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Abstract —Due to the time-varying nature of real workload, a 
large scale computer system has quite a number of idle nodes 
in most time of operation. They consume energy, but do 
nothing useful. To save the huge energy waste caused by such 
active idle nodes, most modern compute nodes provide 
multiple level dynamic sleep mechanisms to reduce power 
consumption. However, awaking sleeping nodes takes time, 
thus affects the response times and performance of the system. 
A node is deeper in sleep, it consumes less energy, but has 
longer wakeup latency. This paper proposes a sleep state 
management model to balance the system’s energy 
consumption and response times. In this model, idle nodes are 
classified into different groups according to their sleep states. 
Each group contains nodes of same level of sleep depth and 
forms a reserve pool of a certain readiness level. In a resource 
allocation process, nodes in the pool of highest level of 
readiness are preferentially provided to the application. When 
the nodes in the pool of the highest readiness level are not 
sufficient, the nodes in the pool(s) of next level(s) of readiness 
are allocated. After each allocation and reclaim of nodes, the 
numbers of nodes in each level of pools are adjusted by 
changing the sleep depth of the nodes up and down. Thus, the 
reserve pools can be maintained at all times. Obviously, a key 
factor that affects the effectiveness of the idle node 
management is the sizes of the reserve pools. This paper 
proposes and investigates a self-adaptive approach to this 
problem so that the sizes of reserve pools are dynamically 
adjusted according to the applications. Our experiments 
demonstrated that, by applying our self-adaptive management, 
the power consumption of idle nodes can be reduced by 84.12% 
with the cost of slowdown rate being only 8.85%.  
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I.  INTRODUCTION 
To satisfy the steadily rising demands on computing 
performance, both the number of compute units in 
data/compute centers and the system integration density 
grow rapidly. Power management has becomes a grave 
challenge to the development and operation of large scale 
computing systems. 

Large scale high performance computing systems 
consume a tremendous amount of energy. According to the 
recent TOP500 list of supercomputers [1], the average power 
consumption of Top10 systems is 4.34 MW. The peak power 
consumption of the most power consuming supercomputer, 
i.e. the K computer, reaches 12.659 MW, which equals the 
power usage of a middle scale city. In 2006, US servers and 
data centers consumed around 61 billion kWh at a cost of 
about 4.5 billion U.S. Dollars. This is about 1.5% of the total 
U.S. electricity consumption or the output of about 15 typical 

power plants [2]. In 2007, the electricity consumption of 
global cloud computing was 623 billion kWh which is larger 
than the 5th largest electricity demand country in the world, 
i.e. India [3]. Many data center projects have been cancelled 
or delayed because of an inability to meet such enormous 
power requirements.  

High density power consumption causes overheating, 
which leads to problems of the reliability and availability of 
the system. Huge construction costs of large scale systems 
are also incurred in order to accommodate the huge amount 
of energy demand.  

On the other hand, workload of data centers varies 
significantly with time and the average resource utilization of 
large scale systems typically sit at low levels of utilization. A 
quite number of nodes are idle in most time. Unfortunately, 
nowadays nodes are not power-proportional and a node in 
idle state is highly energy inefficient. The power 
consumption of an idle node generally reaches about 50% of 
its peak power [4]. In the result, idle nodes in large scale 
systems cause huge energy waste. 

To reduce the power consumption of a node in its idle 
state, dynamic sleep mechanism is proposed and multiple 
sleep states are supported in current common nodes [5]. Each 
sleep state consumes less power than idling in the active state. 
The deeper the node sleeps, the less power it consumes, but 
the more energy and the more time delay are needed to wake 
it up. Considering the overhead of state transitions, the 
deepest sleep state obviously is not always the best choice 
for idle nodes. In this paper, we propose a self-adaptive 
management solution of multiple sleep state of idle nodes in 
large scale systems to make an effective tradeoff between 
energy conservation and system response performance.  

II. RELATED WORKS 
Dynamic speed scaling and dynamic resource sleep are two 
power management mechanisms widely supported in current 
information industry. Even all components were scaled into 
their lowest speeds, the active power consumption of an idle 
node is significantly higher than its sleep power [5]. The 
dynamic cluster configuration, i.e. put idle nodes into sleep 
states and wake them on demand, is a typical power 
management technique for large scale systems [4-8].  To 
balance between energy and performance, most researchers 
on dynamic configuration of cluster focus on server 
consolidation via finding an appropriate active portion of the 
cluster dynamically. The idle remainders are simply turned 
off [10].  

