
Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 1 ~

Caste-centric Development of Agent Oriented Information Systems

Lijun Shan
 Department of Computer Science, National University of Defence Technology,

Changsha, China, Email: lijunshancn@yahoo.com

Rui Shen, Ji Wang

National Laboratory for Parallel and Distributed Processing,

Changsha, China, Email: shenrui98@yahoo.com, jiwang@mail.edu.cn

Hong Zhu∗

Department of Computing, Oxford Brookes University,

Wheatley Campus, Oxford OX33 1HX, UK.

Email: hzhu@brookes.ac.uk, Tel: 0044 1865 484580, Fax: 0044 1865 484545

ABSTRACT

Based on the meta-model of information systems presented in (Zhu, 2006), this

chapter presents a caste-centric agent-oriented methodology for evolutionary and

collaborative development of information systems. It consists of a process model

called growth model and a set of agent-oriented languages and software tools that

support various development activities in the process. At the requirements analysis

phase, a modelling language and environment CAMLE supports the analysis and

design of information systems. The semi-formal models in CAMLE can be

automatically transformed into formal specifications in SLABS, which is a formal

specification language designed for formal engineering of multi-agent systems. At

implementation stage, agent-oriented information systems are implemented directly in

an agent-oriented programming language called SLABSp. The features of

agent-oriented information systems in general and our methodology in particular are

illustrated by an example throughout the chapter.

∗ Correspondences should be sent to Prof. Hong Zhu, Department of Computing, School of Technology, Oxford

Brookes University, Wheatley Campus, Oxford OX33 1HX, UK. Email: hzhu@brookes.ac.uk.

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 2 ~

INTRODUCTION

In (Zhu, 2006), we presented a vision of future information systems through an

agent-oriented meta-model. The promising features of the meta-model were illustrated

in the context of software development on the Internet/Web platforms and the

utilisation of mobile computing devices. In this chapter, we address the problem of

how to develop such agent-oriented information systems (AOIS). Based on the

meta-model introduced in (Zhu, 2006), we propose a methodology for developing

AOIS, which consists of a process model that guides the development activities and a

set of languages and software tools that support various development activities in the

process.

The chapter is organised as follows. Section 2 describes an information system

used as the running example in the chapter. Section 3 proposes an evolutionary

development process model for AOIS. Section 4 outlines the Caste-centric

Agent-oriented Modelling Language and Environment CAMLE. Section 5 reviews

the formal specification language SLABS, which stands for a Specification Language

for Agent-Based Systems. Section 6 focuses on implementation issues. It briefly

describes an experimental programming language SLABSp. Section 7 concludes the

chapter with a discussion of related work and further work.

DESCRIPTION OF THE RUNNING EXAMPLE

We will use a simple, but non-trivial, information system to illustrate our

methodology as a running example throughout the chapter. The example was

proposed and used as a case study by FIPA’s AUML Technique Committee (2004) to

study agent-oriented modelling methods and notations. It was inspired from the

procedure of United Nations’ Security Council to pass a resolution. The description of

the system follows.

The United Nation’s Security Council (UNSC) consists of a number of members,

where some of them are permanent members, and the others are elected from UN

members, called elected members in the sequel. Members become the Chair of the

Security Council in turn monthly. To pass a UNSC resolution, the following

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 3 ~

procedure would be followed.

(1) At least one member of UNSC submits a proposal to the current Chair.

(2) The Chair distributes the proposal to all members of UNSC and sets a date for a

vote on the proposal.

(3) At a given date that the Chair sets, a vote from the members is made.

(4) Each member of the Security Council can vote either FOR or AGAINST or

SUSTAIN.

(5) The proposal becomes a UNSC resolution, if the majority of the members voted

FOR, and no permanent member voted AGAINST.

(6) The members vote one at a time.

(7) The Chair calls members in a given order to vote, and the Chair is always the last

one to vote.

(8) The vote is open (in other words, when one votes, all the other members know the

vote).

(9) The proposing member(s) can withdraw the proposal before the vote starts and in

that case no vote on the proposal will take place.

(10) All members vote on the same day, one after another, so that the Chair does not

change within the vote call; but it is possible for the Chair to change from one

member to another between a proposal is submitted until it goes into vote. In this

case the earlier Chair has to forward the proposal to the new one.

(11) A vote is always finished in one day and no chair change happens on that day.

The date of the vote is set by the Chair.

In the remainder of the chapter, we will use the above as the initial requirements

specification to demonstrate how agent-oriented information systems are analysed,

modelled, designed, and implemented in our methodology.

DEVELOPMENT PROCESS

As discussed in (Zhu, 2006), one of the most attractive potential features of

agent-oriented information systems is its strong support to the evolution of

information systems and their collaborative developments. To realise this, we

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 4 ~

proposed a lifecycle model of software systems as shown in Figure 1 (Zhu et al. 2000;

Zhu, 2002, 2004).

