Self-Adaptive Management of The Sleep Depths of Idle Nodes in Large Scale
Systems to Balance Between Energy Consumption and Response Times

Yongpeng Liu", Hong Zhu®, Kai Lu'", Xiaoping Wang'”
(' School of Computer Science, National University of Defense Technology, Changsha, P. R. China
@ Department of Computing and Communication Technologies, Oxford Brookes University, Oxford, U.K

Abstract —Due to the time-varying nature of real workload, a
large scale computer system has quite a number of idle nodes
in most time of operation. They consume energy, but do
nothing useful. To save the huge energy waste caused by such
active idle nodes, most modern compute nodes provide
multiple level dynamic sleep mechanisms to reduce power
consumption. However, awaking sleeping nodes takes time,
thus affects the response times and performance of the system.
A node is deeper in sleep, it consumes less energy, but has
longer wakeup latency. This paper proposes a sleep state
management model to balance the system’s energy
consumption and response times. In this model, idle nodes are
classified into different groups according to their sleep states.
Each group contains nodes of same level of sleep depth and
forms a reserve pool of a certain readiness level. In a resource
allocation process, nodes in the pool of highest level of
readiness are preferentially provided to the application. When
the nodes in the pool of the highest readiness level are not
sufficient, the nodes in the pool(s) of next level(s) of readiness
are allocated. After each allocation and reclaim of nodes, the
numbers of nodes in each level of pools are adjusted by
changing the sleep depth of the nodes up and down. Thus, the
reserve pools can be maintained at all times. Obviously, a key
factor that affects the effectiveness of the idle node
management is the sizes of the reserve pools. This paper
proposes and investigates a self-adaptive approach to this
problem so that the sizes of reserve pools are dynamically
adjusted according to the applications. Our experiments
demonstrated that, by applying our self-adaptive management,

the power consumption of idle nodes can be reduced by 84.12%

with the cost of slowdown rate being only 8.85%.

Keywords — Large scale systems; Power Management; Dynamic
Sleep; Idle node; Performance; Response Times

.  INTRODUCTION
To satisfy the steadily rising demands on computing
performance, both the number of compute units in
data/compute centers and the system integration density
grow rapidly. Power management has becomes a grave
challenge to the development and operation of large scale
computing systems.

Large scale high performance computing systems
consume a tremendous amount of energy. According to the
recent TOP500 list of supercomputers [1], the average power
consumption of Top10 systems is 4.34 MW. The peak power
consumption of the most power consuming supercomputer,
i.e. the K computer, reaches 12.659 MW, which equals the
power usage of a middle scale city. In 2006, US servers and
data centers consumed around 61 billion kWh at a cost of
about 4.5 billion U.S. Dollars. This is about 1.5% of the total
U.S. electricity consumption or the output of about 15 typical

power plants [2]. In 2007, the electricity consumption of
global cloud computing was 623 billion kWh which is larger
than the 5th largest electricity demand country in the world,
i.e. India [3]. Many data center projects have been cancelled
or delayed because of an inability to meet such enormous
power requirements.

High density power consumption causes overheating,
which leads to problems of the reliability and availability of
the system. Huge construction costs of large scale systems
are also incurred in order to accommodate the huge amount
of energy demand.

On the other hand, workload of data centers varies
significantly with time and the average resource utilization of
large scale systems typically sit at low levels of utilization. A
quite number of nodes are idle in most time. Unfortunately,
nowadays nodes are not power-proportional and a node in
idle state is highly energy inefficient. The power
consumption of an idle node generally reaches about 50% of
its peak power [4]. In the result, idle nodes in large scale
systems cause huge energy waste.

To reduce the power consumption of a node in its idle
state, dynamic sleep mechanism is proposed and multiple
sleep states are supported in current common nodes [5]. Each
sleep state consumes less power than idling in the active state.
The deeper the node sleeps, the less power it consumes, but
the more energy and the more time delay are needed to wake
it up. Considering the overhead of state transitions, the
deepest sleep state obviously is not always the best choice
for idle nodes. In this paper, we propose a self-adaptive
management solution of multiple sleep state of idle nodes in
large scale systems to make an effective tradeoff between
energy conservation and system response performance.