The importance of supporting multiple sleep state for 
servers in data centers has been investigated by Gandhi et al. 
[9]. However, their approach does not dynamically manage 



the sleep depth of idle servers. Horvath et al. [10] propose an 
energy management policy which exploits the multiple sleep 
states of idle servers. They predicate the incoming workload 
based on history resource utilization change and select the 
optimal number of spare servers for each power states in an 
ad-hoc manner. Extra spare servers are put in the deepest 
possible sleep states. Different to their heuristic selection of 
sleep state, we control the state transition of idle nodes in a 
self-adaptive model where reserve pools of idle nodes with 
corresponding sleep depths regulate their sizes respectively. 
Xue et al. [11] provide the active resource pool with 
dynamic computing capacity in accordance with the time-
varying workload demand. However, spare nodes in their 
power management solution are simply turned off. Multiple 
sleep sates are not considered by them. In this paper, we 
explore the benefits of these multiple sleep states mechanism 
to improve the energy efficiency of large scale systems with 
minimal sacrifices of system performance. 

III. SELF-ADAPTIVE MANAGEMENT MODEL  
The nodes in a cluster environment can be classified into two 
categories according to whether any application is running 
on them, i.e. busy nodes and idle nodes. If a node has been 
allocated to any application, the node is busy. Otherwise, it is 
idle. An idle node, even in active standby state, does not 
generate any useful compute production. 

To avoid the energy waste on idle state, an idle node 
should be put into low-power sleep state. In current 
information technology, a node may support multiple sleep 
states. For example, in ACPI specification, the power state of 
a node can be S0, S1, S2, S3, S4 or S5, where S0 is the 
active state, S1~S5 denote different levels sleep state with S5 
as the deepest sleep state. The deeper a node sleeps, the less 
power it consumes, however, the more energy and latency is 
required to wake it up.  In each sleep state, the power 
consumption wakeup energy and wake up latency are 
constants, which are denoted by Pi, Ei and Di, i=0, …, M, 
respectively, where M the number of supported sleep states 
of the node. These parameters satisfy the follow formula 1. 
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The power consumption in a sleep state is always lower 

than the power usage in active standby state. However, 
additional state transition energy is required to put a node 
into sleep state or wake it up. Thus, to conserve energy by 
dynamic sleep mechanism, it is necessary that the 
continuance time width of sleep state should be long enough. 
So that the energy saved during sleep is greater than 
additional energy consumption caused by state transition.  
On the other hand, a node in sleep state is not available. 
Before providing any functional service, the node must first 
be woken up. It means that the wake up latency may depress 
the response speed of the sleep node. Consequently, it may 
be not the best choice to put a node into its deepest sleep 
state whenever it becomes idle. An effective power 
management solution is required to schedule the appropriate 
sleep or wake timing of idle nodes to improve the energy 
efficiency of the whole system. From the cluster-wide 
viewpoint, node sleep depth management means to distribute 

the idle nodes among different groups of corresponding 
power states.  

In the paper, we propose a self-adaptive management 
model for the sleep depth of idle nodes in large scale systems, 
called ASDMIN. As shown in Figure 1, in ASDMIN model, 
the idle nodes are classified into a number of node groups 
according to their sleep depths. Each group is therefore a 
reserve pool of nodes of certain readiness. The higher the 
power consumption is, the higher the readiness level is. The 
pool of level i, denoted as Bi, is composed of all of the nodes 
with the same power consumption level Pi.  

 
Figure 1. ASDMIN model for adaptive sleep depth management of 

idle nodes 

Assume that the number of nodes in Bi is Ni, and the total 
number of all idle nodes in the system is N, then we can get 
that: 
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Thus, the power consumption of all idle nodes, Pidle, equals 
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ASDMIN try to reduce the power consumption of idle 
nodes by exploiting dynamic sleep mechanism. However, in 
a deeper sleep state means a longer wakeup latency. To 
provide sufficient nodes to the incoming application as soon 
as possible, ASDMIN resource allocation policy will 
preferentially allocate nodes from the highest reserve pool 
which has the shortest wakeup latency. When the nodes in 
the pool of the highest readiness level are not sufficient, the 
nodes in the pool(s) of next level(s) are allocated. Let the 
required total node number of an incoming application is A, 
the lowest of the levels of reserve pools covered by its 
allocation is denoted by Level(A). Obviously, we have that  
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Assume that allocated nodes are waked up in parallel. 
Then, the response time D of an allocation is determined by 
the largest wakeup latency of the allocated nodes. Let 
Delay(A) denote the wakeup latency of allocating A nodes. 
According to (1), we have that 

0 1( ) max{ , ,..., }l lDelay A D D D D                         (5) 
where l=Level(A).  