Inception

Development a seed system

Identify new requirements

Develop new components to
satisfy new requirements

Integrat new components &
remove old components

Operation of system

Yes

Important
but not
feasible

Current system declines /
new system’s concept forms

Suspend
requirements

Not worth
realizing

Seed

period

Growth

period

Decline

period

Are the
requirements
important &

feasible?

Figure 1 Growth model of software development

The lifecycle model is called growth model because it views information systems’

lifecycle as a process of growth. From this point of view, a software system’s lifecycle

can be divided into three periods, viz. the seed period, the growth period and the

decline period. When an information system is initially constructed and put into

operation, it is relatively weak and small in terms of the services it provides, the

volume of information it contains, and other non-functional attributes such as

performance, security etc. During the operation, the system grows in many directions

and dimensions. New components may be integrated into the system to provide new

services while current components may be modified to improve the systems’

functional or non-functional properties as users’ new requirements are identified and

implemented. The system gradually goes to the decline period, and dies when it

cannot sustain more modification to meet new requirements. It is worth noting that,

different types of software systems may be suitable to different lifecycle strategies.

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 5 ~

For example, software systems of Lenman’s S-type (1990, 2001), is more suitable to

have a strong seed system and little modifications during the rest of its lifecycle,

because such systems’ requirements are well understood and well specified. The

modifications are mostly corrections of errors in the software systems. However, Zhu

(2004) argued that most information systems are Lenman’s E-type systems whose

requirements are changing, and hence they are evolutionary by nature. They are best

developed following a growth strategy with the emphasis on the growth period. In

comparison with other strategies that guide information system development, the

growth strategy has a number of advantages. The first is the lower risk, because only

the best understood requirements are implemented and integrated into the system. The

investment in each step of the growth is smaller than implementing a huge system in

one big bang. Second, it is more likely to have a shorter time delay from the

recognition of a well-understood requirement to the delivery of the functionality.

Complicated interactions between requirements can also be reduced and abated. Third,

the developers can learn from previous development experiences and improve their

performance in the following up development of new components. They can gain

confidence during the development process and see their results earlier than other

development strategies. Finally, and most importantly, users’ feedbacks can be

obtained much earlier than other strategies as each step of the growth process takes

much shorter period of time. This enables the users to clarify their requirements easily

and guide the direction that the system develops. In fact, this strategy differs from

so-called staged development process model in its emphasis on taking users’

feedbacks to guide the direction of software evolution.

To support the growth strategy, we designed and implemented a set of languages

and tools for modelling, specification and programming agent-oriented information

systems. These languages and tools support various activities in the development

process.

The modelling language and environment CAMLE supports

• requirements elicitation and analysis by representing the current information

system and the required system in agent-oriented models; and

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 6 ~

• feasibility study of the requirements by analysing the required modifications

to the existing system.

The formal specification language SLABS and its formal reasoning logic

Scenario Calculus support

• formal description of the requirements of the system under development so

that new functionalities and services can be implemented as new components

in the form of castes/agents; and

• formal reasoning of the design of the system/new components to ensure that

the system will meet the requirements and that the new components can be

integrated into the systems as expected.

The agent-oriented programming language SLABSp and its runtime support

environment are used for

• the implementation of the system/components according to the semi-formal

specification in the CAMLE model and/or the formal specification in SLABS;

and

• the testing of new components and the integration into the existing system.

In the following sections, we will describe each of these languages and tools, and

illustrate their uses with the running example described in section 2.

MODELLING AND ANALYSIS

Modelling plays a crucial role in the development of the seed system and its evolution

as the main tool of requirements analysis and system/component design. This section

presents the modelling process, the diagrammatic modelling language and

environment CAMLE (Shan & Zhu, 2003, 2004a, 2004b, 2005; Zhu & Shan, 2005).

 Process of Modelling

In our methodology, modelling aims at representing the users’ requirements with

a set of agents at various granularities and organizing the agents into an information

system. The key activities in the modelling and analysis phase include the following.

 Identify the agents and castes of agents in the system as well as the

relationships between them, such as the is-a relation (inheritance),

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 7 ~

membership-shift relation (migration or participation) and whole-part

relation (aggregation, congregation or composition). The artefact produced in

this activity is a caste model for the system from the perspective of system

architecture.

 Identify the agents’ interaction patterns in various scenarios, and produce a

set of collaboration models for the system from the perspective of dynamic

behaviour. In order to specify the system in sufficient detail, an agent may be

decomposed into a number of components, which are also agents. Then, the

interaction modelling proceeds to capture the interactions between the

components. Eventually, the collaboration model is refined into a hierarchy,

where collaboration models at various granularities specify the interactions

between component agents at various abstraction levels. Along with agent

decomposition, the caste model is enriched with further details to present the

caste of agents at various granularities and the structural dependencies

between them.

