Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

Caste-centric Development of Agent Oriented Information Systems

Lijun Shan
Department of Computer Science, National University of Defence Technology,
Changsha, China, Email: lijunshancn@yahoo.com
Rui Shen, Ji Wang

National Laboratory for Parallel and Distributed Processing,

Changsha, China, Email: shenrui98@yahoo.com, jiwang@mail.edu.cn
Hong Zhu*
Department of Computing, Oxford Brookes University,
Wheatley Campus, Oxford OX33 1HX, UK.
Email: hzhu@brookes.ac.uk, Tel: 0044 1865 484580, Fax: 0044 1865 484545

ABSTRACT

Based on the meta-model of information systems presented in (Zhu, 2006), this
chapter presents a caste-centric agent-oriented methodology for evolutionary and
collaborative development of information systems. It consists of a process model
called growth model and a set of agent-oriented languages and software tools that
support various development activities in the process. At the requirements analysis
phase, a modelling language and environment CAMLE supports the analysis and
design of information systems. The semi-formal models in CAMLE can be
automatically transformed into formal specifications in SLABS, which is a formal
specification language designed for formal engineering of multi-agent systems. At
implementation stage, agent-oriented information systems are implemented directly in
an agent-oriented programming language called SLABSp. The features of
agent-oriented information systems in general and our methodology in particular are

illustrated by an example throughout the chapter.

* Correspondences should be sent to Prof. Hong Zhu, Department of Computing, School of Technology, Oxford

Brookes University, Wheatley Campus, Oxford OX33 1HX, UK. Email: hzhu@brookes.ac.uk.

~1~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

INTRODUCTION

In (Zhu, 2006), we presented a vision of future information systems through an
agent-oriented meta-model. The promising features of the meta-model were illustrated
in the context of software development on the Internet/Web platforms and the
utilisation of mobile computing devices. In this chapter, we address the problem of

how to develop such agent-oriented information systems (AOIS). Based on the

meta-model introduced in (Zhu, 2006), we propose a methodology for developing
AOIS, which consists of a process model that guides the development activities and a
set of languages and software tools that support various development activities in the
process.

The chapter is organised as follows. Section 2 describes an information system
used as the running example in the chapter. Section 3 proposes an evolutionary
development process model for AOIS. Section 4 outlines the Caste-centric

Agent-oriented Modelling Language and Environment CAMLE. Section 5 reviews

the formal specification language SLABS, which stands for a Specification Language

for Agent-Based Systems. Section 6 focuses on implementation issues. It briefly

describes an experimental programming language SLABSp. Section 7 concludes the
chapter with a discussion of related work and further work.

DESCRIPTION OF THE RUNNING EXAMPLE

We will use a simple, but non-trivial, information system to illustrate our
methodology as a running example throughout the chapter. The example was
proposed and used as a case study by FIPA’s AUML Technique Committee (2004) to
study agent-oriented modelling methods and notations. It was inspired from the

procedure of United Nations’ Security Council to pass a resolution. The description of

the system follows.

The United Nation’s Security Council (UNSC) consists of a number of members,
where some of them are permanent members, and the others are elected from UN
members, called elected members in the sequel. Members become the Chair of the

Security Council in turn monthly. To pass a UNSC resolution, the following

~D~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

procedure would be followed.

(1) At least one member of UNSC submits a proposal to the current Chair.

(2) The Chair distributes the proposal to all members of UNSC and sets a date for a
vote on the proposal.

(3) Ata given date that the Chair sets, a vote from the members is made.

(4) Each member of the Security Council can vote either FOR or AGAINST or
SUSTAIN.

(5) The proposal becomes a UNSC resolution, if the majority of the members voted
FOR, and no permanent member voted AGAINST.

(6) The members vote one at a time.

(7) The Chair calls members in a given order to vote, and the Chair is always the last
one to vote.

(8) The vote is open (in other words, when one votes, all the other members know the
vote).

(9) The proposing member(s) can withdraw the proposal before the vote starts and in
that case no vote on the proposal will take place.

(10)All members vote on the same day, one after another, so that the Chair does not
change within the vote call; but it is possible for the Chair to change from one
member to another between a proposal is submitted until it goes into vote. In this
case the earlier Chair has to forward the proposal to the new one.

(11)A vote is always finished in one day and no chair change happens on that day.
The date of the vote is set by the Chair.

In the remainder of the chapter, we will use the above as the initial requirements
specification to demonstrate how agent-oriented information systems are analysed,
modelled, designed, and implemented in our methodology.

DEVELOPMENT PROCESS

As discussed in (Zhu, 2006), one of the most attractive potential features of
agent-oriented information systems is its strong support to the evolution of

information systems and their collaborative developments. To realise this, we

~3~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

proposed a lifecycle model of software systems as shown in Figure 1 (Zhu et al. 2000;

Zhu, 2002, 2004).
Si d | Inception |
period v
| Development a seed system |
—y oo ¥
A - L2 1
Operation of system <&
-
; +) Suspend
| Identify new requirements | requirements
Not worth
Growth requirements realizing
period important &
Important
but not
Yesl feasible
Develop ne\‘V components to
satisfy new requirements
Integrat new components &
remove old components
e Y] B R R
A -
Decl ine Current system declines /
period new system’s concept forms [«
ey |\ == ___.