Constrained by the service level agreement on response 
time, the level of the reserve pool that covers an allocation 
should not be lower than the requirement. In other words, 
there should be enough nodes in the pools whose sleep depth 
are lower than l. Therefore, we set a reserve capacity 
threshold, denoted as Ri, to control the minimum number of 
nodes in pool Bi. In other words, the number of nodes in Bi 
should always be no less than Ri. Whenever the node number 
of Bi is less than Ri, nodes in the lower pools will be 
upgraded to fill the reserve capacity.  

To save energy consumption of idle nodes, ASDMID 
tries to degrade idle nodes to a sleep state as deep as possible 
while maintains enough reserves.  

Generally speaking, the less the reserve capacity 
thresholds for the highest reserve pools are, the more likely a 
node is degraded, and the less total power consumption of all 
idle nodes, and then the more energy is saved. However, the 
wakeup latency is longer and the performance loss caused by 
dynamic sleep is more significant.  

When the nodes allocated to an application are freed, 
they will be reclaimed and delivered to the appropriate 
reserve pools. 
By dynamically scheduling the sleep depths of idle nodes, 
ASDMIN can make tradeoff between energy and 
performance. In the optimal scenario, the system’s response 
speed matches nearly to the speed when all nodes are put in 
the active standby state (i.e., in the highest reserve pool), and 
the energy conservation nearly match to that when all nodes 
are in deepest sleep state (i.e. in the lowest reserve pool).  
However, in reality, a trade-off between energy consumption 
and performance must be made. Our approach to this trade-
off is to adjust the reserve capability thresholds dynamically 
and adaptively. The related management algorithms in 
ASDMIN will be introduced in detail in the next section.  

IV. POWER MANAGEMENT ALGORITHMS 
The operation of ASDMIN model depends on two sets of 
algorithms: the degradation and upgradation algorithms for 
changing the sleep depths of the idle nodes, and allocation 
and reclaim of nodes for deciding which node is to allocated 
for an application.  

A. Degrading and Upgrading Idle nodes 
Once an idle node is allocated to an application, the amount 
of reserve in the reserve pool is reduced. If the amount of 
reserve is lower than the required capacity, the pool needs to 
recruit nodes from lower pools. Consequently, this recruiting 
of nodes may cause reserve shortage of the lower pools. The 
progress of recruiting is thus a recursive process propagates 
from the top level to the lowest level as shown in Algorithm 
1.  

Algorithm 1. Upgrade(); 
(* Upgrade the power states of idle nodes *) 
State Variables:  

<B0, B1 …… BM>: Sets of idle nodes in the reserve 
pools; 
Local Variable: 
   k: the level of the target pool to recruit; 
Begin 

for all pools Bi 
{ 

k = i +1; 
while (Ni < Ri) { 

if (k > M) 
break; 

if (Nk >= (Ri - Ni)) { 
Select (Ri - Ni) nodes from Bk into Bi; 
Ni = Ri; 
Nk = Nk – (Ri - Ni); 

} else { 
Take all nodes in Bk into Bi; 
Ni = Ni + Nk; 
Nk = 0; 
k = k+1; 

} 
} 

} 
End 

When a node is reclaimed due to the finish of a task, it 
should be put into a reserve pool. Consequently, the amount 
of resource in the pool may exceed the required capacity.  
The excessive nodes can therefore put into a deeper state of 
sleep. However, we do not want to put them into sleep 
immediately because this may result in the frequent changes 
of the states of nodes, which consumed energy, too. A 
question is that how long the delay should be so that stability 
of the sizes of reserve pools and nodes’ sleeping states can 
be maintained and the balance between performance and 
energy consumption can be achieved.  

 Let’s first introduce a few terminologies.  
 Piercing a reserve pool: we say that a reserve pool is 

pierced at certain time moment during the operation of the 
system, if all the nodes in the pool are allocated but the 
resource is still insufficient to meet the amount of required 
nodes. In this case, at least one node in the lower level 
reserve pool is used.  

