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Abstract -- As knowledge of solutions to recurring design prob-
lems, a large number of software design patterns (DP) has been 
identified, catalogued and formalized in the past decades. Tools 
have been developed to support the application and recognition 
of patterns. However, although the notions of pattern in different 
subject domains carry a great deal of similarity, we are in lack of 
a general theory that applies to all types of design patterns. This 
paper is based on our previous work on formalization of OO DPs 
and an algebra of pattern compositions. We propose a generaliza-
tion of the approach so that it can be applied to other types of 
DPs. In particular, a pattern is defined as a set of points in a de-
sign space that satisfy certain conditions. Each condition specifies 
a property of the instances of the pattern in a certain view of the 
design space. The patterns can then be composed and instanti-
ated through applications of operators defined on patterns. The 
paper demonstrates the feasibility of the proposed approach by 
examples of patterns of enterprise security architecture. 
 
Keywords – design space; design pattern; enterprise security sys-
tems; formal methods.  

I. INTRODUCTION 
Since 1980s, much work has been reported in the literature on 
the patterns of OO software designs. Here, a design pattern 
(DP) is a piece of codified knowledge of design solutions to 
recurring design problems. A pattern-oriented design method-
ology has been advanced by the identification and catalogue of 
patterns, the formalization of them and the development of 
techniques and tools for formal reasoning about patterns and 
automating pattern oriented design and code recovery. Its suc-
cess in improving OO design has also fostered research on 
patterns of other aspects of software design, such as interface, 
architecture and fault tolerant designs. The notion of patterns 
has also been extended to other phases of software lifecycle, 
such as analysis patterns in requirements analysis, architec-
tural patterns in software architectural design, process patterns 
in software process modelling, test patterns in software test-
ing, etc.  

In a more general context, the notion of pattern has been 
investigated in many subject areas of computer science. In 
particular, security patterns [1, 2] and attack patterns have 
been identified and catalogued in the study of computer secu-
rity. However, although the notions of patterns in different 
subject areas carry a great deal of similarity, we are in lack of 
a general theory that applies to all types of patterns.  

In this paper, we propose an approach to generalize our 
previous work on the formalization of OO DPs and algebra of 
pattern compositions and instantiations. We will also explore 
the applicability of the general theory to security and identify 
the new problems in the study of security patterns.  

II. RELATED WORKS  

A. OO Design Patterns 
In the past decade, several formalisms for formally specifying 
OO DPs have been advanced [3]. In spite of differences in 
these formalisms, the basic underlying ideas are quite similar. 
That is, patterns are specified by constraints on what are its 
valid instances via defining their structural features and some-
times their behavioural features too. The structural constraints 
are typically assertions that certain types of components exist 
and have a certain configuration of the structure. The behav-
ioural constraints, on the other hand, detail the temporal order 
of messages exchanged between the components.  

Therefore, in general, a DP P can be defined abstractly as a 
tuple <V, PrS, PrD>, where V={v1:T1, .. , vn:Tn} declares the 
components in the pattern, while PrS and PrD are predicates 
that specify the structural and behavioural features of the pat-
tern, respectively. Here, vi’s in V are variables that range over 
the type Ti of software elements, such as class, method, and 
attribute. The predicates are constructed from primitive predi-
cates either manually defined, or systematically induced from 
the mate-model of software design models [4]. The semantics 
of a specification is the ground formula ∃V1. (PrS ∧PrD).  

The notion of pattern conformation, i.e, a concrete design 
D conforms to a pattern P, or D is an instance of P, can be 
formally defined as logic entailment D |= ∃V⋅Pr (i.e. the 
statement ∃V⋅ Pr is true on D), where Pr =PrS∧PrD and we 
write D|=P. Consequently, for patterns Pi, i=1,2, ∃V1⋅Pr1 ⇒ 
∃V2⋅Pr2 means pattern P1 is a specialization of pattern P2 and 
we have that for all designs D, D|=P1 implies that D|=P1. In 
other words, reasoning about the specialization relation be-
tween patterns and the conformation of designs to patterns can 
be performed in formal logics.  