Figure 1 Growth model of software development

The lifecycle model is called growth model because it views information systems’
lifecycle as a process of growth. From this point of view, a software system’s lifecycle
can be divided into three periods, viz. the seed period, the growth period and the
decline period. When an information system is initially constructed and put into
operation, it is relatively weak and small in terms of the services it provides, the
volume of information it contains, and other non-functional attributes such as
performance, security etc. During the operation, the system grows in many directions
and dimensions. New components may be integrated into the system to provide new
services while current components may be modified to improve the systems’
functional or non-functional properties as users’ new requirements are identified and
implemented. The system gradually goes to the decline period, and dies when it
cannot sustain more modification to meet new requirements. It is worth noting that,

different types of software systems may be suitable to different lifecycle strategies.

~d4~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

For example, software systems of Lenman’s S-type (1990, 2001), is more suitable to
have a strong seed system and little modifications during the rest of its lifecycle,
because such systems’ requirements are well understood and well specified. The
modifications are mostly corrections of errors in the software systems. However, Zhu
(2004) argued that most information systems are Lenman’s E-type systems whose
requirements are changing, and hence they are evolutionary by nature. They are best
developed following a growth strategy with the emphasis on the growth period. In
comparison with other strategies that guide information system development, the
growth strategy has a number of advantages. The first is the lower risk, because only
the best understood requirements are implemented and integrated into the system. The
investment in each step of the growth is smaller than implementing a huge system in
one big bang. Second, it is more likely to have a shorter time delay from the
recognition of a well-understood requirement to the delivery of the functionality.
Complicated interactions between requirements can also be reduced and abated. Third,
the developers can learn from previous development experiences and improve their
performance in the following up development of new components. They can gain
confidence during the development process and see their results earlier than other
development strategies. Finally, and most importantly, users’ feedbacks can be
obtained much earlier than other strategies as each step of the growth process takes
much shorter period of time. This enables the users to clarify their requirements easily
and guide the direction that the system develops. In fact, this strategy differs from
so-called staged development process model in its emphasis on taking users’
feedbacks to guide the direction of software evolution.

To support the growth strategy, we designed and implemented a set of languages
and tools for modelling, specification and programming agent-oriented information
systems. These languages and tools support various activities in the development
process.

The modelling language and environment CAMLE supports

e requirements elicitation and analysis by representing the current information

system and the required system in agent-oriented models; and

~5~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

o feasibility study of the requirements by analysing the required modifications
to the existing system.

The formal specification language SLABS and its formal reasoning logic

Scenario Calculus support

e formal description of the requirements of the system under development so
that new functionalities and services can be implemented as new components
in the form of castes/agents; and

e formal reasoning of the design of the system/new components to ensure that
the system will meet the requirements and that the new components can be
integrated into the systems as expected.

The agent-oriented programming language SLABSp and its runtime support

environment are used for

e the implementation of the system/components according to the semi-formal

specification in the CAMLE model and/or the formal specification in SLABS;

and
o the testing of new components and the integration into the existing system.
In the following sections, we will describe each of these languages and tools, and
illustrate their uses with the running example described in section 2.

MODELLING AND ANALYSIS

Modelling plays a crucial role in the development of the seed system and its evolution
as the main tool of requirements analysis and system/component design. This section
presents the modelling process, the diagrammatic modelling language and
environment CAMLE (Shan & Zhu, 2003, 2004a, 2004b, 2005; Zhu & Shan, 2005).

Process of Modelling

In our methodology, modelling aims at representing the users’ requirements with
a set of agents at various granularities and organizing the agents into an information
system. The key activities in the modelling and analysis phase include the following.

* Identify the agents and castes of agents in the system as well as the

relationships between them, such as the is-a relation (inheritance),

~6~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

membership-shift relation (migration or participation) and whole-part
relation (aggregation, congregation or composition). The artefact produced in
this activity is a caste model for the system from the perspective of system
architecture.

* Identify the agents’ interaction patterns in various scenarios, and produce a

set of collaboration models for the system from the perspective of dynamic

behaviour. In order to specify the system in sufficient detail, an agent may be
decomposed into a number of components, which are also agents. Then, the
interaction modelling proceeds to capture the interactions between the
components. Eventually, the collaboration model is refined into a hierarchy,
where collaboration models at various granularities specify the interactions
between component agents at various abstraction levels. Along with agent
decomposition, the caste model is enriched with further details to present the
caste of agents at various granularities and the structural dependencies
between them.

* For each caste, elaborate and specify how its agents perform actions and/or

change states in typical scenarios so that a set of behaviour rules can be

assigned to the caste. The artefact produced in this activity is a set of

behaviour models, each associated to a caste in the system.