 Continuous time period without piercing (CTPOP): for a 
given reserve pool, it is a continuous period of time during 
which no piercing happened.  

 Length of CTPOP: at a certain time moment in the 
operation of a system, the length of a CTPOP is the length 
of time period from the last piercing of the reserve pool.  

The length of a CTPOP gives a good indication of how 
sufficient the capability of the reserve pool is with respect to 
the runtime characteristics of the application software. If the 
capability is too small, the pool will be frequently pierced, 
thus the length of CTPOP is short. Consequently, the 
performance of the system is slowed down. If the capability 
is too big, the reserve pool will be rarely pierced, and the 
length of CTPOP will be large. In this scenario, the power 
consumption is unnecessary and some of the nodes can be 
put in a deeper state of sleeping. Therefore, to balance 
between energy consumption and performance, the length of 
CTPOP must be managed at a certain ideal target value Ti for 
each reserve pool Bi. This target value is called state 
continuance threshold, i.e. 
 A state continuance threshold (Ti), for a given reserve pool 



Bi, it is the value set to judge whether its length of CTPOP 
is long enough.  

By setting the state continuance thresholds for the reserve 
pools, we can manage the reserve pools as follows.  

 At a time moment, if the CTPOP ti of Bi is greater than 
the value Ti, the reserve pool Bi has not being pierced for a 
period long enough, thus its reserve capacity is superfluous 
than required. The over-reserved nodes in Bi can be degraded 
into deeper sleep state to save energy. In such situation, a 
subset of Bi, notated as DSi, is selected as the target to 
degrade its nodes into the lower pool Bi+1.  

Therefore, the degradation of a node follows two 
constraints, i.e. (a) the size of the reserve pool is greater than 
the reserve capacity (Ri) and (b) the length of CTPOP is 
greater that state continuance threshold (Ti). Details of the 
algorithm are given below.  

Algorithm 2. Degrade();  
(* Degrade the power states of idle nodes*) 
Input:  
    <N0, N1 …… NM>: The current sizes of reserve pools; 

<t0, t1 …… tM>: The current lengths of the CTPOP of 
reserve pools; 
State variables: 

 B0, B1 …… BM: the sets of idle nodes in reserve pools; 
Begin 

for i from 0 to M1  do { 
if ((ti > Ti) && (Ni > Ri)) { 

select a subset DSi of Bi such that ||DSi||=Ni-Ri; 
Bi = Bi – DSi ; 
Bi+1 = Bi+1 + DSi;  
Ni = Ni – ||DSi||; 
Ni+1 = Ni+1+ ||DSi||; 

} 
} 

End 

B. Resouce Allocation and Reclaim 
When a new application or task is initiated and K nodes 

are required, a recursive resource allocation (RRA) algorithm 
is invoked as shown in Algorithm 3. 

Assume that the required node number by the incoming 
application is K. If the number of nodes in B0 (i.e. the top 
level reserve pool) is less than K (i.e. N0 < K), level 0 
piercing occurs. Thus, the CTPOP of B0 is reset to 0. Beside 
all nodes in B0 are allocated to the application, RRA will 
further allocate (KN0) nodes from the next level of pool (B1). 
Similarly, if B1 still cannot satisfy the requirement, level 1 
pool piercing occurs, and its length of CTPOP is resent. The 
allocation progresses recursively until the application gets all 
its required nodes.  

The allocation of nodes results in the decrease of 
amounts resources in the corresponding reserve pools. Thus, 
the remainder nodes in the reserve pools may be lower than 
their reserve capacity thresholds. Therefore, the upgradation 
algorithm described in Algorithm 1 is invoked at the end of 
each allocation. 