In [5], we have proposed the following operators on DPs 
for pattern composition and instantiation.  
• Restriction P[C]: to impose an additional constraint C to 

pattern P; 
• Superposition P1 * P2: to require the design to conform to 

both pattern P1 and P2; 
• Generalisation P⇑x: to allow an element x in pattern P be-

come a set of elements of the same type of x.  
• Flatten P⇓x: to enforce a set x of element in the pattern P to 

be a singleton.  
• Lift P↑x: to duplicate the number of instances of pattern P in 

such a way that the set of components in each copy satisfies 
the relationship as in P and the copies are configured in the 
way that element x serves as the primary key as in a rela-



tional database.  
• Extension P#(V•C): to add components in V into P and con-

nect them to the existing components of P as specified by 
predicate C.  

Using these operators, pattern oriented design decisions can 
be formally represented [6]. A complete set of algebraic laws 
that these operators obey has also been established so that the 
result of design decisions can be worked out formally and 
automatically. Moreover, with the algebraic laws, the equiva-
lence between different pattern expressions can be proven 
formally and automatically through a normalization process. 
For example, we can prove that the equation P[||X|| = 1] = P⇓X 
holds for all patterns P.  

B. Design Space 
Generally speaking, a design space for a particular subject 
area is a space in which design decisions can be made. Each 
concrete design in the domain is a point in this space. Under-
standing the structure of a design space of a particular domain 
plays a significant role in software design [7]. Three ap-
proaches to represent design spaces have been advanced in 
software engineering research: 
• Multi-dimensional discrete Cartesian space, where each 

dimension represents a design decision and its values are the 
choices of the decision. 

• Hierarchical structure: where nodes in a tree represent a 
design decision and alternative values of the decision are the 
branches, which could also be dependent design sub-
decisions [8].   

• Instance list: where a number of representative instances are 
listed with their design decisions.  

In the General Design Theory (GDT) proposed by Yoshi-
kawa [9, 10], a design space is divided into two views: one for 
the observable (structural) features of the artefacts, and the 
other for functional properties. These two views are linked 
together by the instances in the domain. These instances show 
how combinations of structural properties are associated to the 
combinations of functional properties. These two views are 
regarded as topological spaces and the links as continuous 
mappings between them. By doing so, two types of design 
problems can be solved automatically.  
• Synthesis problem is to find a set of the structural features as 

a solution that has certain functional features that are given 
as design requirements.  

• Analysis problem is to find out the functional properties 
from an object’s structural properties.  

The existing work on OO DPs can be understood in the GDT 
very well, which also provides a theoretical foundation for the 
approach proposed in this paper. However, existing ap-
proaches to the representation of design spaces cannot deal 
with the complexity of software design satisfactorily. Thus, 
we propose to use meta-modelling.  

C. Meta-Modelling  
Meta-modelling is to define a set of models that have certain 
structural and/or behavioural features by means of modelling. 
It is the approach that OMG defines UML and model-driven 

architecture [11].  A meta-model can be in a graphic notation 
such as UML’s class diagram, or in text format, such as 
GEBNF, which stands for graphic extension of BNF [12].  

In GEBNF approach, meta-modelling is performed by de-
fining the abstract syntax of a modelling language in BNF-like 
meta-notation and formally specifying the constraints on mod-
els in a formal logic language induced from the syntax defini-
tion. Formal reasoning about meta-models can be supported 
by automatic or interactive inference engines. Transformation 
of models can be specified as mappings and relations between 
GEBNF syntax definitions together with translations between 
the predicate logic formulas.  

In GEBNF, the abstract syntax of a modelling language is a 
4-tuple <R, N, T, S>, where N is a finite set of non-terminal 
symbols, and T is a finite set of terminal symbols. Each termi-
nal symbol, such as String, represents a set of atomic elements 
that may occur in a model. R ∈ N is the root symbol and S is a 
finite set of syntax rules. Each syntax rule can be in one of the 
following two forms. 

Y ::= X1 | X2 | · · · | Xn (1) 
Y ::= f1 : E1, f2 : E2, · · · , fn : En (2) 

where Y∈N, Xi∈T∪N, fi’s are field names, and Ei’s are syntax 
expressions, which are inductively defined as follows.  
• C is a basic syntax expression, if C is a literal instance of a 

terminal symbol, such as a string.  
• X is a basic syntax expression, if X∈T∪N. 
• X@Z.f is a basic syntax expression, if X, Z∈N, and f is a field 

name in the definition of Z, and X is the type of f field in Z’s 
definition. The non-terminal symbol X is called a referential 
occurrence. 

• E*, E+ and [E] are syntax expressions, if E is a basic syntax 
expression. 

The meaning of the above meta-notation is informally ex-
plained in Table 1. 