 For each caste, elaborate and specify how its agents perform actions and/or

change states in typical scenarios so that a set of behaviour rules can be

assigned to the caste. The artefact produced in this activity is a set of

behaviour models, each associated to a caste in the system.

The result of the modelling is a system model comprising a set of diagrams that

represent the system from various views and at different levels of abstraction. For

example, in the UNSC system, a caste diagram is constructed to capture the

organization structure, which comprises one chair and a number of UNSC members --

either permanent member or elected member. Collaboration diagrams describe the

typical scenarios of the interaction between UNSC members and the chair. Behaviour

diagrams respectively for UNSC member and chair define their specific behaviour

rules. More details are given below in the next subsection.

During the growth phase of an existing agent-oriented information system

(AOIS), new components for providing new functions, services and features are

developed in the context of the existing system, which will be the operating

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 8 ~

environment of the new components. Therefore, the model of the existing system is

the basis for the representation of the new requirements and the analysis of their

feasibility. For example, if the organization of United Nations Security Council is to

be reformed to add a new type of member whose power on resolution is between

elected member and permanent member, the UNSC information system can be

modified accordingly by adding a new caste representing the new type of members.

The Modelling Language

CAMLE employs the multiple views principle to model complicated systems. There

are three types of models in CAMLE: caste models, collaboration models and

behaviour models. Each model may consist of one or more diagrams.

Figure 2 Caste diagram: notation and the UNSC example

A caste model usually consists of one caste diagram. Figure 2 shows the notation

of caste diagrams and an example caste diagram of UNSC system. A caste diagram

comprises a set of caste nodes representing various types of agents in the system, and

a set of links representing various relationships between agents of the castes.

In the UNSC caste diagram, caste UNSC represents the organization, which is

composed of a number of members represented by caste UNSC-member. The

aggregate link between the UNSC-member and the UNSC denotes the part-whole

relationship between the members and the organization. The rule that members take

the role of Chair in rota is described by participate and migrate relation between caste

UNSC-member and caste Chair. Two types of member are represented by two

sub-castes of UNSC-member, i.e. Permanent-member and Elected-member,

respectively.

Inherit

Caste Caste node

Migrate
Participate
Aggregate

Composite

Congregate

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 9 ~

Figure 3 Notation of collaboration diagram

The collaboration models capture agents’ interaction patterns that represent

dynamic behaviours of the system. The notation of collaboration diagrams is shown in

Figure 3. A collaboration model may consists of a set of scenario-specific

collaboration diagrams that represent the interactions between agents in specific

scenarios, and a general collaboration diagram that summarises the communications

between agents.

For example, Figure 4 depicts the collaboration model of UNSC. Figure 4(1) and

4(2) describes the interactions between agents in the scenarios of voting on a proposal

and withdrawal of a proposal, respectively. The general collaboration diagram, such

as Figure 4(3), describes all possible communications between all agents that may

occur during the system’s execution.

 (1) Scenario-specific diagram: Voting (2) Scenario-specific diagram: Withdraw

(3) General collaboration diagram

Figure 4 Collaboration model of UNSC information system

Note that, when an agent is decomposed into components, the interactions

AgentName:Caste Agent node: CasteName Caste node:

Communication Link:
Actions N1 N2

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 10 ~

between the component agents also need to be specified. This results in a hierarchy of

collaboration models defining the dynamic behaviours of agents at various

granularities. Readers are referred to (Shan & Zhu, 2004b) for details about the

process of collaboration modelling, the hierarchical structure of collaboration models

as well as examples.

While caste and collaboration models describe multi-agent systems at the

macro-level from the perspective of an external observer, behaviour modelling adopts

the internal or first-person view of each agent. It describes an agent’s behaviour in

terms of how it acts in certain scenarios of the environment at the micro-level. The

notation of behaviour diagrams is shown in Figure 5. Readers are referred to (Shan &

Zhu, 2003) for detailed explanation of the notation.

Figure 5 Notation of behaviour diagram

Each caste is associated with a behaviour diagram that describes the behaviour

rules of its agents. In the UNSC example, there are two behaviour diagrams: one for

caste Chair and the other for caste UNSC-member. Figure 6 depicts the behaviour

diagram for caste Chair. The behaviour of a Chair agent is defined by four behaviour

rules describing its actions under various circumstances, namely to distribute a

proposal when some member submits the proposal, to withdraw the proposal when

requested by the proposing member(s), to call all the members to vote on a proposal,

and to quit from Chair when its turn finishes.

The castes Permanent-member and Elected-member inherit the behaviour rules of

UNSC-member. They have no additional behaviour rules so need no different

behaviour diagram to that of the UNSC-member.