II. RELATED WORKS

Dynamic speed scaling and dynamic resource sleep are two
power management mechanisms widely supported in current
information industry. Even all components were scaled into
their lowest speeds, the active power consumption of an idle
node is significantly higher than its sleep power [5]. The
dynamic cluster configuration, i.e. put idle nodes into sleep
states and wake them on demand, is a typical power
management technique for large scale systems [4-8]. To
balance between energy and performance, most researchers
on dynamic configuration of cluster focus on server
consolidation via finding an appropriate active portion of the
cluster dynamically. The idle remainders are simply turned
off [10].

The importance of supporting multiple sleep state for
servers in data centers has been investigated by Gandhi et al.
[9]. However, their approach does not dynamically manage



the sleep depth of idle servers. Horvath et al. [10] propose an
energy management policy which exploits the multiple sleep
states of idle servers. They predicate the incoming workload
based on history resource utilization change and select the
optimal number of spare servers for each power states in an
ad-hoc manner. Extra spare servers are put in the deepest
possible sleep states. Different to their heuristic selection of
sleep state, we control the state transition of idle nodes in a
self-adaptive model where reserve pools of idle nodes with
corresponding sleep depths regulate their sizes respectively.
Xue et al. [11] provide the active resource pool with
dynamic computing capacity in accordance with the time-
varying workload demand. However, spare nodes in their
power management solution are simply turned off. Multiple
sleep sates are not considered by them. In this paper, we
explore the benefits of these multiple sleep states mechanism
to improve the energy efficiency of large scale systems with
minimal sacrifices of system performance.

111 SELE-ADAPTIVE MANAGEMENT MODEL

The nodes in a cluster environment can be classified into two
categories according to whether any application is running
on them, i.e. busy nodes and idle nodes. If a node has been
allocated to any application, the node is busy. Otherwise, it is
idle. An idle node, even in active standby state, does not
generate any useful compute production.

To avoid the energy waste on idle state, an idle node
should be put into low-power sleep state. In current
information technology, a node may support multiple sleep
states. For example, in ACPI specification, the power state of
a node can be SO, S1, S2, S3, S4 or S5, where SO is the
active state, S1~S5 denote different levels sleep state with S5
as the deepest sleep state. The deeper a node sleeps, the less
power it consumes, however, the more energy and latency is
required to wake it up. In each sleep state, the power
consumption wakeup energy and wake up latency are
constants, which are denoted by P, E; and D;, i=0, ..., M,
respectively, where M the number of supported sleep states
of the node. These parameters satisfy the follow formula 1.

Vi, j-(0<i<j<M =(P>P)A(D,<D)A(E<E)) (1)

The power consumption in a sleep state is always lower
than the power usage in active standby state. However,
additional state transition energy is required to put a node
into sleep state or wake it up. Thus, to conserve energy by
dynamic sleep mechanism, it is necessary that the
continuance time width of sleep state should be long enough.
So that the energy saved during sleep is greater than
additional energy consumption caused by state transition.
On the other hand, a node in sleep state is not available.
Before providing any functional service, the node must first
be woken up. It means that the wake up latency may depress
the response speed of the sleep node. Consequently, it may
be not the best choice to put a node into its deepest sleep
state  whenever it becomes idle. An effective power
management solution is required to schedule the appropriate
sleep or wake timing of idle nodes to improve the energy
efficiency of the whole system. From the cluster-wide
viewpoint, node sleep depth management means to distribute

the idle nodes among different groups of corresponding
power states.

In the paper, we propose a self-adaptive management
model for the sleep depth of idle nodes in large scale systems,
called ASDMIN. As shown in Figure 1, in ASDMIN model,
the idle nodes are classified into a number of node groups
according to their sleep depths. Each group is therefore a
reserve pool of nodes of certain readiness. The higher the
power consumption is, the higher the readiness level is. The
pool of level i, denoted as B, is composed of all of the nodes
with the same power consumption level P;.