TABLE 1 MEANINGS OF GEBNF NOTATION 

Notation  Meaning 
X*  A set of elements of type X.  
X+  A non-empty set of elements of type X.  
[ X ]  An optional element of type X.  
X@Z.f  A reference to an existing element of type 

X in field f of an element of type Z.  
Informally, each terminal and non-terminal symbol denotes 

a type of elements that may occur in a model. Each terminal 
symbol denotes a set of predefined basic elements. For exam-
ple, the terminal symbol String denotes the set of strings of 
characters. Non-terminal symbols denote the constructs of the 
modelling language. The elements of the root symbol are the 
models of the language. 

If a non-terminal symbol Y is defined in the form (1), it 
means that an element of type Y can be an element of type Xi, 
where 1 ≤ i ≤ n.  

If a non-terminal symbol Y is defined in the form (2), then, 
Y denotes a type of elements that each consists of n elements 
of type X1,…, Xn, respectively. The k’th element in the tuple 
can be accessed through the field name fk, which is a function 
symbol of type Y → Xk. That is, if a is an element of type Y, 



we write a.fk for the k’th element of a.  
Given a well-defined GEBNF syntax G = <R, N, T, S> of a 

modelling language L, we write Fun(G) to denote the set of 
function symbols derived from the syntax rules. From Fun(G), 
a predicate logic language can be defined as usual (C.f. [13]) 
using variables, relations and operators on sets, relations and 
operators on types denoted by terminal and non-terminal sym-
bols, equality and logic connectives or ∨, and ∧, not ¬, im-
plication → and equivalent ≡, and quantifiers for all ∀ and 
exists ∃.  

III. THE PROPOSED APPROACH  

A. Overview 
The proposed approach consists of the following aspects. 
• Definition of design space.  

We will use GEBNF-like meta-notation to define a meta-
model as the design space. The meta-model will defines a 
number of views. In each view, the meta-model will define a 
number of types of component elements in the subject domain 
and relations and properties of the elements.  

From a GEBNF-like meta-model, a predicate logic lan-
guage will be induced as in [12]. In this language, the sorts of 
the elements are the types defined in the meta-model. The 
primitive relation symbols, function symbols and predicate 
symbols are the functions, relations and properties defined for 
the design space.  
• Specification of patterns in a design space. 

The patterns in a design space can then be specified for-
mally using the induced predicate logic in the same way as we 
define OO DPs. That is, each pattern is defined by a predicate 
in the induced predicate logic language.  

Patterns can also be defined as compositions and instantia-
tions of existing patterns by applying the operators on patterns 
defined in [5]. We believe that the algebraic laws proved in [6] 
should also hold for such design spaces. Therefore, the proofs 
of properties of patterns can be performed in the same way as 
in OO design patterns.  

B. Definition of Design Spaces 
We represent a design space in the following form. 
DESIGN SPACE <Name>; 
  <Element type definitions>; 
  <View definitions> 
END <Name>  

An element type definition is in the form of GEBNF for-
mula (1). For example, the following is the definition of ele-
ments in an object oriented design.  
DESIGN SPACE OODesign;  
    TYPE 
    Class ::= name: String, attrs: Property*, ops: Operation*; 
      Property  ::= name: String, type:Type; 
    Operation ::= name: String, params: Parameter*; 
      Parameter ::= name: String, type: Type; 
    VIEW … 
END OODesign.  

A view defines a set of properties of the element types and 
relationships between them together with some constraints. 

For example, the following is the structural view of OO de-
signs at class level. The constraint states that inheritance is not 
allowed to be in cycles.  
VIEW Structure; 
BEGIN 
  PROPERTY 
    Features:  
      {Class | Operation | Property} ‐>       
        {Abstract, Leaf, Public, Private, Static, Query, New}*; 
      Direction:    
      Parameter ‐> {In, Out, InOot, Return};   
   RELATION 
       association, inherits, composite, aggregate: Class x Class;  
  CONSTRANT 
      FOR ALL c, d : Class THAT  
      NOT (inherits(c,d) AND inherits(d,c)).  
END Structure;  

A view may also contain additional element types. For ex-
ample, the behavioural view of OO design contains new types 
of elements such as messages, lifelines, and execution occur-
rences, frameworks.  
VIEW Behaviour; 
  TYPE 
    Message::= OpId:string, params: ActuralParameter*; 
    Life‐line::=  ObjName:string, ClassName:string, Finish: [INT]; 
    ExecutionOcc::= lifeline: Life‐line, start, finish: INT;  … 
   PROPERYTY 
    Type: Message ‐>{synchronous, asynchronous, return}; 