The result of the modelling is a system model comprising a set of diagrams that
represent the system from various views and at different levels of abstraction. For
example, in the UNSC system, a caste diagram is constructed to capture the
organization structure, which comprises one chair and a number of UNSC members --
either permanent member or elected member. Collaboration diagrams describe the
typical scenarios of the interaction between UNSC members and the chair. Behaviour
diagrams respectively for UNSC member and chair define their specific behaviour
rules. More details are given below in the next subsection.

During the growth phase of an existing agent-oriented information system
(AOIS), new components for providing new functions, services and features are

developed in the context of the existing system, which will be the operating

~T ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

environment of the new components. Therefore, the model of the existing system is
the basis for the representation of the new requirements and the analysis of their
feasibility. For example, if the organization of United Nations Security Council is to
be reformed to add a new type of member whose power on resolution is between
elected member and permanent member, the UNSC information system can be
modified accordingly by adding a new caste representing the new type of members.

The Modelling Language

CAMLE employs the multiple views principle to model complicated systems. There
are three types of models in CAMLE: caste models, collaboration models and

behaviour models. Each model may consist of one or more diagrams.

Caste | Caste node

—> Inherit ’
""" > Migrate

UNSC-member P--777777777 " :
.. Ch
®o--- —> Parthlpate -q;;_ J—

— & Aggregate
— & Congregate
——« Composite

Per tmemb ” ||Elec‘u.d b ”

Figure 2 Caste diagram: notation and the UNSC example

A caste model usually consists of one caste diagram. Figure 2 shows the notation
of caste diagrams and an example caste diagram of UNSC system. A caste diagram
comprises a set of caste nodes representing various types of agents in the system, and
a set of links representing various relationships between agents of the castes.

In the UNSC caste diagram, caste UNSC represents the organization, which is
composed of a number of members represented by caste UNSC-member. The
aggregate link between the UNSC-member and the UNSC denotes the part-whole
relationship between the members and the organization. The rule that members take
the role of Chair in rota is described by participate and migrate relation between caste
UNSC-member and caste Chair. Two types of member are represented by two
sub-castes of UNSC-member, i.e. Permanent-member and Elected-member,

respectively.

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

Agent node: AgentName:Caste Caste node: -
. . Actions
Communication Link: —)

Figure 3 Notation of collaboration diagram

The collaboration models capture agents’ interaction patterns that represent
dynamic behaviours of the system. The notation of collaboration diagrams is shown in
Figure 3. A collaboration model may consists of a set of scenario-specific
collaboration diagrams that represent the interactions between agents in specific
scenarios, and a general collaboration diagram that summarises the communications
between agents.

For example, Figure 4 depicts the collaboration model of UNSC. Figure 4(1) and
4(2) describes the interactions between agents in the scenarios of voting on a proposal
and withdrawal of a proposal, respectively. The general collaboration diagram, such
as Figure 4(3), describes all possible communications between all agents that may
occur during the system’s execution.

UNSC-member

1.5ubmit[p:Proposal)
4.Vote[p:Proposal, v:{FOR, AGAINST, ABSTAIN}

Proposer:UNSC-member

2.Distribute([p:Proposal, vote-date:Date)]
3.CallVote[m:UNSC-member, p:Proposal) 1.Submit(p:Proposal)
5.Resolution[p:Proposal] 3.ReqWithdraw(p:Proposal)

2.Distribute[p:Proposal, vote-date:Date)
4. Withdraw[p:Proposal)

| UNSC-memb

(1) Scenario-specific diagram: Voting (2) Scenario-specific diagram: Withdraw

UNSC-member
Submit(p:Proposal)

ReqWithdraw(p:Proposal)
Vote(p:Proposal, v:{FOR, AGAINST|, ABSTAIN})

President:Chair

Distribute(p:Proposal, vote-date:Date]
Withdraw{p:Proposal)
CallVote[m:UNSC-member, p:Proposal]
Resolution(p:Proposal)

President:Chair

(3) General collaboration diagram

Figure 4 Collaboration model of UNSC information system

Note that, when an agent is decomposed into components, the interactions

~9~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

between the component agents also need to be specified. This results in a hierarchy of
collaboration models defining the dynamic behaviours of agents at various
granularities. Readers are referred to (Shan & Zhu, 2004b) for details about the
process of collaboration modelling, the hierarchical structure of collaboration models
as well as examples.

While caste and collaboration models describe multi-agent systems at the
macro-level from the perspective of an external observer, behaviour modelling adopts
the internal or first-person view of each agent. It describes an agent’s behaviour in
terms of how it acts in certain scenarios of the environment at the micro-level. The
notation of behaviour diagrams is shown in Figure 5. Readers are referred to (Shan &

Zhu, 2003) for detailed explanation of the notation.

R-Exp
Ilt_ Act(pr,...p») Action node Scenario node

L [Precondition! Precondition node

| C-Exp]
| t' State assertion node b————

T-Exp

Temporal order Link —_— Resulting arrow
_ > Logic link @ Logic connective nodes

Figure 5 Notation of behaviour diagram

Transition bar

Each caste is associated with a behaviour diagram that describes the behaviour
rules of its agents. In the UNSC example, there are two behaviour diagrams: one for
caste Chair and the other for caste UNSC-member. Figure 6 depicts the behaviour
diagram for caste Chair. The behaviour of a Chair agent is defined by four behaviour
rules describing its actions under various circumstances, namely to distribute a
proposal when some member submits the proposal, to withdraw the proposal when
requested by the proposing member(s), to call all the members to vote on a proposal,
and to quit from Chair when its turn finishes.