Job1 Job2 Jobn

allocT ﬂreclaim
Tupgr ade ﬂde grade

“ .«T‘T;“: €. €3 Ty sleep

alloc alloc

% o g ﬁi;;;“,»' iﬁ‘ﬁL‘;’,—" ) level i
TTup grade iL degrade
,,,,,,,,,,,, : . . . jshutdown
i ST P T level M

Figure 1. ASDMIN model for adaptive sleep depth management of
idle nodes

Assume that the number of nodes in B; is N,, and the total
number of all idle nodes in the system is N, then we can get
that:

M
N=>N,  (N,20) )
i=0
Thus, the power consumption of all idle nodes, P; 4., equals
M
By = ZPIN i 3)
i=0

ASDMIN try to reduce the power consumption of idle
nodes by exploiting dynamic sleep mechanism. However, in
a deeper sleep state means a longer wakeup latency. To
provide sufficient nodes to the incoming application as soon
as possible, ASDMIN resource allocation policy will
preferentially allocate nodes from the highest reserve pool
which has the shortest wakeup latency. When the nodes in
the pool of the highest readiness level are not sufficient, the
nodes in the pool(s) of next level(s) are allocated. Let the
required total node number of an incoming application is 4,
the lowest of the levels of reserve pools covered by its
allocation is denoted by Level(A4). Obviously, we have that

-1

!
Level(A) =1 9[21\@ <4 < ZM] 4)
i=0 i=0
Assume that allocated nodes are waked up in parallel.
Then, the response time D of an allocation is determined by
the largest wakeup latency of the allocated nodes. Let
Delay(A) denote the wakeup latency of allocating A nodes.
According to (1), we have that
Delay(A) =max{D,, D,
where [=Level(4).

s D} =D, 5)



Constrained by the service level agreement on response
time, the level of the reserve pool that covers an allocation
should not be lower than the requirement. In other words,
there should be enough nodes in the pools whose sleep depth
are lower than /. Therefore, we set a reserve capacity
threshold, denoted as R;, to control the minimum number of
nodes in pool B;. In other words, the number of nodes in B;
should always be no less than R;. Whenever the node number
of B; is less than R;, nodes in the lower pools will be
upgraded to fill the reserve capacity.

To save energy consumption of idle nodes, ASDMID
tries to degrade idle nodes to a sleep state as deep as possible
while maintains enough reserves.

Generally speaking, the less the reserve capacity
thresholds for the highest reserve pools are, the more likely a
node is degraded, and the less total power consumption of all
idle nodes, and then the more energy is saved. However, the
wakeup latency is longer and the performance loss caused by
dynamic sleep is more significant.

When the nodes allocated to an application are freed,

they will be reclaimed and delivered to the appropriate
reserve pools.
By dynamically scheduling the sleep depths of idle nodes,
ASDMIN can make tradeoff between energy and
performance. In the optimal scenario, the system’s response
speed matches nearly to the speed when all nodes are put in
the active standby state (i.e., in the highest reserve pool), and
the energy conservation nearly match to that when all nodes
are in deepest sleep state (i.e. in the lowest reserve pool).
However, in reality, a trade-off between energy consumption
and performance must be made. Our approach to this trade-
off is to adjust the reserve capability thresholds dynamically
and adaptively. The related management algorithms in
ASDMIN will be introduced in detail in the next section.

IV. POWER MANAGEMENT ALGORITHMS

The operation of ASDMIN model depends on two sets of
algorithms: the degradation and upgradation algorithms for
changing the sleep depths of the idle nodes, and allocation
and reclaim of nodes for deciding which node is to allocated
for an application.

A. Degrading and Upgrading Idle nodes

Once an idle node is allocated to an application, the amount
of reserve in the reserve pool is reduced. If the amount of
reserve is lower than the required capacity, the pool needs to
recruit nodes from lower pools. Consequently, this recruiting
of nodes may cause reserve shortage of the lower pools. The
progress of recruiting is thus a recursive process propagates
from the top level to the lowest level as shown in Algorithm
1.