Algorithm 3. Allocate()  
(* Recursive resource allocation algorithm *) 
Input:  

K: The number of nodes required by the incoming 
application; 
Output:  

Ba: the set of nodes allocated to the application; 
State Variables:  
<B0, B1 …… BM>: the sets of idle nodes in reserve 

pools; 
Local Variables: 
   n: the number of allocated nodes; 
   k: target pool; 
Begin 

if (
0

M

a i
i

N N


 ) { 

report error: “require resource is more than 
system’s capability”;  
return; 

} 
k = 0; 
n = 0; 
Ba = Ø; 
while (n < K){ 

if (Nk >= (K - n)) { 
Select (K- n) nodes from Bk  and add them to Ba; 
Nk= Nk – (K - n); 
n = K; 

} else { 
Take all nodes in Bk into Ba; 
n = n + Nk; 
Nk = 0; 
tk = 0; 
k = k + 1; 

} 
}; 
/* upgrade algorithms is invoked to make up the loss 

of the allocation */ 
Upgrade(); 

End 
Note that, the above algorithm leaves the node selection 

policy issue open. Therefore, it can be combined with other 
optimization goals. For example, an idle node is allocated 
first if its temperature is lower than the others. This will help 
to maintain the system as cool as possible.  

At the end of an application or task, all its occupied 
nodes are freed and become idle. These nodes will be 
reclaimed and delivered into reserve pools. Here, we use a 
simple and conservative resource reclaim algorithm, seen as 
Algorithm 4. It simply put all reclaimed nodes into the 
highest reserve pool (B0). This works with the degradation 
algorithm to put the idle node gradually to the lower level 
reserve pools is they are not required for a period of time.  

Algorithm 4: Reclaim(); 
(*Reclaim idles nodes into reserve pools *) 
Input:  

Ba: The set of nodes freed by an application; 
State Variables:  

<B0, B1 …… BM>: the sets of idle nodes in reserve 
pools; 



Begin 
0 0 aB B B  ; 

N0 = N0 + ||Ba||; 
End 

Note worthy: other reclaim policies are easy to be 
employed in the model to select the target pools for the 
newly freed nodes. For example, an aggressive policy may 
put all reclaimed nodes into the deepest sleep state. It can 
also be combined with other optimization goals. For example, 
the idle nodes can be put into different levels of reserve 
pools according to their temperatures so that the hotter ones 
are in deeper sleeping states thus they can be cooled down.  

C. Adaptive Adjustment of the Reserve Capacity Threshold 
The users’ requirements on the balance between performance 
and energy efficiency has been represented in the state 
continuance thresholds for the reserve pools and dealt with 
by the algorithms presented in the previous section. This 
section is devoted to a mechanism that deals with the time-
varying nature of many applications run on large scale 
system.  

In general, a piercing of level i reserve pool means that 
the amount of nodes reserved in Bi is not sufficient. 
Therefore, its reserve capacity threshold Ri should be 
increased dynamically to meet the time-varying of the 
workload. Here, we propose the following formula (11.a) to 
guide the adaptive adjustment of reserve capacity threshold 
when handling the piercing of level i reserve pool.  

( )                     (a)
max{ ( ), 0}        (b)

i i i i i
i

i i i i i

R C N C N
R

R N C C N
  

    
         (11) 

where Ci is the number of nodes required to allocate from Bi.  
On the other hand, there may be some residual nodes in a 

reserve pool after its providing enough nodes to the 
application. It means that the reserve capacity of the pool is 
larger than the requirement. The superfluous nodes in a pool 
should be put into deeper sleep state to save energy. We thus 
use Formula (11.b) to decrease the reserve capacity threshold 
adaptively.  

At the end of each resource allocation, the reserve 
capacity threshold adjustment algorithm, shown as 
Algorithm 5, is called for each reserve pool. The threshold is 
adjusted adaptively according to the difference between the 
requirement and the original reserve capacity. If a pool is not 
covered by the allocation, its Ci is zero. 

 
Algorithm 5. Adjust(); 
(*Adjust reserve pool capabilities *) 
Input:  
  Ni: the number nodes in Bi before a node allocation; 
Ci:  the number of nodes to be allocated from Bi; 
Ri: the reserve capacity threshold of Bi; 

Output: 
  R’i: the new reserve capacity threshold of Bi; 
Begin 

' ( )i i i iR R C N   ; 
If (R’i < 0)  R’i = 0; 
return R’i; 

End 

V. IMPLEMENTION AND EVALUATION 
We have implemented the above algorithms and 

conducted simulation experiments. This section reports the 
main results of the experiments. 

A. The Benchmark 
The times that a node becomes idle or busy and the numbers 
of nodes that are idle in the system are closely related to the 
workload trace on the system. Consequently, an evaluation 
of a power management technique must take into 
consideration of the workload characters.  

Parallel Workload Archive [12] publishes dozens of 
workload logs on real parallel systems. Each log contains the 
following information on the jobs: submit time, wait time, 
run time and number of allocated processors. From the 
information and the system scale, one can work out the 
number of nodes in the system at each second.  