T-Exp

A B

t: Predicate
C-Exp

R-Exp

Act(p1,…pn) t: Action node

State assertion node

Temporal order Link

Logic link & or ¬

Scenario

Precondition

Scenario node

Precondition node

Transition bar

Resulting arrow

Logic connective nodes

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 11 ~

Figure 6 Behaviour diagram of the Chair in UNSC information system

The Modelling Environment

A software environment to support the process of analysis and modelling in CAMLE

has been designed and implemented. It integrates the following set of tools.

• Model construction and management tools: a set of interactive diagram editors

with graphic user interface are provided to enable the creation, editing and

modification of various diagrams in CAMLE models. These diagrams are

organized and managed into development projects. Reuse of models from

other projects is enabled. Figure 7 shows a screen snapshot of the CAMLE

environment’s interface.

• Consistency checkers: a set of consistency constraints is defined on the

CAMLE language to ensure that a set of diagrams form a meaningful model of

an information system. The consistency of a model is checked by a set of tools

to identify any violence of the constraints. Details of the consistency

constraints and the implementation of the checkers can be found in (Shan &

Zhu, 2004a).

• Specification generator: it transforms a well-defined model into a formal

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 12 ~

specification in SLABS. Details of the transformation algorithms can be found

in (Zhu & Shan, 2005).

Figure 7 CAMLE’s Graphical User Interface for model construction

Figure 8 below shows the architecture of the modeling environment.

Figure 8 The architecture of CAMLE environment

Readers are referred to (Zhu & Shan, 2005) for detailed description of the architecture

Users’
Requirements

Formal
Specifications

Diagram
Editor

Partial
Diagram

Generator

Well-
formedness

Checker

Graphic
Models

Graphic User
Interface

Model
Manager

Specification
Generator

Consistency
Check Report

Consistency
Checker

Controller

Collaboration
Model Checker

Caste/
Collaboration

Checker

Behaviour/
Collaboration

Checker

Caste/
Behaviour
Checker

Behaviour
Model

Checker

General/
Specific
Checker

Cross level
Checker

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 13 ~

and functionality of CAMLE environment.

SPECIFICATION

One of the most appealing features of agent technology is its natural way to

modularise complex systems in terms of multiple interacting autonomous components.

This feature is supported by the language facility caste in SLABS for modular and

composable specification of multi-agent systems. It bridges the gap between graphic

modelling and implementation in the AOIS development process. The output of the

modelling phase – a system model in CAMLE – is further analysed at the

specification phase, which involves the following two main activities.

 Generation of formal specifications. As for all software developments, it is

necessary to analyse the design of an agent-based system before the developers

are committed to costly implementation. It is particularly true during the

evolution of a system when new components are to be integrated into the existing

system. Formal analysis of the new components in the context of the system is

therefore highly desirable. However, the manual production of formal

specifications of multi-agent systems is labour-intensive, costly, time consuming

and error-prone. With the help of CAMLE modelling environment, formal

specifications in SLABS can be automatically generated from graphic models in

CAMLE

 Formal analysis of the system. Formal analysis can be applied on formal

specifications in SLABS to prove the properties of the specified system. We have

been devising a formal system Scenario Calculus to reason about the behaviours

of multi-agent systems, especially their most complicated behaviours such as

emergent behaviours (Zhu, 2005). If the formal reasoning about the system/new

components based on the formal specification reveals that the system model is

unsatisfactory on certain properties, the flow of the process goes back to the

modelling phase to rectify the design. Thus, the process iterates the modelling

and specification stages until a satisfactory model/specification is achieved.

The formal definition of the SLABS language and its meta-model can be found in

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 14 ~

(Zhu, 2001, 2003). A formal logic for reasoning about MAS’ behaviours based on

SLABS can be found in (Zhu, 2005).

Figure 9 shows an example of caste specification. It is the UNSC-member caste

generated by CAMLE environment’s specification generator from the CAMLE model

of the UNSC system.

Figure 9 Specification of UNSC-member caste in SLABS

IMPLEMENTATION

A distinctive feature of our agent-oriented development methodology of information

systems is that we aim at the direct implementation of information systems with a

novel agent-oriented programming language that is based on the meta-model of

agent-oriented information system described in (Zhu, 2006). Such a programming

language can significantly narrow the gap between specification and implementation.

This section presents our research on the design and implementation of the

agent-oriented programming language SLABSp and illustrates the style of

programming by the running example.

SLABSp is designed to support the caste-centric approach to agent-oriented

software development methodology by extending the object oriented programming

language Java (Shen, Wang & Zhu, 2004; Wang, Shen & Zhu, 2005a, 2005b, 2005c).