Algorithm 1. Upgrade();
(* Upgrade the power states of idle nodes *)
State Variables:
<By, B, ...... By~ Sets of idle nodes in the reserve
pools;
Local Variable:
k: the level of the target pool to recruit;
Begin

for all pools B;

k=i+1;
while (N; <R)) {
if (k> M)
break;
iV, >= (Ri- N) {
Select (R; - N;) nodes from B into B;;
Ni=R;;
Ny =Ni— (R; - Ny);
} else {
Take all nodes in By into B;;
Ni=N;+ Ny
Nk = 0,
k=k+1;
}
}

}
End

When a node is reclaimed due to the finish of a task, it
should be put into a reserve pool. Consequently, the amount
of resource in the pool may exceed the required capacity.
The excessive nodes can therefore put into a deeper state of
sleep. However, we do not want to put them into sleep
immediately because this may result in the frequent changes
of the states of nodes, which consumed energy, too. A
question is that how long the delay should be so that stability
of the sizes of reserve pools and nodes’ sleeping states can
be maintained and the balance between performance and
energy consumption can be achieved.

Let’s first introduce a few terminologies.

e Piercing a reserve pool: we say that a reserve pool is
pierced at certain time moment during the operation of the
system, if all the nodes in the pool are allocated but the
resource is still insufficient to meet the amount of required
nodes. In this case, at least one node in the lower level
reserve pool is used.

o Continuous time period without piercing (CTPOP): for a
given reserve pool, it is a continuous period of time during
which no piercing happened.

o Length of CTPOP: at a certain time moment in the
operation of a system, the length of a CTPOP is the length
of time period from the last piercing of the reserve pool.

The length of a CTPOP gives a good indication of how
sufficient the capability of the reserve pool is with respect to
the runtime characteristics of the application software. If the
capability is too small, the pool will be frequently pierced,
thus the length of CTPOP is short. Consequently, the
performance of the system is slowed down. If the capability
is too big, the reserve pool will be rarely pierced, and the
length of CTPOP will be large. In this scenario, the power
consumption is unnecessary and some of the nodes can be
put in a deeper state of sleeping. Therefore, to balance
between energy consumption and performance, the length of
CTPOP must be managed at a certain ideal target value 7; for
each reserve pool B, This target value is called state
continuance threshold, i.e.

o A state continuance threshold (T;), for a given reserve pool




B,, it is the value set to judge whether its length of CTPOP
is long enough.

By setting the state continuance thresholds for the reserve
pools, we can manage the reserve pools as follows.

At a time moment, if the CTPOP ¢ of B; is greater than
the value T}, the reserve pool B; has not being pierced for a
period long enough, thus its reserve capacity is superfluous
than required. The over-reserved nodes in B; can be degraded
into deeper sleep state to save energy. In such situation, a
subset of B,, notated as DS, is selected as the target to
degrade its nodes into the lower pool B.;.

Therefore, the degradation of a node follows two
constraints, i.e. (a) the size of the reserve pool is greater than
the reserve capacity (R;) and (b) the length of CTPOP is
greater that state continuance threshold (7). Details of the
algorithm are given below.

Algorithm 2. Degrade();
(* Degrade the power states of idle nodes™)
Input:
<Ny, Nj ...... N,/~: The current sizes of reserve pools;
<ty t; ...... ty>: The current lengths of the CTPOP of
reserve pools;
State variables:
ByB;...... By the sets ofidle nodes in reserve pools;
Begin
for i from 0 to M—1 do {
i£((> T) && (N, > R)) {
select a subset DS; of B; such that || DS}||=N-R;;

B;=B;—DS;;
Biv1=Bi +DS;;
N; =N, - ||DSil|;
Niv1= Nt IDSi];
}
}
End

B.  Resouce Allocation and Reclaim

When a new application or task is initiated and K nodes
are required, a recursive resource allocation (RRA) algorithm
is invoked as shown in Algorithm 3.

Assume that the required node number by the incoming
application is K. If the number of nodes in B, (i.e. the top
level reserve pool) is less than K (i.e. Ny < K), level 0
piercing occurs. Thus, the CTPOP of B, is reset to 0. Beside
all nodes in By are allocated to the application, RRA will

further allocate (K—N,) nodes from the next level of pool (B)).