The castes Permanent-member and Elected-member inherit the behaviour rules of
UNSC-member. They have no additional behaviour rules so need no different

behaviour diagram to that of the UNSC-member.

~10 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

Distribute[p:Proposal, vote-date:Date]

nﬂ: n=1..k

-

I vote-date | CallVote[m:UNSC-member,
_______ p:Proposal)
M:UNSC-member || —T =
:_ ______ : Favorable Yote
| —

¥

‘ Resolution(p:Proposal)

‘ Distribute[p:Proposal, vote-date:Date]

'_
o] |
|

M:UNSC-member I Distribute([p:Proposal,
——————— { vote-date:Date)

: ‘ ReqWithdraw(p:Proposal)

________ Withdraw([p:Proposal)

Figure 6 Behaviour diagram of the Chair in UNSC information system

The Modelling Environment

A software environment to support the process of analysis and modelling in CAMLE

has been designed and implemented. It integrates the following set of tools.

Model construction and management tools: a set of interactive diagram editors
with graphic user interface are provided to enable the creation, editing and
modification of various diagrams in CAMLE models. These diagrams are
organized and managed into development projects. Reuse of models from
other projects is enabled. Figure 7 shows a screen snapshot of the CAMLE
environment’s interface.

Consistency checkers: a set of consistency constraints is defined on the
CAMLE language to ensure that a set of diagrams form a meaningful model of
an information system. The consistency of a model is checked by a set of tools
to identify any violence of the constraints. Details of the consistency
constraints and the implementation of the checkers can be found in (Shan &
Zhu, 2004a).

Specification generator: it transforms a well-defined model into a formal

~11 ~

Caste-centric Development of Agent-Oriented Information Systems

22/04/2006

specification in SLABS. Details of the transformation algorithms can be found

in (Zhu & Shan, 2005).
}}_Solar - [Behavior: UNSC-member] - | E||1|
j Eile Edit Yiew Tools Window Help == x|
DX BR8] %)
a4 l? =]
E|-- MasMode! = ﬁ: _d_ta o T 1
@cao || O] || PresidentChoir |
Distribute(p:Proposal, ‘
il | [p:Prop
0 vote-date:Date] ‘ [|
¥ | $ vote is appropriate
= | | | to the proposal |
B] v |
) — CallVote(m:UNSC- |
(3 Specificatiol _ | member, p:Proposal) ‘
12 Chalr B8 e Jb
L s [
j VYote[p:Proposal,
. v:{FOR, AGAINST, ABSTAIN})
[
b
oF (il
9 First day of month M, |
=— Month_Chair[M) = self
2| | | Lf [|
— i
| ¢ o

Ready l_ W v

Figure 7 CAMLE’s Graphical User Interface for model construction

Figure 8 below shows the architecture of the modeling environment.

U;ers’ Consistency
Requirements Check Report Specifications

Formal

| 4%

Graphic User
Interface
Model

Manager

Behaviour
Model
hecke

Partial
Diagram
Generator,

formedness Collaboration

Checker

Behaviour

Collaboration
odel Checke;
Checker
Cross level
Checker,

General
Specific
hecke

Graphic

> Models

Figure 8 The architecture of CAMLE environment

Readers are referred to (Zhu & Shan, 2005) for detailed description of the architecture

~ 12~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

and functionality of CAMLE environment.

SPECIFICATION

One of the most appealing features of agent technology is its natural way to

modularise complex systems in terms of multiple interacting autonomous components.

This feature is supported by the language facility caste in SLABS for modular and

composable specification of multi-agent systems. It bridges the gap between graphic

modelling and implementation in the AOIS development process. The output of the
modelling phase — a system model in CAMLE - is further analysed at the
specification phase, which involves the following two main activities.

* Generation of formal specifications. As for all software developments, it is
necessary to analyse the design of an agent-based system before the developers
are committed to costly implementation. It is particularly true during the
evolution of a system when new components are to be integrated into the existing
system. Formal analysis of the new components in the context of the system is
therefore highly desirable. However, the manual production of formal
specifications of multi-agent systems is labour-intensive, costly, time consuming
and error-prone. With the help of CAMLE modelling environment, formal
specifications in SLABS can be automatically generated from graphic models in
CAMLE

* Formal analysis of the system. Formal analysis can be applied on formal
specifications in SLABS to prove the properties of the specified system. We have
been devising a formal system Scenario Calculus to reason about the behaviours
of multi-agent systems, especially their most complicated behaviours such as
emergent behaviours (Zhu, 2005). If the formal reasoning about the system/new
components based on the formal specification reveals that the system model is
unsatisfactory on certain properties, the flow of the process goes back to the
modelling phase to rectify the design. Thus, the process iterates the modelling
and specification stages until a satisfactory model/specification is achieved.