The ANL Intrepid log is selected as the workload trace in 
our simulations. The ANL Intrepid comprises 40,960 quad-
core nodes, which is the maximal system scale among all 
published logs in [12]. Our simulations start at the time of 0 
of the log. However, to avoid the fulfilling effect of the 
system starting, the data of the first 24 hours are neglected, 
and the workload on the following 48 hours is investigated 
as the input of our simulations. There are quite a number of 
idle nodes in about 94.79% of the simulation time.  

B. The Power Characteristics of the Nodes 
There is no data about the power characters of idle nodes in 
ANL Intrepid. We measured the power consumption and 
wakeup time of a typical compute node, the Tianhe-1A 
compute node, with two 6-core Xeon CPUs and 8 DIMMs. 
The results are shown in Table 1. These data are used in the 
simulations. There are four different idle states supported by 
the node, S0, S1, S3 and S4. S0 is the active idle state, and 
S1, S3, S4 are sleep states ranking on sleep depth. The 
transition overhead between sleep states are not considered 
in this paper, because transition energy consumptions are 
difficult to measure precisely. The time granularity of our 
simulations is 60 seconds. 

Table 1. Multiple sleep states of a typical node 

State Power (Watt) Wakeup latency (Sec.) 

S0 207 0 

S1 171 2 

S3 32 10 

S4 26 190 

C. The Simulation Scenarios 
Five scenarios are simulated with different power 
management solution for idle nodes. 
 Flat reserve pool structure. This is the trivial case when 

there is only one level of reserve pool. The simulation is 



conducted in four different sub-scenarios, where, in each 
scenario, the nodes in the reserve pool are at the same sleep 
state S0, S1, S3 and S4, respectively, whenever it becomes 
idle. The power states of all idle nodes are same and 
remain unchanged during their idle period. We use S0, S1, 
S3 and S4 to denote these scenarios, too. The wakeup 
latency is added to the wait time of a job. Hence the 
wakeup latency is accumulated to latter jobs if the number 
of idle nodes in system is less than the requirement of the 
incoming job. Maintaining submit time matching with the 
original workload, the running trace on time is influenced 
by wakeup latency correspondingly. 

 Hierarchical reserve pool structure. The sleep depths of 
idle nodes are managed adaptively according to the 
ASDMIN model, where there are 4 levels of reserve pools. 
Each pool contains idle nodes of power state S0, S1, S3 
and S4, respectively. At the time 0 of each simulation, all 
nodes are idle and in lowest reserve pool (B3). That is, 
initially, we have that N0=N1=N2=0, and N3=40,960. The 
initial values of R0, R1 and R2 are configured as 0. Because 
the B3 is the lowest pool and the nodes in B3 are not able to 
degrade further, R3 always equals 40,960 during whole 
lifecycle. The state continuance thresholds, Ti, of all pools 
are set equally as 10. 

Note worthy: first, in scenario S0, all idle nodes are 
active. Thus, in this scenario, the system has its highest 
possible response time, but no energy saving.  

Second, S4 is when all nodes are put into the deepest 
sleep state whenever it is idle. Therefore, it is the most 
energy efficient, but the least responsive in performance.  

Finally, in our experiments we have omitted the scenario 
S2 that idle nodes are put into the S2 sleep state. This is 
because S2 state is same as S1 state except the CPU and 
cache context is lost. S1 is the basic state in ACPI, but 
commodity CPUs and platforms seldom support S2. 

D. The measurement and Metrics Used in The Experiments 
We consider the response time of the system as the most 
important factor of system performance. To understand how 
system’s performance is affected by the idle node 
management, we use slowdown rate as a metric, which is 
defined by formula (12) below, where the wait time of a job 
is the difference between the time of a user submitting the 
job and the time of the job starting on the system.  

     
    

wait time with dyanamic sleepslowdown rate
wait time without dynamic sleep

      (12) 

The system slowdown rate is the average of the relative 
slowdown rates of all jobs. The bigger is the slowdown rate, 
the more decrement of system performance caused by the 
management of idle nodes.  

We adopted the widely used metric E*Dn [5] of the 
power efficiency to measure the effectiveness of an idle node 
management technique. As shown in formula (13), it 
considers both the power consumed by idle node and the 
corresponding slowdown rate, where n is a weight factor to 
reflect the user’s preference for energy conservation or 
system performance. In our simulations, n is configured as 1. 