Similarly, if B, still cannot satisfy the requirement, level 1
pool piercing occurs, and its length of CTPOP is resent. The
allocation progresses recursively until the application gets all
its required nodes.

The allocation of nodes results in the decrease of
amounts resources in the corresponding reserve pools. Thus,
the remainder nodes in the reserve pools may be lower than
their reserve capacity thresholds. Therefore, the upgradation
algorithm described in Algorithm 1 is invoked at the end of
each allocation.

Algorithm 3. Allocate()
(* Recursive resource allocation algorithm *)
Input:

K: The number of nodes required by the incoming
application;
Output:
B,: the set of nodes allocated to the application;
State Variables:
<By, B; ...... By~ the sets of idle nodes in reserve
pools;
Local Variables:
n: the number of allocated nodes;
k: target pool;
Begin

if (2§ ) 4

report error: ‘“require resource is more than
system’s capability”;
return;

while (n < K){
ifN>= (K - m) {
Select (K- n) nodes from B, and add themto B,;
Ni= Ni— (K - n);
n=K;
} else {
Take all nodes in By into B,;
n=n+Ny
Ni=0;
4%=0;
k=k+1;
§
15
/* upgrade algorithms is invoked to make up the loss
of the allocation */
Upgrade();
End
Note that, the above algorithm leaves the node selection
policy issue open. Therefore, it can be combined with other
optimization goals. For example, an idle node is allocated
first if its temperature is lower than the others. This will help
to maintain the system as cool as possible.

At the end of an application or task, all its occupied
nodes are freed and become idle. These nodes will be
reclaimed and delivered into reserve pools. Here, we use a
simple and conservative resource reclaim algorithm, seen as
Algorithm 4. It simply put all reclaimed nodes into the
highest reserve pool (By). This works with the degradation
algorithm to put the idle node gradually to the lower level
reserve pools is they are not required for a period of time.
Algorithm 4: Reclaim();

(*Reclaim idles nodes into reserve pools *)
Input:
B,: The set of nodes freed by an application;
State Variables:
<By, B; ...... By~ the sets of idle nodes in reserve
pools;




Begin
B,=B,UB,.
No=Ny+ ||Bdl;

End

Note worthy: other reclaim policies are easy to be
employed in the model to select the target pools for the
newly freed nodes. For example, an aggressive policy may
put all reclaimed nodes into the deepest sleep state. It can
also be combined with other optimization goals. For example,
the idle nodes can be put into different levels of reserve
pools according to their temperatures so that the hotter ones
are in deeper sleeping states thus they can be cooled down.

C. Adaptive Adjustment of the Reserve Capacity Threshold

The users’ requirements on the balance between performance
and energy efficiency has been represented in the state
continuance thresholds for the reserve pools and dealt with
by the algorithms presented in the previous section. This
section is devoted to a mechanism that deals with the time-
varying nature of many applications run on large scale
system.

In general, a piercing of level i reserve pool means that
the amount of nodes reserved in B; is not sufficient.
Therefore, its reserve capacity threshold R; should be
increased dynamically to meet the time-varying of the
workload. Here, we propose the following formula (11.a) to
guide the adaptive adjustment of reserve capacity threshold
when handling the piercing of level i reserve pool.

R +(C.—N,) C.,>N, (a)

max{R, —(N,-C,),0} C,<N, (b)
where C; is the number of nodes required to allocate from B;.

On the other hand, there may be some residual nodes in a
reserve pool after its providing enough nodes to the
application. It means that the reserve capacity of the pool is
larger than the requirement. The superfluous nodes in a pool
should be put into deeper sleep state to save energy. We thus
use Formula (11.b) to decrease the reserve capacity threshold
adaptively.

At the end of each resource allocation, the reserve
capacity threshold adjustment algorithm, shown as
Algorithm 5, is called for each reserve pool. The threshold is
adjusted adaptively according to the difference between the
requirement and the original reserve capacity. If a pool is not
covered by the allocation, its C; is zero.

