specified. The formal semantics of such

behaviour rules and a formal system for reasoning about the behaviour of MAS can be found

in (Zhu, 2005). In modelling language CAMLE, behaviour rules are defined in the form of

behaviour diagrams (Shan & Zhu, 2004, 2005). In programming language SLABSp, the

behaviour rules take the form of a conditional statement that uses a scenario as the guard

condition (Wang, Shen & Zhu, 2005).

Illustrative example

Generally speaking, information systems are systems that collect, store, process and use

information to fulfil certain tasks and provide certain services. Different paradigms of

software and information system development methods differ in the way how the information

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 12 ~

processing functions and storage facilities are structured, organised and used, and how such

systems are constructed and evolved accordingly.

From the structure point of view, traditional structured methods separate the storage of

information from their processing methods. Functions are hierarchically decomposed into

sub-functions and then sub-sub-functions, and so on. In object-oriented methods, a set of

related data and their processing methods are encapsulated into one computational entity

called object. The relationships between objects resemble their counterparts in the real world.

The classification of objects into classes represents the structural similarity between objects.

Inheritance relation represents specialisation and dissimilarities. Method invocation

association represents functional dependences. Whole-part relations represent hierarchical

structural decomposition. These relations help the maintenance and evolution of information

systems as their real world environment evolves as discussed in the introduction of the

chapter. However, objects in the mainstream OO paradigm are passive entities. Models of

information systems that consist of a large number of active and autonomous information

processing components cannot be represented naturally and close to the real world

counterparts in the structure. In the meta-model of caste-centric AO method proposed in this

chapter, a set of data, their processing methods and the rules on how the processing methods

are to be used are encapsulated into one computational entity called agent to represent an

active information processing element. The relationships between such elements and their

environments are represented in the classification of agents for the similarity in their

structural and behaviour features, in inheritance relations for the dissimilarity and

specialisation, in whole-part relations for structural decomposition, in visibility in the

environment for communications and collaborations with each other, and so on. This model

inherits many feature of OO, but further captures the features of active information

processing elements in modern information systems enabled by the availability of mobile

computing devices and the Internet/Web-based software platform.

In this section, we will present an illustrative example to highlight the differences between

traditional approaches (such as structured and OO approaches) and the AO approach.

Suppose that a summer school is organised to teach a number of classes. Some classes are

scheduled to be held at the same time, but at different classrooms. Students can choose the

classes to attend. Students may be unfamiliar with the site where classes are. An information

system is required to help students go to the right classrooms.

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 13 ~

Solution of structured methods

In a structured methodology such as stepwise refinement, one would decompose the

functionality of the system and find the steps to calculate the results from the input. For

example, suppose the system is to be used by an instructor for helping student in his/her class

to find the next classroom. One might come up with a solution similar to the following.

Figure 3. Pseudo-code in Structured Programming

Using a structured analysis and design method, one might obtain the following data flow

diagram shown in Figure 4.

Figure 4. Data flow diagram

Object-oriented solution

As Shalloway and Trott (2002) pointed out, although the above may be a good solution for

computer systems, it is unnatural for a person to do. In other words, the model given in

Figure 4 does not represent the real world. A better solution would be that the instructor post

directions to go from this classroom to the other classrooms and then inform everybody that

Get
student

list

Find next
class

Find
class

location

Find
route to

class

Give
direction Class lists

Student
schedules

Site maps

Class
locations

Instructor

Student

List of
students

Class

Student

Next
class

Next
Class

Location

Map

Route

Location_to

Location_from

Route,
Next class

Next
class

Begin
1. Get the times and locations of the classes
2. Get the class lists of the students
3. Input the current class
4. Get a list of students in the class
5. For each person on the list Do:

5.1. Find the next class that student is attending
5.2. Find the location of the class
5.3. Find the route from the classroom to the person’s next class
5.4. Tell the student how to get their next class

End

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 14 ~

the directions are posted at the back of the classroom and tell everybody to follow the

direction and go to the next classroom. The alternative solution can be represented in an OO

model shown in Figure 5.

Figure 5. Object-Oriented model in UML

Shalloway and Trott (2002) analysed the differences between the above two solutions and

their impacts on software development. In addition to their analysis, we can also identify the

following weakness of the OO solution. First, modelling students as objects means that they

are passively driven by messages to perform actions of finding out route and then go to the

next classroom. They are controlled by other objects. However, in the real world, students

may have autonomous behaviours. They are not directly controlled by anybody. Therefore,

the model still does not exactly represent the real world. Second, it is the developer’s

responsibility to implement all the components of the system although the implementation

can be done by programming the code, reusing existing code, using COTS components, etc.