  (  )npower efficiency wasted power slowdown rate   (13) 

E. Configuration Parameters 
According to the degradation algorithm given in the previous 
section, a subset DSi of the nodes in the reserve pool Bi is 
selected as the target nodes to be degraded to the deeper 
sleep state. Constrained by the reserve capacity threshold, the 
maximal size of DSi that can be degraded from Bi is (Ni-Ri). 
We employ δi*(Ni-Ri) as the size of DSi in the simulation, 
where δi is a fractional constant, i.e. 0≤δ≤1. In each 
simulation, the δi’s are invariant. Multiple simulations are 
executed with different values of δi’s. The results of the 
simulations are shown in Figure 2, where simulation results 
are normalized according to the results of δ=1.  

 

Figure 2. Average management effect with different size of DS  

Generally speaking, the system saved power increases 
with the decrease of the size of the DS, while the slowdown 
rate decreases with it. The power efficiency varies with the 
size of DS, which forms a bathtub curve. When δ is 0.1, the 
power efficiency is the best. Therefore, in the further 
experiments we used 0.1*(Ni-Ri) as the optimization 
configuration of degradation set size. 

F. The Main Results 
The simulations are executed on the benchmark in 5 different 
scenarios discussed in subsection C.  

 
Figure 3. The variation of the numbers of nodes in the ASDMIN scenario 

The achievement of close match to S4 on energy 
efficiency and at the same time to S0 on performance is due 
to the adaptive mechanism in the ASDMIN model. This is 
clearly demonstrated in Figure 3, which shows the variation 
of the number of idle nodes in each reserve pools during the 
execution of the system on the benchmark. 

In Figure 3, the N_busy trace is the number of busy nodes 
in the system. On average, there are 94.28% of idle nodes in 



the lowest pool (N3). In other words, most idle nodes are put 
into lowest sleep state in most of time.  

Normalized by the data obtained in the scenario S0 (i.e. 
without dynamic sleep), the effects of idle node management 
in the five different management solutions are shown in 
Figure 4.  In particular, the power consumption by idle nodes 
in the ASDMIN scenario is decreased by 84.12% in 
comparison with scenario S0 while the cost of slowdown rate 
is only 8.85% in comparison with scenario S4.  

Thus, applying Formula (13), we have that the power 
efficiency is optimized by 82.71%. If all idle nodes are 
always put into the deepest sleep state, shown as S4 in the 
figures, the power consumption by idle nodes will be 
reduced by 87.44% in comparison with scenario S0. 
However, its slowdown rate will be increased significantly 
by 177.27%. Even compared with the S4 scenario (the 
deepest sleep scenario), ASDMIN also optimizes the power 
efficiency by 50.36%. 

 
Figure 4. The results of different management scenarios. 

VI. CONCLUSION 
To conquer the huge energy waste caused by active idle 
nodes, the paper proposes a self-adaptive mechanism to 
manage the sleep depths of idle nodes in large scale systems 
to balance between energy consumption and system response 
speed. Idle nodes are classified into different groups 
according to their sleep states. The nodes in the lower sleep 
depth are allocated in preference. The state of an idle node is 
dynamically upgraded or degraded to improve the system 
power efficiency. Corresponding resource allocation and 
reclaim algorithms, dynamic state transition algorithms are 
designed to maintain the proper distribution of idle node 
among different groups. The self-adaptive mechanism 
employs two sets of control parameters: (a) reserve pool 
capabilities; (b) state continuance thresholds. The former 
decides how large a reserve pool should be. It is adjusted 
dynamically according to the workload of the system at 
runtime. The latter represents the users’ requirements on 
performance. It determines how fast the degradation of sleep 
states of the idle nodes should be made and how often the 
adjustment of the capabilities of reserve pools should be 
performed.  

The simulation experiments demonstrated that our 
solution can reduce the power consumption of idle nodes by 
84.12% with the cost of slowdown rate being only 8.85%. 
The proposed self-adaptive sleep depth management for idle 

nodes is an effective approach to optimize the system energy 
efficiency.  

For future work, we are conducting more experiment 
with the system in order to gain a full understanding of the 
relationships between various parameters. We are also 
exploring the combination of various policies in the selection 
of idle node for degradation and upgradation of their 
sleeping states.  
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