The formal definition of the SLABS language and its meta-model can be found in

~ 13 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

(Zhu, 2001, 2003). A formal logic for reasoning about MAS’ behaviours based on
SLABS can be found in (Zhu, 2005).

Figure 9 shows an example of caste specification. It is the UNSC-member caste
generated by CAMLE environment’s specification generator from the CAMLE model
of the UNSC system.

 UNSC-member

Action Submit{p:Proposal). ReqVWithdraw[p:Proposal). Yote[p:Proposal. v:{FOR, AGAINST, ABSTAIN})
[Submit{p:Proposal]] |-> ReqWithdraw{p:Proposal];
WHERE the proposal not wanted
[5] |-> Vote[p:Proposal, v:{FOR, AGAINST, ABSTAIN}):
IF President:Chair. [Distribute[p:Proposal, vote-date:Date), Call¥ote[m:UN3C-
member, p:Proposal]];
WHERE vote is appropriate to the proposal
[5] |-> JOIN[Chair):
WHERE First day of month M, Month_Chair[M] = self

President:Chair

Figure 9 Specification of UNSC-member caste in SLABS

IMPLEMENTATION

A distinctive feature of our agent-oriented development methodology of information

systems is that we aim at the direct implementation of information systems with a
novel agent-oriented programming language that is based on the meta-model of
agent-oriented information system described in (Zhu, 2006). Such a programming
language can significantly narrow the gap between specification and implementation.
This section presents our research on the design and implementation of the
agent-oriented programming language SLABSp and illustrates the style of
programming by the running example.

SLABSp is designed to support the caste-centric approach to agent-oriented
software development methodology by extending the object oriented programming
language Java (Shen, Wang & Zhu, 2004; Wang, Shen & Zhu, 2005a, 2005b, 2005c).
As shown in Figure 10, it extends Java with three key concepts and language facilities,

i.e. caste, scenario and environment descriptions.

~ 14~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

Caste ::= { Java-Import }
‘caste’ Name [;' { Name /', }+'(
{ Environment }
{ State | Action | Rule }
Agent ::= { Java-Import }
‘agent’ Name [*:' { Name /', }+ 1'{
{ Environment }
{ State | Action | Rule }
\}I
Environment ::= Name Id ;'
State ::= [‘internal’] Type ‘#'ld ‘(' Formal-Parameters ‘)" *{*
{ Java-Definition %}
‘get’ ':’ Statement
[‘set’ .’ Statement]

\}I
Action ::= [‘internal’] *~'Ild ‘(" Formal-Parameters)" *{*
{ Statement }
Rule ::=‘rule’ Id ‘(* Formal-Parameters ")’

[‘when’ ‘(" Scenario ‘)’]
[‘where’ (" Conditional-Expression ‘)’]
‘do’ '{* { Statement } '}’

Scenario ::= (Name | ‘self’) Pattern (a)
| ‘<’ [Number] *:" [Number] ‘>’ Name Pattern (b)
| Count-Conditional-Expression (c)
| Scenario‘,’ Scenario (d)
| Scenario ‘|’ Scenario (e)
| V" Scenario (f)
| ‘(" Scenario)’ (g)

Pattern ::=

“\" { (Action-Pattern | State-Assertion) /',” } '\’
Action-Pattern ::=

¢~ ¥ ~'Id Y Parameters)’) '~ Number]
State-Assertion ::= Conditional-Expression

Figure 10 Syntax of SLABSp in EBNF

These language facilities become the dominant language facilities in the
implementations of AOIS, and significantly change the styles of programming. In
particular, caste becomes the basic program unit from which a complicated software
system is built. Although class in object-orientation can still be used in the
programming, it is now mainly used to define encapsulated data types that agents
manipulate and used to represent agent’s states. Other Java constructs, such as Import
statements, Expressions, Statements, etc., are still legal language facilities, but they
are extended to include identifiers to refer to agent's states and actions, which are
represented by preceded ‘#' and "~', respectively. There are also the additional join
and quit statements to enable agents’ dynamically joining into and quitting from
castes.

Another significant change of programming style is the result of the introduction

of the scenario description language facility. The syntax of scenario description is

~ 15~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

given in Figure 10, where an expression in the form of (a) describes the situation that
a specific agent behaves in a certain pattern, where the agent is referred to by its name
or keyword self. Expressions in the form of (b) describe the situation that the
number of agents of a caste that behave in a certain pattern is within a specified
interval, where the interval's boundaries are optional. The default value of the left
boundary (i.e. the lower number) is ‘zero’. When the right boundary is absent, it
means ‘all’, i.e. the size of all the caste. The Count-Conditional-Expression in the
form of (c) is an extension of Java Conditional-Expression with Count-Expression.
The result of evaluating a count-expression is the number of agents in a caste that
behave in the pattern. Expressions in the form of (d), (e) and (f) are the logic ‘and’,
‘or’ and ‘not’ combination of scenarios in the above forms, respectively. Expressions
in the form of (g) are used to change the preference of the logic combinations. The
uses of scenario descriptions in conjunction with agents’ visible actions and
environment descriptions enable communications and collaborations among agents to
be described at a high level of abstraction and in the same style of conditional
expressions in structured programming.