Once implementation is done, it is not to be changed during execution of the system.

Agent-oriented solution

A caste-centric AO solution would contain three castes to represent students, instructors and

the organizers of the summer school as shown in Figure 6. The organizers will be responsible

to set the class schedule and provide the local knowledge. They are also responsible to inform

the instructors and the students of the availability of the schedule and local knowledge. The

instructors will teach the students. Teachers may also access the class schedules and local

knowledge to determine when and where to go to the classrooms and teach which subjects.

The students will access the class schedule and local knowledge in order to determine where

TClass
Location
Time

Student
Schedule: *TClass
GoFrm(cl: TClass)
…

Map
FindRoute(st,fn)

(a) Class diagram

Tc: TClass

St: Student

Mp: Map

1. GoFrm(Tc)

2. FindRoute(Tc, nxt)

Instructor

(b) Collaboration diagram

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 15 ~

to go and how to get there. It is worthy noting that the schedule and local knowledge can be

objects, which are a degenerated form of agents as discussed in the previous section.

Figure 6. Collaboration diagram of AO solution

In comparison with the OO solution, the AO model is much closer to how the real world

works. The main difference is in the release of instructors from the responsibility of

controlling the students on when to find out the information about their next classes. The

students can access the schedule and local knowledge whenever they like to do so. The

impact of this difference is significant because this does not only gives the freedom to decide

when to access the local knowledge and class schedule, but also the possibility to have

freedom in how to access them because other parts of the system need to know much less

details of the caste. As far as the local knowledge, such as a map of the campus, and class

schedule are represented in a standard format, agents that represent students can be any

program that understand them. Therefore, it can be programs running on students’ notebook

computers, hand-held computers, mobile phones, etc. The software running on these

computing devices can be different products that each is suitable to the device that is owned

by the student. This will significantly reduce the complexity of developing the system to

make it suitable to run on many different hardware and software platforms. It will also enable

the users to interact with the system in an interface that they are familiar with. It is

unnecessary to integrate the programs that represent the student agents into the system before

it is put into operation, because they can join the system at any time during the execution of

the system. The software can be run on other servers on the Internet that provides, for

example, services to display a map on the screen, to find routes in an electronic map and to

Instructor

Student

Organiser

Class
schedule Teach

Local
knowledge

Set

Set

Access

Inform

Inform

Access

Access

Access

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 16 ~

provide scheduling and event reminder services. Therefore, the complexity and cost to

develop the system can be significantly reduced. It is also easier for the system to evolve.

Conclusion

In this chapter, we presented a meta-model of AOIS, in which the basic elements are agents.

The meta-model enables us to model software systems very close to information system in

the physical world so that the software systems are easier to understand, more reusable and

easier to modify. As illustrated in the example given in section 4, AO approach is suitable to

the platform of Internet/Web and the utilisation of mobile devices.

In the literature of AO software engineering, there are a number of proposals to AO

methodologies aiming at developing MAS (Zambonelli, Jennings & Wooldridge, 2003;

Bresciani et al. 2004; Burrafato & Cossentino, 2002; Zambonelli & Omicini, 2004). A few

formal models of agents and MAS have also been developed and investigated; Cf. (Myer &

Schobbens, 1999). Among the most well-known formal models is the mentalistic model of

BDI agents, in which each agent has mental states of belief, desire and intention (Rao &

Georgreff, 1991). The logic properties of mental states were formally studied in the

framework of modal logics, e.g. (Wooldridge, 2000). Such models are suitable for developing

artificial intelligence applications. Application of them to information systems may need a

revolutionary change in software development paradigm. d'Inverno and Luck (2003) formally

defined various concepts related to agents and MAS in the formal specification language Z.

They regard agents as special cases of objects. This is the opposite to our approach. Semi-

formal definitions of meta-models have also been proposed by Bernon et al. (2005) and

Odell, Nodine and Levy (2005). They provide syntactical descriptions of the structures of

agents and related notions, but no definition of their semantics. These models tend to include

a large number of concepts including, for example, roles, agent groups, agent societies,

capabilities, responsibilities, goals, plans, organisations, etc. Further research on these

concepts and their properties and interrelationships is necessary before they can be language

facilities. Our approach is caste-centric, that is, caste plays the central role in our

methodology. In comparison with other meta-models, our meta-model is much simpler and

clearer. For example, most other methodologies have the notion of roles, which is not

formally defined and is not a language facility. In our approach, agents that play the same

role can be defined by a caste (Zhu, 2001b), which is a well-define language facility that can

be implemented in a programming language (Wang, Shen & Zhu, 2005). It can also be used

to implement other agent concepts naturally, such as agent societies, protocols and normative

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 17 ~

behaviours. The most important feature of our approach is that it is a natural evolution of the

current mainstream paradigm of OO software development.