(1)

i

Algorithm 5. Adjust();
(*Adjust reserve pool capabilities *)
Input:
N;: the number nodes in B;before a node allocation;
C;: the number of nodes to be allocated from B;;
R;: the reserve capacity threshold of B;;
Output.
R’;: the new reserve capacity threshold of B;;
Begin
R,=R+(C,~N,);
If(R;<0) R’;=0;
return R ’;;

| End |

V. IMPLEMENTION AND EVALUATION

We have implemented the above algorithms and
conducted simulation experiments. This section reports the
main results of the experiments.

A. The Benchmark

The times that a node becomes idle or busy and the numbers
of nodes that are idle in the system are closely related to the
workload trace on the system. Consequently, an evaluation
of a power management technique must take into
consideration of the workload characters.

Parallel Workload Archive [12] publishes dozens of
workload logs on real parallel systems. Each log contains the
following information on the jobs: submit time, wait time,
run time and number of allocated processors. From the
information and the system scale, one can work out the
number of nodes in the system at each second.

The ANL Intrepid log is selected as the workload trace in
our simulations. The ANL Intrepid comprises 40,960 quad-
core nodes, which is the maximal system scale among all
published logs in [12]. Our simulations start at the time of 0
of the log. However, to avoid the fulfilling effect of the
system starting, the data of the first 24 hours are neglected,
and the workload on the following 48 hours is investigated
as the input of our simulations. There are quite a number of
idle nodes in about 94.79% of the simulation time.

B.  The Power Characteristics of the Nodes

There is no data about the power characters of idle nodes in
ANL Intrepid. We measured the power consumption and
wakeup time of a typical compute node, the Tianhe-1A
compute node, with two 6-core Xeon CPUs and 8 DIMMs.
The results are shown in Table 1. These data are used in the
simulations. There are four different idle states supported by
the node, SO, S1, S3 and S4. SO is the active idle state, and
S1, S3, S4 are sleep states ranking on sleep depth. The
transition overhead between sleep states are not considered
in this paper, because transition energy consumptions are
difficult to measure precisely. The time granularity of our
simulations is 60 seconds.

Table 1. Multiple sleep states of a typical node

State Power (Watt) Wakeup latency (Sec.)
N 207 0
S1 171 2
S3 32 10
S4 26 190

C. The Simulation Scenarios

Five scenarios are simulated with different
management solution for idle nodes.
e Flat reserve pool structure. This is the trivial case when

there is only one level of reserve pool. The simulation is

power



conducted in four different sub-scenarios, where, in each
scenario, the nodes in the reserve pool are at the same sleep
state SO, S1, S3 and S4, respectively, whenever it becomes
idle. The power states of all idle nodes are same and
remain unchanged during their idle period. We use SO, S1,
S3 and S4 to denote these scenarios, too. The wakeup
latency is added to the wait time of a job. Hence the
wakeup latency is accumulated to latter jobs if the number
of idle nodes in system is less than the requirement of the
incoming job. Maintaining submit time matching with the
original workload, the running trace on time is influenced
by wakeup latency correspondingly.

Hierarchical reserve pool structure. The sleep depths of
idle nodes are managed adaptively according to the
ASDMIN model, where there are 4 levels of reserve pools.
Each pool contains idle nodes of power state SO, S1, S3
and S4, respectively. At the time 0 of each simulation, all
nodes are idle and in lowest reserve pool (Bj;). That is,
initially, we have that Ny=N,=N,=0, and N;=40,960. The
initial values of Ry, R; and R, are configured as 0. Because
the Bj is the lowest pool and the nodes in Bjare not able to
degrade further, R; always equals 40,960 during whole
lifecycle. The state continuance thresholds, 7;, of all pools
are set equally as 10.

Note worthy: first, in scenario SO, all idle nodes are
active. Thus, in this scenario, the system has its highest
possible response time, but no energy saving.

Second, S4 is when all nodes are put into the deepest
sleep state whenever it is idle. Therefore, it is the most
energy efficient, but the least responsive in performance.

Finally, in our experiments we have omitted the scenario
S2 that idle nodes are put into the S2 sleep state. This is
because S2 state is same as S1 state except the CPU and
cache context is lost. S1 is the basic state in ACPI, but
commodity CPUs and platforms seldom support S2.

