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Abstract -- As knowledge of solutions to recurring design prob-
lems, a large number of software design patterns (DP) has been
identified, catalogued and formalized in the past decades. Tools
have been developed to support the application and recognition
of patterns. However, although the notions of pattern in different
subject domains carry a great deal of similarity, we are in lack of
a general theory that applies to all types of design patterns. This
paper is based on our previous work on formalization of OO DPs
and an algebra of pattern compositions. We propose a generaliza-
tion of the approach so that it can be applied to other types of
DPs. In particular, a pattern is defined as a set of points in a de-
sign space that satisfy certain conditions. Each condition specifies
a property of the instances of the pattern in a certain view of the
design space. The patterns can then be composed and instanti-
ated through applications of operators defined on patterns. The
paper demonstrates the feasibility of the proposed approach by
examples of patterns of enterprise security architecture.

Keywords — design space; design pattern; enterprise security sys-
tems; formal methods.

[. INTRODUCTION

Since 1980s, much work has been reported in the literature on
the patterns of OO software designs. Here, a design pattern
(DP) is a piece of codified knowledge of design solutions to
recurring design problems. A pattern-oriented design method-
ology has been advanced by the identification and catalogue of
patterns, the formalization of them and the development of
techniques and tools for formal reasoning about patterns and
automating pattern oriented design and code recovery. Its suc-
cess in improving OO design has also fostered research on
patterns of other aspects of software design, such as interface,
architecture and fault tolerant designs. The notion of patterns
has also been extended to other phases of software lifecycle,
such as analysis patterns in requirements analysis, architec-
tural patterns in software architectural design, process patterns
in software process modelling, test patterns in software test-
ing, etc.

In a more general context, the notion of pattern has been
investigated in many subject areas of computer science. In
particular, security patterns [1, 2] and attack patterns have
been identified and catalogued in the study of computer secu-
rity. However, although the notions of patterns in different
subject areas carry a great deal of similarity, we are in lack of
a general theory that applies to all types of patterns.

In this paper, we propose an approach to generalize our
previous work on the formalization of OO DPs and algebra of
pattern compositions and instantiations. We will also explore
the applicability of the general theory to security and identify
the new problems in the study of security patterns.

II. RELATED WORKS

A. OO Design Patterns

In the past decade, several formalisms for formally specifying
OO DPs have been advanced [3]. In spite of differences in
these formalisms, the basic underlying ideas are quite similar.
That is, patterns are specified by constraints on what are its
valid instances via defining their structural features and some-
times their behavioural features too. The structural constraints
are typically assertions that certain types of components exist
and have a certain configuration of the structure. The behav-
ioural constraints, on the other hand, detail the temporal order
of messages exchanged between the components.

Therefore, in general, a DP P can be defined abstractly as a
tuple <V, Prs, Prp>, where V={v:Ty, .. , v,:T,} declares the
components in the pattern, while Prg and Prp are predicates
that specify the structural and behavioural features of the pat-
tern, respectively. Here, v,’s in J are variables that range over
the type 7; of software elements, such as class, method, and
attribute. The predicates are constructed from primitive predi-
cates either manually defined, or systematically induced from
the mate-model of software design models [4]. The semantics
of a specification is the ground formula 3V;. (Prs APrp).

The notion of pattern conformation, i.e, a concrete design
D conforms to a pattern P, or D is an instance of P, can be
formally defined as logic entailment D |= 3V-Pr (i.e. the
statement 3V- Pr is true on D), where Pr =PrsaPrp and we
write D|=P. Consequently, for patterns P;, i=1,2, 3V-Pr; =
3V,-Pr, means pattern P, is a specialization of pattern P, and
we have that for all designs D, D|=P; implies that D|=P,. In
other words, reasoning about the specialization relation be-
tween patterns and the conformation of designs to patterns can
be performed in formal logics.

In [5], we have proposed the following operators on DPs
for pattern composition and instantiation.
® Restriction P[C]: to impose an additional constraint C to

pattern P;

o Superposition Py * P,: to require the design to conform to
both pattern P; and Py;

e Generalisation Plx: to allow an element x in pattern P be-
come a set of elements of the same type of x.

o Flatten Plx: to enforce a set x of element in the pattern P to
be a singleton.

e Lift PTx: to duplicate the number of instances of pattern P in
such a way that the set of components in each copy satisfies
the relationship as in P and the copies are configured in the
way that element x serves as the primary key as in a rela-



tional database.

o Extension P#(V eC): to add components in V into P and con-
nect them to the existing components of P as specified by
predicate C.

Using these operators, pattern oriented design decisions can
be formally represented [6]. A complete set of algebraic laws
that these operators obey has also been established so that the
result of design decisions can be worked out formally and
automatically. Moreover, with the algebraic laws, the equiva-
lence between different pattern expressions can be proven
formally and automatically through a normalization process.
For example, we can prove that the equation P[|.X]| = 1] = PUX
holds for all patterns P.

B. Design Space

Generally speaking, a design space for a particular subject
area is a space in which design decisions can be made. Each
concrete design in the domain is a point in this space. Under-
standing the structure of a design space of a particular domain
plays a significant role in software design [7]. Three ap-
proaches to represent design spaces have been advanced in
software engineering research:

o Multi-dimensional discrete Cartesian space, where each
dimension represents a design decision and its values are the
choices of the decision.

e Hierarchical structure: where nodes in a tree represent a
design decision and alternative values of the decision are the
branches, which could also be dependent design sub-
decisions [8].

e [nstance list: where a number of representative instances are
listed with their design decisions.