  RELATION 
       Message: Lifeline x Lifeline; 
    ActiveExec: ExecutionOcc x Lifeline; 
    Trigs: Message x ExecutionOcc;  
   END Behaviour; 

C. Specification of Patterns 
A pattern can be defined in two ways. The first is to define a 
pattern as a set of points in a design space in the following 
form.  
PATTERN <Name> OF <Design space name>; 
  COMPONENT {<Var>: <TypeExp>}+ 
  CONSTRANT  {IN <View name> VIEW: <Predicate> }* 
END <Name>  

For example, the Composite pattern in the Gang-of-Four 
catalogue can be defined as follows. 
PATTERN Composite OF OODesign; 
  COMPONENT 
    leaves: SET OF Class;  
    component, composite: Class; 
  CONSTRAINT 
    IN Structure VIEW 
      inherits(composite, component);  
      composite(component, composite); 
      FOR ALL c IN leaves THAT inherits(c, components); 
      component.features = {abstract}; 
    IN Behaviour VIEW … 
END Composite.  

The second way is to define a pattern as a composition or 
instance of other patterns by applying the pattern composition 
operators to existing ones. For example, the following defines 
a generalised version of the Composite pattern. 



PATTERN G‐Composite OF OODesign; 
  COMPONENT 
    components: SET OF Class;  
  EQUALS  
    Composite ⇑ (component / components) 
END G‐Composite.  

IV. APPLICATION TO SECURITY DESIGN PATTERNS  
In this section, we apply the proposed approach to security 
design patterns to demonstrate the style of design space defini-
tion and pattern specification in the proposed approach. 

A. The Design Space of Security Systems 
Computer and network security replies on a wide range of 
issues and various levels. Here, as an example, we focus on 
the logic and context level of enterprise architecture. In this 
case, we can model security systems in box diagrams [14]. A 
box diagram consists of a number of boxes and arrows. Each 
box represents a subsystem or entity of the system. Each arrow 
represents a channel of information flow or interaction be-
tween subsystems. For the sake of space, we will only define 
the structural view of the design space. The dynamic view of 
system’s behaviour will be omitted.  
DESIGN SPACE SecuritySystems; 
  TYPE 
    Subsystem:  
      name: STRING, content: [Value], description: [STRING]; 
    InfoFlow:   
      name: STRING, from, to: Subsystem, type: [STRING];  
  VIEW Structure;  
      PROPERTY  
          type:  Subsystem ‐> {aataStore, computation}; 
          mode: Subsystem ‐> {active, passive}; 
      RELATION 
          Is‐a‐part‐of: Subsystem x Subsystem;  
  END structure; 
END SecuritySystems 

B. Security System Design Patterns 
Now, we demonstrate that security system design patterns can 
be design with a number of special components that fully fill 
various security specific functions, such as encryption and 
decryption.  

Figure 1 shows the architecture of an indirect in-line au-
thentication architecture, where AI stands for authentication 
information.  

 
 
 
 
 
 
 

Figure 1. Indirect in-line authentication architecture 

This architecture can be represented as follows.  
PATTERN Indirect‐In‐Line‐Authentication IN SecuritySystem; 
  COMPONENT 
    Claimant, TrustedThirdParty, Verifier: Subsystem; 

    ClaimAI1, VerifyAI, ClaimAI2: Subsystem 
     ClaimAI12VerifyAI, VerifyAI2ClaimAI2: InfoFlow; 
    ClaimAI22Verifier: Infoflow; 
  CONSTRAINT 
    ClaimAI is‐a‐part‐of Claimant;  
    VerifyAI is‐a‐part‐of TrustedThirdParty; 
    ClaimAI2 is‐a‐part‐of TrustedThirdParty; 
    ClaimAI12VerifyAI.from = ClaimAI1; 
      ClaimAI12VerifyAI.to = VerifyAI; 
    VerifyAI2ClaimAI2.from= VerifyAI; 
    VerifyAI2ClaimAI2.to = VerifyAI; 
    ClaimAI22Verifier.from = ClaimAI2; 
    ClaimAI22Verifier.to = Verifier; 
END 

An alternative authentication pattern is online authentica-
tion shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 