As shown in Figure 10, it extends Java with three key concepts and language facilities,

i.e. caste, scenario and environment descriptions.

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 15 ~

Caste ::= { Java-Import }
‘caste’ Name [‘:’ { Name / ‘,’ }+ ‘{‘

{ Environment }
{ State | Action | Rule }

‘}’
Agent ::= { Java-Import }

‘agent’ Name [‘:’ { Name / ‘,’ }+] ‘{‘
{ Environment }
{ State | Action | Rule }

‘}’
Environment ::= Name Id ‘;’

State ::= [‘internal’] Type ‘#’Id ‘(’ Formal-Parameters ‘)’ ‘{‘
{ Java-Definition }
‘get’ ‘:’ Statement
[‘set’ ‘:’ Statement]

‘}’
Action ::= [‘internal’] ‘~’Id ‘(’ Formal-Parameters ‘)’ ‘{‘

{ Statement }
‘}’

Rule ::= ‘rule’ Id ‘(‘ Formal-Parameters ‘)’
[‘when’ ‘(’ Scenario ‘)’]
[‘where’ ‘(’ Conditional-Expression ‘)’]
‘do’ ‘{‘ { Statement } ‘}’

Scenario ::= (Name | ‘self’) Pattern (a)
| ‘<’ [Number] ‘:’ [Number] ‘>’ Name Pattern (b)
| Count-Conditional-Expression (c)
| Scenario ‘,’ Scenario (d)
| Scenario ‘|’ Scenario (e)
| ‘!’ Scenario (f)
| ‘(’ Scenario ‘)’ (g)

Pattern ::=
‘\’ { (Action-Pattern | State-Assertion) / ‘,’ } ‘\’

Action-Pattern ::=
(‘~’ | ‘*’ | ‘~’Id ‘(’ Parameters ‘)’) [‘^’ Number]

State-Assertion ::= Conditional-Expression
Figure 10 Syntax of SLABSp in EBNF

These language facilities become the dominant language facilities in the

implementations of AOIS, and significantly change the styles of programming. In

particular, caste becomes the basic program unit from which a complicated software

system is built. Although class in object-orientation can still be used in the

programming, it is now mainly used to define encapsulated data types that agents

manipulate and used to represent agent’s states. Other Java constructs, such as Import

statements, Expressions, Statements, etc., are still legal language facilities, but they

are extended to include identifiers to refer to agent's states and actions, which are

represented by preceded `#' and `~', respectively. There are also the additional join

and quit statements to enable agents’ dynamically joining into and quitting from

castes.

Another significant change of programming style is the result of the introduction

of the scenario description language facility. The syntax of scenario description is

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 16 ~

given in Figure 10, where an expression in the form of (a) describes the situation that

a specific agent behaves in a certain pattern, where the agent is referred to by its name

or keyword self. Expressions in the form of (b) describe the situation that the

number of agents of a caste that behave in a certain pattern is within a specified

interval, where the interval's boundaries are optional. The default value of the left

boundary (i.e. the lower number) is ‘zero’. When the right boundary is absent, it

means ‘all’, i.e. the size of all the caste. The Count-Conditional-Expression in the

form of (c) is an extension of Java Conditional-Expression with Count-Expression.

The result of evaluating a count-expression is the number of agents in a caste that

behave in the pattern. Expressions in the form of (d), (e) and (f) are the logic ‘and’,

‘or’ and ‘not’ combination of scenarios in the above forms, respectively. Expressions

in the form of (g) are used to change the preference of the logic combinations. The

uses of scenario descriptions in conjunction with agents’ visible actions and

environment descriptions enable communications and collaborations among agents to

be described at a high level of abstraction and in the same style of conditional

expressions in structured programming.

For example, the UNSC system can be implemented in SLABSp as shown in

Figure 13. Based on the specification of the UNSC system, caste Member has three

behaviour rules. Rule Withdraw will enable the agent to request the proposal to be

withdrawn when the agent regards the proposal as inappropriate. Rule Vote will guide

the agent to vote on the proposal with a specific attitude when the Chair calls the

agent to vote. Rule AlternateJoin will trigger the agent to join caste Chair when it is

its turn. Caste Chair extends caste Member with four additional rules. Rule Distribute

will guide the Chair agent to distribute the proposal and schedule a voting date for

each submitted proposal. Rule CallVote will direct the Chair agent to call the

members to vote on the proposal on the voting date. Rule AlternateQuit will ask the

current Chair to quit from caste Chair when its turn finishes. Rule Resolution will

define how a decision should be made based on the members’ votes.