D. The measurement and Metrics Used in The Experiments

We consider the response time of the system as the most
important factor of system performance. To understand how
system’s performance is affected by the idle node
management, we use slowdown rate as a metric, which is
defined by formula (12) below, where the wait time of a job
is the difference between the time of a user submitting the
job and the time of the job starting on the system.

slowdown rate — wait time with dyanamic sleep (12)

wait time without dynamic sleep

The system slowdown rate is the average of the relative
slowdown rates of all jobs. The bigger is the slowdown rate,
the more decrement of system performance caused by the
management of idle nodes.

We adopted the widely used metric £*D" [5] of the
power efficiency to measure the effectiveness of an idle node
management technique. As shown in formula (13), it
considers both the power consumed by idle node and the
corresponding slowdown rate, where n is a weight factor to
reflect the user’s preference for energy conservation or
system performance. In our simulations, » is configured as 1.

power efficiency = wasted power x (slowdown rate)" (13)

E. Configuration Parameters

According to the degradation algorithm given in the previous
section, a subset DS; of the nodes in the reserve pool B; is
selected as the target nodes to be degraded to the deeper
sleep state. Constrained by the reserve capacity threshold, the
maximal size of DS; that can be degraded from B; is (Ni-R)).
We employ 6,*(N-R)) as the size of DS; in the simulation,
where o; is a fractional constant, ie. 0<0<l. In each
simulation, the J;’s are invariant. Multiple simulations are
executed with different values of d;’s. The results of the
simulations are shown in Figure 2, where simulation results
are normalized according to the results of J=1.

150
150 ] ——wasted power

140 | ——slowdown rate
130 1 —o—power efficiency
120 |

110

100

% | \:\:—_\—\\

80

20 \\77 84986878

60 + . - - - - - Y
1 09 08 07 06 05 04 03 02 01 009 008 007 006 005 004 003

Figure 2. Average management effect with different size of DS

Generally speaking, the system saved power increases
with the decrease of the size of the DS, while the slowdown
rate decreases with it. The power efficiency varies with the
size of DS, which forms a bathtub curve. When ¢ is 0.1, the
power efficiency is the best. Therefore, in the further
experiments we used 0.1*(N-R;) as the optimization
configuration of degradation set size.

F. The Main Results

The simulations are executed on the benchmark in 5 different

scenarios discussed in subsection C.
42

39
36
33
30
27

24

W N_busy

the number of nodes in pool (K)

time

Figure 3. The variation of the numbers of nodes in the ASDMIN scenario

The achievement of close match to S4 on energy
efficiency and at the same time to SO on performance is due
to the adaptive mechanism in the ASDMIN model. This is
clearly demonstrated in Figure 3, which shows the variation
of the number of idle nodes in each reserve pools during the
execution of the system on the benchmark.

In Figure 3, the N_busy trace is the number of busy nodes
in the system. On average, there are 94.28% of idle nodes in



the lowest pool (V3). In other words, most idle nodes are put
into lowest sleep state in most of time.

Normalized by the data obtained in the scenario SO (i.e.
without dynamic sleep), the effects of idle node management
in the five different management solutions are shown in
Figure 4. In particular, the power consumption by idle nodes
in the ASDMIN scenario is decreased by 84.12% in
comparison with scenario SO while the cost of slowdown rate
is only 8.85% in comparison with scenario S4.

Thus, applying Formula (13), we have that the power
efficiency is optimized by 82.71%. If all idle nodes are
always put into the deepest sleep state, shown as S4 in the
figures, the power consumption by idle nodes will be
reduced by 87.44% in comparison with scenario SO.
However, its slowdown rate will be increased significantly
by 177.27%. Even compared with the S4 scenario (the
deepest sleep scenario), ASDMIN also optimizes the power
efficiency by 50.36%.

100 290
90 ¥ 270 ¥
80 ¥ 250 7
70 ¥ 230
60 ¥ 210
50 7 190 ¥
40 ¥ 170 §
30 150

20 7 i 130
110 7

ms4

EIASDMIN

10

0% — 90
wasted power

slowdown rate

Figure 4. The results of different management scenarios.