Figure 2. Online authentication architecture 

PATTERN Online‐Authentication IN SecuritySystem; 
  COMPONENT 
    Claimant, TrustedTP, Verifier: Subsystem; 
     ClaimAI, AuthorityClaimAI, VerifAI: Subsystem; 
    AuthorityVerifAI: Subsystem; 
    ClaimantTrustedTP, VerifierTrustedTP: InfoFlow; 
    ClaimantVerifier: InfoFlow;  
  CONSTRAINT 
    ClaimAI is‐a‐part‐of Claimant; 
    AuthorityClaimAI is‐a‐part‐of TrustedTP;  
    VerifAI  is‐a‐part‐of TrustedTP;  
    AuthorityVerifAI is‐a‐part‐of Verifier;  
      … (* Some constraints are omitted for the sake of space *)  
END 

Another set of examples of security design patterns are en-
cryption and decryption techniques, as shown in Figure 3. 

 
 
 
 
 
 
 
 

Figure 3. Encryption and decryption 

PATTERN EncryptDecrypt IN SecuritySystem; 
  COMPONENT  
    encrypt, decrypt, source, ciphered, recovered,  
      key1, key2:  Subsystem;  
    source2encrypt, encrypt2ciphered, ciphered2decrypt,  
    decrypt2recovered, key12encript, key22decrypt: InfoFlow; 
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  CONSTRAINT 
    encrypt.type=computation; decrypt.type=computation; 
    source.type=dataStore;   ciphered. type=dataStore; 
    recovered. type=dataStore; 
    key1.type=dataStore;  Key2.type=dataStore; 
    source2encrypt.from=source;  source2encrypt.to= encrypt;  
    encrypt2ciphered.from= encrypt;  
    encrypt2ciphered.to= ciphered; 
    ciphered2decrypt.from= ciphered;   
    ciphered2decrypt.to= decrypt; 
    decrypt2recovered.from= decrypt;  
    decrypt2recovered.to= recovered; 
    …  
END 

There are two types of encryption/decryption techniques: 
symmetric and asymmetric. The former uses the same key in 
encryption and decryption, while the later uses different keys. 
Thus, we have two specialisations of the patterns.  
PATTERN SymetricEnDEcryppt in SecuritySystem  EQUALS 
     EncryptDecrypt [key1.content =key2.content]   END 
PATTERN AsymetricEnDEcryppt in SecuritySystem EQUALS  
    EncryptDecrypt [not (key1.content = key2.content)]  END 

Figure 4 shows a conceptual model of access control sub-
system [14]. It is in fact a design pattern for access control in 
enterprise systems.  

 

 
Figure 4. Conceptual model of access control system.  

PATTERN AccessControl IN SecuritySystem 
  COMPONENT 
    Subject, EnforcementFun, DecisionFun, Object,  
    AuditLogs, AccessControlList, SubjectReg: Subsystem; 
    AccessReq, ApprovedAccessReq, DecisionReq,  
    DecisionResp, WriteAuditRecord, SubjectInfo,  
    AccessRule: InfoFlow; 
  CONSTRAINT … 
END.  

V. CONCLUSION 
In this paper we have proposed an approach to define design 
spaces so that design patterns in various subject domains can 
be defined in the same way as we define OO design patterns. 
We demonstrated the applicability of the proposed approach 
by examples of security design patterns. However, the struc-
tures of security systems have been simplified by representing 
them in box diagram models. Their dynamic features are omit-
ted. The examples given in this paper are only skeletons. 
Many obvious constraints have been omitted for the sake of 
space. Further details must be worked out. There are also a 

number of other security design patterns can be identified. A 
case study of them and their composition is worth trying.   

Existing research on relationships between DPs has limited 
to those within the same design space. However, to study pat-
terns in cyberspaces, we need relationships between patterns 
across different design spaces. In particular, a security DP may 
be designated to against an attack pattern. They are in different 
design spaces. Hence, we have the following research ques-
tions:  
• How to formally define the ‘against’ relationship between 

such pairs of patterns? And, how to prove a security pattern 
can successfully prevent all attacks (i.e. instances) of a cer-
tain attack pattern?  

• Assume that the composition of security DPs (and attack 
patterns as well) be expressed in the same way as composi-
tion of OO DPs. Then, a question is: if a number of security 
patterns are composed together to enforce the security for an 
information system, can they prevent attacks of the target at-
tack patterns and their all possible compositions?  
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