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 17 ~

import java.util.Date;
import java.util.Calendar;

caste Chair : Member {
~Distribute(Proposal proposal, Date date){ // ...
}

~Withdraw(Proposal proposal){ // ...
}

~Callvote(Member member, Proposal proposal){ // ...
}

~Resolution(Proposal proposal){ // ...
}

rule Distribute(Proposal proposal)
when (self\~\, <1:1>Member\~Submit(?proposal)\)
do { // schedual voting a week later

Date date = Calendar.getInstance()
.add(Calendar.DAY_OF_MONTH, 7).getTime();

~Distribute(proposal, date);
}

rule CallVote(Proposal proposal, Date date)
when (self\~Distribute(?proposal, ?date)\)
where (Calendar.getInstance().getTime().equals(date))
do { // call all members (except the Chair) to vote, the call the Chair

Collection members = Member#agents();
members.remove(self);
for(Member member: members)

~CallVote(member, proposal);
~CallVote(self, proposal);

}

rule AlternateQuit()
when (self\~\)
where (// the last day of a month

Calendar.getInstance().get(Calendar.DAY_OF_MONTH) ==
Calendar.getInstance().getActualMaximum(Calendar.DAY_OF_MONTH))
do { quit Chair; }

rule Resolution(Proposal proposal)
when (<:>Member\~Vote(?proposal, *)\, // all members have voted

*Member\~Vote(proposal, FOR)\ > Member#population() / 2,
!<1:>PermenantMember\~Vote(proposal, AGAINST)\)

do { ~Resolution(proposal); }
}

import java.util.Calendar;

caste Member {

~Submit(Proposal proposal){
// ...

}

~ReqWithdraw(Proposal proposal){
// ...

}

~Vote(Proposal proposal, Attitude attitude){
// ...

}

rule Withdraw(Proposal proposal)
when (self\~Submit(?proposal)\)
where (proposal.isInappropriate())
do {

~ReqWithdraw(proposal);
}

rule Vote(Proposal proposal)
when (Chair\~CallVote(self, ?proposal)\)
do {

// think about the proposal
Attitude attitude = Attitude.FOR ; // or AGAINST, or ABSTAIN
~Vote(proposal, attitude);

}

rule AlternateJoin()
when (self\~\)
where (// the first day of a month

ChairOfMonth(self, Calendar.getInstance().get(Calendar.MONTH))
&& (Calendar.getInstance().get(Calendar.DAY_OF_MONTH) ==
Calendar.getInstance().getActualMinimum(Calendar.DAY_OF_MONTH)))
do {

join Chair;
}

}

// the caste for permanent members
caste PermanentMember : Member {

// …
}

Figure 11 Fragments of UNSC system in SLABSp

A runtime environment for the execution of multi-agent systems has been

implemented as an extension of Java runtime environment. In particular, an

automaton called the Pattern Process Machine is designed and implemented to

process patterns and scenarios. A compiler has been developed to translate SLABSp

programs into Java and to execute in the runtime environment. More details can be

found (Shen, Wang & Zhu, 2004; Wang, Shen & Zhu, 2005a, 2005b, 2005c).

The design and implementation of SLABSp demonstrate that caste and scenario

are feasible as programming language facilities. Our experiences and experiments

with the language clearly show that they provide power abstractions for AO

programming. In particular, the caste facility enables the modularity in the concept of

agents to be realized directly and in full strength. An obvious advantage of using

scenarios to define agents’ behaviors is that it can significantly reduce the unnecessary

explicit message-based communications among agents. This also enables AO

programming at a very high level of abstraction.

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 18 ~

CONCLUSION

We now conclude the chapter with a summary of our main ideas and research results

and a comparison of our work with related works.

Summary

Our caste-centric methodology of agent-oriented information systems is based on a

well-defined meta-model, which is presented in (Zhu, 2006). It consists of a process

model called the growth model, a set of languages including a modelling language

CAMLE for the requirements analysis and design, a formal specification language

SLABS and a programming language SLABSp, and a set of support tools including

CAMLE’s modelling environment, formal reasoning system Scenario Calculus, and

runtime support environment of agent-oriented programs. A number of case studies on

modelling, formal specification and verification and programming have been

conducted to develop the heuristics of using the languages and tools. Our

methodology has the following features.

The methodology aims at modern information systems, especially those running

on the Internet and the Web platforms. As argued in (Zhu, 2004), such systems belong

to Lenman’s E-type and are by nature evolutionary. Agent-oriented approach is very

suitable for the development of such systems as we have shown in (Zhu, 2006).

Moreover, the growth process model explicitly reflects the evolutionary

characteristics of such systems and encourages the growth strategy, i.e. the sustainable

long-term evolution strategy, of their lifecycle. This strategy is also strongly supported

by the languages and tools.

The set of languages designed for uses at different phases in the development and

evolution of AOIS are based on a well-defined meta-model. The gaps between

requirements specification, system and component design, and implementation are

much smaller than their counterparts in other existing paradigms and approaches. In

particular, the key concepts of agents and castes can be directly implemented in the

agent-oriented programming language.