For example, the UNSC system can be implemented in SLABSp as shown in
Figure 13. Based on the specification of the UNSC system, caste Member has three
behaviour rules. Rule Withdraw will enable the agent to request the proposal to be
withdrawn when the agent regards the proposal as inappropriate. Rule Vote will guide
the agent to vote on the proposal with a specific attitude when the Chair calls the
agent to vote. Rule AlternateJoin will trigger the agent to join caste Chair when it is
its turn. Caste Chair extends caste Member with four additional rules. Rule Distribute
will guide the Chair agent to distribute the proposal and schedule a voting date for
each submitted proposal. Rule CallVote will direct the Chair agent to call the
members to vote on the proposal on the voting date. Rule AlternateQuit will ask the
current Chair to quit from caste Chair when its turn finishes. Rule Resolution will

define how a decision should be made based on the members’ votes.

~16 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

import java.util.Date;

import java.util.Calendar; import java.util.Calendar;

caste Member {

~Submit(Proposal proposal){
/e

}

~ReqWithdraw(Proposal proposal){
/e

3

~Vote(Proposal proposal, Attitude attitude){
/e

¥

rule Withdraw(Proposal proposal)
when (self\~Submit(?proposal)\)
where (proposal.isinappropriate())
do {

~ReqWithdraw(proposal);

rule Vote(Proposal proposal)

when (Chair\~CallVote(self, ?proposal)\)

do {
// think about the proposal
Attitude attitude = Attitude.FOR ; // or AGAINST, or ABSTAIN
~\Vote(proposal, attitude);

3

rule AlternateJoin()
when (self\~\)
where (// the first day of a month
ChairOfMonth(self, Calendar.getInstance().get(Calendar.MONTH))
&& (Calendar.getInstance().get(Calendar.DAY_OF_MONTH) ==
Calendar.getInstance().getActualMinimum(Calendar.DAY_OF_MONTH)))
do {
join Chair;

¥

// the caste for permanent members
caste PermanentMember : Member {

caste Chair : Member {

~Distribute(Proposal proposal, Date date){ // ...
;Withdraw(Proposal proposal){ // ...
~Callvote(Member member, Proposal proposal){ // ...
~Resolution(Proposal proposal){ // ...

rule Distribute(Proposal proposal)
when (self\~\, <1:1>Member\~Submit(?proposal)\)
do { // schedual voting a week later
Date date = Calendar.getInstance()
.add(Calendar.DAY_OF_MONTH, 7).getTime();
~Distribute(proposal, date);

rule CallVote(Proposal proposal, Date date)
when (self\~Distribute(?proposal, ?date)\)
where (Calendar.getInstance().getTime().equals(date))
do { // call all members (except the Chair) to vote, the call the Chair
Collection members = Member#agents();
members.remove(self);
for(Member member: members)
~CallVote(member, proposal);
~CallVote(self, proposal);
¥

rule AlternateQuit()
when (self\~\)
where (// the last day of a month
Calendar.getInstance().get(Calendar.DAY_OF_MONTH) ==
Calendar.getInstance().getActualMaximum(Calendar.DAY_OF_MONTH))
do { quit Chair; }

rule Resolution(Proposal proposal)

when (<:>Member\~Vote(?proposal, *)\, // all members have voted
*Member\~Vote(proposal, FOR)\ > Member#population() / 2,
I<1:>PermenantMember\~Vote(proposal, AGAINST)\)

//
¥ >

do { ~Resolution(proposal); }

Figure 11 Fragments of UNSC system in SLABSp

A runtime environment for the execution of multi-agent systems has been
implemented as an extension of Java runtime environment. In particular, an

automaton called the Pattern Process Machine is designed and implemented to

process patterns and scenarios. A compiler has been developed to translate SLABSp
programs into Java and to execute in the runtime environment. More details can be
found (Shen, Wang & Zhu, 2004; Wang, Shen & Zhu, 2005a, 2005b, 2005c¢).

The design and implementation of SLABSp demonstrate that caste and scenario
are feasible as programming language facilities. Our experiences and experiments
with the language clearly show that they provide power abstractions for AO
programming. In particular, the caste facility enables the modularity in the concept of
agents to be realized directly and in full strength. An obvious advantage of using
scenarios to define agents’ behaviors is that it can significantly reduce the unnecessary
explicit message-based communications among agents. This also enables AO

programming at a very high level of abstraction.

~17 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

CONCLUSION

We now conclude the chapter with a summary of our main ideas and research results

and a comparison of our work with related works.

Summary

Our caste-centric methodology of agent-oriented information systems is based on a
well-defined meta-model, which is presented in (Zhu, 2006). It consists of a process
model called the growth model, a set of languages including a modelling language
CAMLE for the requirements analysis and design, a formal specification language
SLABS and a programming language SLABSp, and a set of support tools including
CAMLEs modelling environment, formal reasoning system Scenario Calculus, and
runtime support environment of agent-oriented programs. A number of case studies on
modelling, formal specification and verification and programming have been
conducted to develop the heuristics of using the languages and tools. Our
methodology has the following features.