VI. CONCLUSION

To conquer the huge energy waste caused by active idle
nodes, the paper proposes a self-adaptive mechanism to
manage the sleep depths of idle nodes in large scale systems
to balance between energy consumption and system response
speed. Idle nodes are classified into different groups
according to their sleep states. The nodes in the lower sleep
depth are allocated in preference. The state of an idle node is
dynamically upgraded or degraded to improve the system
power efficiency. Corresponding resource allocation and
reclaim algorithms, dynamic state transition algorithms are
designed to maintain the proper distribution of idle node
among different groups. The self-adaptive mechanism
employs two sets of control parameters: (a) reserve pool
capabilities; (b) state continuance thresholds. The former
decides how large a reserve pool should be. It is adjusted
dynamically according to the workload of the system at
runtime. The latter represents the users’ requirements on
performance. It determines how fast the degradation of sleep
states of the idle nodes should be made and how often the
adjustment of the capabilities of reserve pools should be
performed.

The simulation experiments demonstrated that our
solution can reduce the power consumption of idle nodes by
84.12% with the cost of slowdown rate being only 8.85%.
The proposed self-adaptive sleep depth management for idle

nodes is an effective approach to optimize the system energy
efficiency.

For future work, we are conducting more experiment
with the system in order to gain a full understanding of the
relationships between various parameters. We are also
exploring the combination of various policies in the selection
of idle node for degradation and upgradation of their
sleeping states.

ACKNOWLEDGMENT

This work is partly supported by the National High
Technology Research and Development Program of China
(863 Program) under grant No. 2012AA01A301, the NSF of
China under Grant No. 60903044, No. 61003075 and No.
61103193, and the EU FP7 project MONICA on Mobile
Cloud Computing under grant No. PIRSES-GA-2011-
295222,

REFERENCES

[11 Top 500, http://www.top500.org, Jun. 2012.

[2] U.S. Environmental Protection Agency. Report to congress on
server and data center energy efficiency.
http://www .energystar.gov/ia/partners/prod_development/dow
nloads/EPA Datacenter Report Congress _Finall.pdf. Aug.
2,2007.

[31 Gary Cook. How Clean is Your Cloud?. Greenpeace
International. Apr. 2012.

[4] Rafique M. Mustafa, Ravi Nishkam, Cadambi Srihari, et al.
Power management for heterogeneous clusters: an
experimental study. Proc. of the 2™ Intemational Green
Computing Conference (IGCC’11). Orlando, USA. July 2011.

[51 Yongpeng Liu, Hong Zhu. A survey of the research on power
management techniques for high performance systems.
Software Practice and Experience, 2010, 40(1): 943-964.

[6] Shekhar Srikantaiah, Aman Kansal and Feng Zhao. Energy
Aware Consolidation for Cloud Computing. Proc. of the 2008
Workshop on Power Aware Computing and Systems
(HotPower’08), San Diego. Dec. 7, 2008.

[71 Chase J, Aderson D, Thakar P, et al. Managing energy and
server resources in hosting centers. Proc. of the 18th ACM
Symposium on Operating Systems Principles (SOSP’01).
Banff, Canada, 2001:103-116.

[8] Pinheiro E, Bianchini R, Carrera E, et al. Load balancing and
unbalancing for power and performance in cluster-based
systems. Technical Report DCS-TR-440, Department of
Computer Science, Rutgers University. May 2001.

[9] Anshul Gandhi, Mor Harchol-Balter, Michael A. Kozuch. The
case for sleep states in servers. Proc. of the HotPower '11,
Cascais, Portugal, 2011.

[10] Tibor Horvath, Kevin Skadron. Multi-mode Energy
Management for Multi-tier Server Clusters. Proc. of the 17th
International Conference on Parallel Architecture and
Compilation Techniques, Toronto, Canada, 2008:270-279.

[11] Zhenghua Xue, Xiaoshe Dong, Siyuan Ma, et al. An energy-
efficient management mechanism for large-scale server
clusters. Proc. of the 2007 IEEE Asia-Pacific Services
Computing Conference. 2007:509-516.

[12] Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/
parallel/workload/l anl int/ANL-Intrepid-2009-1.swf.gz. Apr.
2011