Our methodology is an extension of the current mainstream paradigm (i.e. the

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 19 ~

object-orientation) of information system development. In our model, object is a

special degenerate form of agent. Agent-orientation provides a better metaphor for

modelling the information systems in the real world than object-orientation. It can

directly represent active and autonomous elements in information systems such as

humans, independent information processing components such as web services, etc. It

enables the design and implementation of computerised information systems in a

structure that is closer to the structure of the system in the real world than

object-orientation.

Finally, our approach to agent-orientation is caste-centric. In other words, caste

plays the central role in our methodology. It is not just an abstract concept but also a

language facility that can be directly implemented in a programming language. It is

the basic form of program unit from which complicated systems are constructed. It

realises the kind of modularity inherent in the concept of agents. Our case studies

show that caste can be used in a nice and straightforward way to model and

implement various useful notions developed in agent technology, such as roles, agent

society, collaboration protocols, normative behaviours, etc.

Related Work

Since Jennings advocated the notion of agent-oriented software engineering as a

paradigm for building complex system in (Jennings, 1999), a number of

methodologies for agent-oriented software development have been proposed, such as

MaSE (Wood & DeLoach, 2000), Gaia (Wooldridge, Jennings & Kinny, 2000;

Zambonelli, Jennings & Wooldridge, 2003), Tropos (Bresciani, 2004), PASSI

(Burrafato & Cossentino, 2002), etc. A survey and analysis of the current state of art in

the research on agent-oriented software engineering can be found in (Zambonilli &

Omicini, 2004).

As an early work on MAS engineering methodology, MaSE provides a

development process covering the phases from capturing goals down to assembling

agent classes and system design. Notations for representing system specifications in

various stages and an environment supporting MAS development are developed

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 20 ~

(Wood & DeLoach, 2000). Gaia provides guides for analysis and design of

agent-based systems with the view that a multi-agent system is a computational

organization consisting of various interacting roles (Wooldridge, Jennings & Kinny,

2000). Role is adopted as the key concept, which is associated with responsibilities,

permissions, activities, and protocols. The new version Gaia methodology advocates

computational organization abstractions as the key abstraction of agent-based

computing (Zambonelli, Jennings & Wooldridge, 2003). Tropos methodology

emphasizes to use the notion of agent and all the related mentalistic notions in all

phases of software development and purports to cover the very early phases of

requirements analysis (Bresciani, et al., 2004).

Despite the subtle differences in the research aims and focuses, the above works

hold the same beliefs that the concept of agent is on a higher level of abstraction than

object, thus agent-orientation will bring more efficiency to software engineering than

object-orientation. Most of the existing methodologies attempt to exploit agents’

advantages such as autonomy and sociality using the mentalistic notions including

goal, plan, role, etc. Our work distinguishes from them in that the notions of caste and

scenario, instead of the mentalistic notions, are the basic concepts for embodying

agents’ power.

Further Work

There is still a long way to go before agent-orientation become a mature development

paradigm of information systems. There are many issues remaining for future work.

On the top of our research agenda are further investigation of the languages and tools

in industrial context. We will connect the languages and tools with the on-going

development of web technologies such as web services, grid computing and

peer-to-peer computing. Another aspect of development methods that has not been

discussed in depth in this chapter is testing, verification and validation. We will

further develop the formal reasoning system Scenario Calculus for analysing SLABS

specifications and reasoning about the properties of emergent behaviours. We are also

investigating software tools to support the formal reasoning. Automatic

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 21 ~

transformation from SLABS specifications to executable system is also in our agenda.

ACKNOWLEDGEMENT

The work reported in this chapter is partly supported by the National Key Foundation

Research and Development Program (973) of China under Grant No. 2005CB321802,

the National High Technology R&D (863) Programme of China under grants No.

2002AA116070 and No. 2005AA113130, and Program for New Century Excellent

Talents in University.

REFERENCES

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. (2004). Tropos:

an agent-oriented software development methodology. Autonomous Agents and

Multi-Agent Systems, 8(3), 203-236.

Burrafato, P. & Cossentino, M. (2002). Designing a multi-agent solution for a

bookstore with the PASSI methodology. Proc. of AOIS’02 at CAiSE'02.
FIPA Agent UML Technique Committee (2005). Case Studies of Agent Modelling:

The Security Council of United Nations. Available online at URL:

http://www.auml.org/auml/documents/, (accessed on May 30, 2005).

Jennings, N.R. (1999). Agent-oriented software engineering. Multi-Agent System

Engineering, Proceedings of 9th European Workshop on Modelling Autonomous

Agents in a Multi-Agent World (June/July 1999, Valencia, Spain, Garijo, F. J.,

Boman, M. eds.). Springer LNAI 1647, 1-7.