The methodology aims at modern information systems, especially those running
on the Internet and the Web platforms. As argued in (Zhu, 2004), such systems belong
to Lenman’s E-type and are by nature evolutionary. Agent-oriented approach is very
suitable for the development of such systems as we have shown in (Zhu, 2006).
Moreover, the growth process model explicitly reflects the evolutionary
characteristics of such systems and encourages the growth strategy, i.e. the sustainable
long-term evolution strategy, of their lifecycle. This strategy is also strongly supported
by the languages and tools.

The set of languages designed for uses at different phases in the development and
evolution of AOIS are based on a well-defined meta-model. The gaps between
requirements specification, system and component design, and implementation are
much smaller than their counterparts in other existing paradigms and approaches. In
particular, the key concepts of agents and castes can be directly implemented in the
agent-oriented programming language.

Our methodology is an extension of the current mainstream paradigm (i.e. the

~18 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

object-orientation) of information system development. In our model, object is a
special degenerate form of agent. Agent-orientation provides a better metaphor for
modelling the information systems in the real world than object-orientation. It can
directly represent active and autonomous elements in information systems such as
humans, independent information processing components such as web services, etc. It
enables the design and implementation of computerised information systems in a
structure that is closer to the structure of the system in the real world than
object-orientation.

Finally, our approach to agent-orientation is caste-centric. In other words, caste
plays the central role in our methodology. It is not just an abstract concept but also a
language facility that can be directly implemented in a programming language. It is
the basic form of program unit from which complicated systems are constructed. It
realises the kind of modularity inherent in the concept of agents. Our case studies
show that caste can be used in a nice and straightforward way to model and
implement various useful notions developed in agent technology, such as roles, agent
society, collaboration protocols, normative behaviours, etc.

Related Work

Since Jennings advocated the notion of agent-oriented software engineering as a
paradigm for building complex system in (Jennings, 1999), a number of
methodologies for agent-oriented software development have been proposed, such as
MaSE (Wood & DeLoach, 2000), Gaia (Wooldridge, Jennings & Kinny, 2000;
Zambonelli, Jennings & Wooldridge, 2003), Tropos (Bresciani, 2004), PASSI
(Burrafato & Cossentino, 2002), etc. A survey and analysis of the current state of art in
the research on agent-oriented software engineering can be found in (Zambonilli &
Omicini, 2004).

As an early work on MAS engineering methodology, MaSE provides a
development process covering the phases from capturing goals down to assembling
agent classes and system design. Notations for representing system specifications in

various stages and an environment supporting MAS development are developed

~19 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

(Wood & DeLoach, 2000). Gaia provides guides for analysis and design of
agent-based systems with the view that a multi-agent system is a computational
organization consisting of various interacting roles (Wooldridge, Jennings & Kinny,
2000). Role is adopted as the key concept, which is associated with responsibilities,
permissions, activities, and protocols. The new version Gaia methodology advocates
computational organization abstractions as the key abstraction of agent-based
computing (Zambonelli, Jennings & Wooldridge, 2003). Tropos methodology
emphasizes to use the notion of agent and all the related mentalistic notions in all
phases of software development and purports to cover the very early phases of
requirements analysis (Bresciani, et al., 2004).

Despite the subtle differences in the research aims and focuses, the above works
hold the same beliefs that the concept of agent is on a higher level of abstraction than
object, thus agent-orientation will bring more efficiency to software engineering than
object-orientation. Most of the existing methodologies attempt to exploit agents’
advantages such as autonomy and sociality using the mentalistic notions including
goal, plan, role, etc. Our work distinguishes from them in that the notions of caste and
scenario, instead of the mentalistic notions, are the basic concepts for embodying
agents’ power.

Further Work

There is still a long way to go before agent-orientation become a mature development
paradigm of information systems. There are many issues remaining for future work.
On the top of our research agenda are further investigation of the languages and tools
in industrial context. We will connect the languages and tools with the on-going
development of web technologies such as web services, grid computing and
peer-to-peer computing. Another aspect of development methods that has not been
discussed in depth in this chapter is testing, verification and validation. We will
further develop the formal reasoning system Scenario Calculus for analysing SLABS
specifications and reasoning about the properties of emergent behaviours. We are also

investigating software tools to support the formal reasoning. Automatic

~20 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

transformation from SLABS specifications to executable system is also in our agenda.

ACKNOWLEDGEMENT

The work reported in this chapter is partly supported by the National Key Foundation
Research and Development Program (973) of China under Grant No. 2005CB321802,
the National High Technology R&D (863) Programme of China under grants No.
2002AA116070 and No. 2005AA113130, and Program for New Century Excellent
Talents in University.

REFERENCES

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. (2004). Tropos:
an agent-oriented software development methodology. Autonomous Agents and

Multi-Agent Systems, 8(3), 203-236.