We are currently further investigating the design and implementation of AO programming

languages based on the meta-model to support the development of service-oriented

computing such as web services (Zhu & Shan, 2005). We are also further developing

automated software tools to support the whole development process to bridge the gaps

between models, specifications and their implementations on existing software platforms.

References

Barbier, F., Henderson-Sellers, B., Le Parc A. & Bruel J-M. (2003). Formalization of the

whole-part relationship in the Unified Modeling Language. IEEE Trans. Software Eng.

29(5), 459-470.

Bernon, C., Cossentino, M., Gleizes, M-P., Turci, P. & Zambonelli, F. (2005). A study of

some multi-agent meta-models. AOSE 2004. Springer, LNCS 3382, 62-77.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. (2004) Tropos: an

agent-oriented software development methodology. Autonomous Agents and Multi-

Agent Systems, 8, 203-236.

Burrafato, P. & Cossentino, M. (2002). Designing a multi-agent solution for a bookstore with

the PASSI methodology. Proc. of AOIS-2002 (May 27-28, 2002, Toronto, Canada) at

CAiSE'02.

d'Inverno, M. & Luck, M. (2003). Understanding Agent Systems. Berlin: Springer-Verlag.

Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M. & Giannini, P. (2002). More dynamic

object reclassification: FickleII. ACM Trans. on Programming Language and Systems,

24(2), 153-191.

Huhns, M. & Singh, M.P. (Eds.) (1997). Readings in Agents. San Francisco: Morgan

Kaufmann.

Jennings, N.R. & Wooldridge, M.J. (Eds.) (1998). Agent Technology: Foundations,

Applications And Markets. Berlin: Springer.

Myer, J-J. & Schobbens, P-Y. (Eds.) (1999) Formal Models of Agents - ESPRIT Project

ModelAge Final Workshop Selected Papers. LNAI 1760, Springer.

H. Zhu, Towards an Agent-Oriented Paradigm of Information Systems 02/11/2005

~ 18 ~

Odell, J., Nodine, M. & Levy, R. (2005). A metamodel for agents, roles and groups. AOSE

2004. Springer LNCS 3382, 78-92.

Rao, A. S. & Georgreff, M. P. (1991). Modeling Rational Agents within A BDI-Architecture.

Proc. of the International Conference on Principles of Knowledge Representation and

Reasoning, 473-484.

Shalloway, A. & Trott, J. (2002). Design Patterns Explained. Addison and Wesley.

Shan, L., Shen, R., Wang, J. & Zhu, H. (2006) Caste-centric development of agent oriented

information systems. Chapter ???, in this book.

Wang, J., Shen, R. & Zhu, H. (2005). Agent oriented programming based on SLABS. Proc.

of COMPSAC’05 (July, 2005, Edinburgh, UK), 127-132.

Wooldridge, M. (2000). Reasoning About Rational Agents. The MIT Press.

Zambonelli, F. & Omicini, A. (2004). Chanllenges and research directions in agent-oriented

software engineering. Autonomous Agents and Multi-Agents Systems, 9, 253-283.

Zambonelli, F., Jennings, N. R. & Wooldridge, M., Developing multiagent systems: the Gaia

methodology, ACM Transactions on Software Engineering and Methodology, Vol. 12,

No.3, 2003, pp317-370.

Zhu, H. & Lightfoot, D. (2003). Caste: A step beyond object orientation, in Modular

Programming Languages. Proc. of JMLC'2003 (Aug. 2003, Austria), Springer LNCS

2789, 59-62.

Zhu, H. (2001a). SLABS: A Formal Specification Language for Agent-Based Systems.

International Journal of Software Engineering and Knowledge Engineering, 11(5), 529-

558.

Zhu, H. (2001b). The role of caste in formal specification of MAS. Proc. of PRIMA’2001

(July 2001, Taipei), Springer LNCS 2132, 1-15.

Zhu, H. (2003). A formal specification language for agent-oriented software engineering.

Proc. of AAMAS'2003 (July, 2003, Melbourne, Australia), 1174- 1175.

Zhu, H. (2005). Formal Reasoning about emergent behaviour in MAS. Proceedings of

SEKE’05 (July 14~16, 2005, Taipei), 280-285.

Zhu, H. and Shan, L. (2005) Agent-Oriented Modelling and Specification of Web Services,

Proc. of WORDS’2005 (February 2-4, 2005, Sedona, USA), 152-159.