Lehman M. M. & Ramil, J. F. (2001). Rules and tools for software evolution planning

and management. Annals of Software Engineering, Special Issue on Software

Management, 11(1), 15-44.

Lehman, M.M. (1990). Uncertainty in computer application. Communications of

ACM, 33(5), 584-586.

Shan, L. & Zhu, H. (2003). Modelling and specification of scenarios and agent

behaviour. Proc. of IEEE/WIC conference on Intelligent Agent Technology

(IAT’03) (Oct. 2003, Halifax, Canada). IEEE CS, 32-38.

Shan, L. & Zhu, H. (2004a). Consistency check in modelling multi-agent systems.

Proc. of COMPSAC’04 (Sept. 2004, Hong Kong). IEEE CS, 114-121.

Shan, L. & Zhu, H. (2004b). Modelling cooperative multi-agent systems. Proc. of

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 22 ~

Grid and Cooperative Computing: Second International Workshop (Shanghai,

China), Revised Papers, Part II. Springer-Verlag LNCS 3033, 994-1001.

Shan, L. & Zhu, H. (2005). CAMLE: a caste-centric agent-oriented modelling

language and environment. Software Engineering for Multi-Agent Systems III:

Research Issues and Practical Applications, (Choren, R., Garcia, A., Lucena, C.,

& Romanovsky, A. eds.), Springer-Verlag LNCS 3390, 144-161.

Spivey, J. M. (1992). The Z Notation: A Reference Manual, 2nd edition. Prentice Hall.

Shen, R., Wang, J. & Zhu, H. (2004). Scenario mechanism in agent-oriented

programming. Proceedings of APSEC’04 (Busan, Korea), 464-471.

Wang, J., Shen, R. & Zhu, H. (2005a). Agent Oriented Programming based on

SLABS. Proceedings of COMPSAC’05 (Edinburgh, UK, July 25~28, 2005),

127-132.

Wang, J., Shen, R. & Zhu, H. (2005b). Caste-Centric Agent-Oriented Programming.

Proc. of First International Workshop on Integration of Software Engineering and

Agent Technology at QSIC’05 (Sept. 2005, Melbourne, Australia). In press.

Wang, J., Shen, R. & Zhu, H. (2005c). Towards an agent-oriented programming

language with caste and scenario mechanisms. Proceedings of AAMAS’05, (July

27 - 29, 2005Utrecht, Netherland). In press.
Wood, M.F. & DeLoach, S.A. (2000). An overview of the multiagent systems

engineering methodology. Proc. of AOSE 2000, 207-222.

Wooldridge, M., Jennings, N. & Kinny, D. (2000). The Gaia methodology for

agent-oriented analysis and design. Autonomous Agents and Multi-Agent

Systems, 3(3), 285-312.

Zambonelli, F., Jennings, N. & Wooldridge, M. (2003). Developing multiagent

systems: the Gaia methodology. ACM Transactions on Software Engineering and

Methodology, 12(3), 317-370.

Zambonilli, F. & Omicini, A. (2004). Challenges and research directions in

agent-oriented software engineering. Autonomous Agents and Multi-Agent

Systems, 9, 253-283.

Zhu, H. & Shan, L. (2005). Caste-centric modelling of multi-agent systems: the

CAMLE modelling language and automated tools. Model-driven Software

Development, Research and Practice in Software Engineering, II, Beydeda, S. &

Caste-centric Development of Agent-Oriented Information Systems 22/04/2006

~ 23 ~

Gruhn, V. eds. Springer-Verlag, 57-89.

Zhu, H. (2001). SLABS: A formal specification language for agent-based systems.

International Journal of Software Engineering and Knowledge Engineering, 11(5),

529-558.

Zhu, H. (2002). A growth process model and its supporting tools for developing

web-based software, Acta Electronica Sinica，30(12A), 2090-2093 (In Chinese).

Zhu, H. (2004). Cooperative agent approach to quality assurance and testing web

software. Proc. of COMPSAC’04 (Workshop Papers and Fast Abstracts), the

Workshop on Quality Assurance and Testing of Web-Based Applications

(QATWBA’04) (Sept. 2004, Hong Kong), IEEE CS, 110-113.

Zhu, H. (2005). Towards formal reasoning about emergent behaviours of MAS. Proc.

of SEKE’05 (July 2005, Taipei), 280-285.

Zhu, H. (2006). Towards an agent-oriented paradigm of information systems.

Chapter ???, in this book.

Zhu, H., Greenwood, S., Huo, Q., & Zhang, Y. (2000). Towards agent-oriented quality

management of information systems. Workshop Notes of Second International

Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS-2000)

at AAAI’2000 (Austin, USA, July 30, 2000), 57-64.