Burrafato, P. & Cossentino, M. (2002). Designing a multi-agent solution for a

bookstore with the PASSI methodology. Proc. of AOIS’02 at CAiSE'02.
FIPA Agent UML Technique Committee (2005). Case Studies of Agent Modelling:
The Security Council of United Nations. Available online at URL:

http://www.auml.org/auml/documents/, (accessed on May 30, 2005).

Jennings, N.R. (1999). Agent-oriented software engineering. Multi-Agent System
Engineering, Proceedings of 9th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (June/July 1999, Valencia, Spain, Garijo, F. J.,
Boman, M. eds.). Springer LNAI 1647, 1-7.

Lehman M. M. & Ramil, J. F. (2001). Rules and tools for software evolution planning
and management. Annals of Software Engineering, Special Issue on Software
Management, 11(1), 15-44.

Lehman, M.M. (1990). Uncertainty in computer application. Communications of
ACM, 33(5), 584-586.

Shan, L. & Zhu, H. (2003). Modelling and specification of scenarios and agent
behaviour. Proc. of IEEE/WIC conference on Intelligent Agent Technology
(IAT03) (Oct. 2003, Halifax, Canada). IEEE CS, 32-38.

Shan, L. & Zhu, H. (2004a). Consistency check in modelling multi-agent systems.
Proc. of COMPSAC’04 (Sept. 2004, Hong Kong). IEEE CS, 114-121.

Shan, L. & Zhu, H. (2004b). Modelling cooperative multi-agent systems. Proc. of

~21 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

Grid and Cooperative Computing: Second International Workshop (Shanghai,
China), Revised Papers, Part II. Springer-Verlag LNCS 3033, 994-1001.

Shan, L. & Zhu, H. (2005). CAMLE: a caste-centric agent-oriented modelling
language and environment. Software Engineering for Multi-Agent Systems III:
Research Issues and Practical Applications, (Choren, R., Garcia, A., Lucena, C.,

& Romanovsky, A. eds.), Springer-Verlag LNCS 3390, 144-161.

Spivey, J. M. (1992). The Z Notation: A Reference Manual, 2nd edition. Prentice Hall.

Shen, R., Wang, J. & Zhu, H. (2004). Scenario mechanism in agent-oriented
programming. Proceedings of APSEC’04 (Busan, Korea), 464-471.

Wang, J., Shen, R. & Zhu, H. (2005a). Agent Oriented Programming based on
SLABS. Proceedings of COMPSAC’05 (Edinburgh, UK, July 25~28, 2005),
127-132.

Wang, J., Shen, R. & Zhu, H. (2005b). Caste-Centric Agent-Oriented Programming.
Proc. of First International Workshop on Integration of Software Engineering and
Agent Technology at QSIC’05 (Sept. 2005, Melbourne, Australia). In press.

Wang, J., Shen, R. & Zhu, H. (2005¢). Towards an agent-oriented programming
language with caste and scenario mechanisms. Proceedings of AAMAS’05, (July
27 - 29, 2005Utrecht, Netherland). In press.

Wood, M.F. & DeLoach, S.A. (2000). An overview of the multiagent systems
engineering methodology. Proc. of AOSE 2000, 207-222.

Wooldridge, M., Jennings, N. & Kinny, D. (2000). The Gaia methodology for
agent-oriented analysis and design. Autonomous Agents and Multi-Agent
Systems, 3(3), 285-312.

Zambonelli, F., Jennings, N. & Wooldridge, M. (2003). Developing multiagent
systems: the Gaia methodology. ACM Transactions on Software Engineering and
Methodology, 12(3), 317-370.

Zambonilli, F. & Omicini, A. (2004). Challenges and research directions in
agent-oriented software engineering. Autonomous Agents and Multi-Agent
Systems, 9, 253-283.

Zhu, H. & Shan, L. (2005). Caste-centric modelling of multi-agent systems: the
CAMLE modelling language and automated tools. Model-driven Software

Development, Research and Practice in Software Engineering, II, Beydeda, S. &

~22 ~

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

Gruhn, V. eds. Springer-Verlag, 57-89.

Zhu, H. (2001). SLABS: A formal specification language for agent-based systems.
International Journal of Software Engineering and Knowledge Engineering, 11(5),
529-558.

Zhu, H. (2002). A growth process model and its supporting tools for developing
web-based software, Acta Electronica Sinica, 30(12A), 2090-2093 (In Chinese).

Zhu, H. (2004). Cooperative agent approach to quality assurance and testing web
software. Proc. of COMPSAC’04 (Workshop Papers and Fast Abstracts), the
Workshop on Quality Assurance and Testing of Web-Based Applications
(QATWBA’04) (Sept. 2004, Hong Kong), IEEE CS, 110-113.

Zhu, H. (2005). Towards formal reasoning about emergent behaviours of MAS. Proc.
of SEKE’05 (July 2005, Taipei), 280-285.

Zhu, H. (2006). Towards an agent-oriented paradigm of information systems.

Chapter ???, in this book.

Zhu, H., Greenwood, S., Huo, Q., & Zhang, Y. (2000). Towards agent-oriented quality
management of information systems. Workshop Notes of Second International
Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS-2000)
at AAAT’2000 (Austin, USA, July 30, 2000), 57-64.

~23 ~