In the General Design Theory (GDT) proposed by Yoshi-
kawa [9, 10], a design space is divided into two views: one for
the observable (structural) features of the artefacts, and the
other for functional properties. These two views are linked
together by the instances in the domain. These instances show
how combinations of structural properties are associated to the
combinations of functional properties. These two views are
regarded as topological spaces and the links as continuous
mappings between them. By doing so, two types of design
problems can be solved automatically.

o Synthesis problem is to find a set of the structural features as
a solution that has certain functional features that are given
as design requirements.

® Analysis problem is to find out the functional properties
from an object’s structural properties.

The existing work on OO DPs can be understood in the GDT
very well, which also provides a theoretical foundation for the
approach proposed in this paper. However, existing ap-
proaches to the representation of design spaces cannot deal
with the complexity of software design satisfactorily. Thus,
we propose to use meta-modelling.

C. Meta-Modelling

Meta-modelling is to define a set of models that have certain
structural and/or behavioural features by means of modelling.
It is the approach that OMG defines UML and model-driven

architecture [11]. A meta-model can be in a graphic notation

such as UML’s class diagram, or in text format, such as

GEBNF, which stands for graphic extension of BNF [12].

In GEBNF approach, meta-modelling is performed by de-
fining the abstract syntax of a modelling language in BNF-like
meta-notation and formally specifying the constraints on mod-
els in a formal logic language induced from the syntax defini-
tion. Formal reasoning about meta-models can be supported
by automatic or interactive inference engines. Transformation
of models can be specified as mappings and relations between
GEBNF syntax definitions together with translations between
the predicate logic formulas.

In GEBNF, the abstract syntax of a modelling language is a
4-tuple <R, N, T, S>, where N is a finite set of non-terminal
symbols, and 7 is a finite set of terminal symbols. Each termi-
nal symbol, such as String, represents a set of atomic elements
that may occur in a model. R € N is the root symbol and S'is a
finite set of syntax rules. Each syntax rule can be in one of the
following two forms.

Y:::X]|X2|"'|Xn (1)

Yi=fitELfh: B, fu E, 2)
where YeN, X;eTUN, f;’s are field names, and E;’s are syntax
expressions, which are inductively defined as follows.

e (' is a basic syntax expression, if C is a literal instance of a
terminal symbol, such as a string.

e X'is a basic syntax expression, if Xe TUN.

o X(@Z.f1s a basic syntax expression, if X, Ze N, and fis a field
name in the definition of Z, and X is the type of f field in Z’s
definition. The non-terminal symbol X is called a referential
occurrence.

e £* FE+ and [E] are syntax expressions, if £ is a basic syntax
expression.

The meaning of the above meta-notation is informally ex-

plained in Table 1.

TABLE 1 MEANINGS OF GEBNF NOTATION

Notation | Meaning

X* A set of elements of type X.

X+ A non-empty set of elements of type X.

[X] An optional element of type X.

X@Z.f A reference to an existing element of type
X in field f of an element of type Z.

Informally, each terminal and non-terminal symbol denotes
a type of elements that may occur in a model. Each terminal
symbol denotes a set of predefined basic elements. For exam-
ple, the terminal symbol String denotes the set of strings of
characters. Non-terminal symbols denote the constructs of the
modelling language. The elements of the root symbol are the
models of the language.

If a non-terminal symbol Y is defined in the form (1), it
means that an element of type ¥ can be an element of type X,
where | <i<n.

If a non-terminal symbol Y is defined in the form (2), then,
Y denotes a type of elements that each consists of n elements
of type Xi,..., X,, respectively. The k’th element in the tuple
can be accessed through the field name f;, which is a function
symbol of type Y — X}. That is, if a is an element of type Y,



we write a.f; for the £’th element of a.

Given a well-defined GEBNF syntax G =<R, N, T, $> of a
modelling language L, we write Fun(G) to denote the set of
function symbols derived from the syntax rules. From Fun(G),
a predicate logic language can be defined as usual (C.f. [13])
using variables, relations and operators on sets, relations and
operators on types denoted by terminal and non-terminal sym-
bols, equality and logic connectives or \V, and /\, not —, im-
plication — and equivalent =, and quantifiers for all V and
exists 3.

III. THE PROPOSED APPROACH

A. Overview

The proposed approach consists of the following aspects.
o Definition of design space.

We will use GEBNF-like meta-notation to define a meta-
model as the design space. The meta-model will defines a
number of views. In each view, the meta-model will define a
number of types of component elements in the subject domain
and relations and properties of the elements.

From a GEBNF-like meta-model, a predicate logic lan-
guage will be induced as in [12]. In this language, the sorts of
the elements are the types defined in the meta-model. The
primitive relation symbols, function symbols and predicate
symbols are the functions, relations and properties defined for
the design space.

o Specification of patterns in a design space.

The patterns in a design space can then be specified for-
mally using the induced predicate logic in the same way as we
define OO DPs. That is, each pattern is defined by a predicate
in the induced predicate logic language.

Patterns can also be defined as compositions and instantia-
tions of existing patterns by applying the operators on patterns
defined in [5]. We believe that the algebraic laws proved in [6]
should also hold for such design spaces. Therefore, the proofs
of properties of patterns can be performed in the same way as
in OO design patterns.

B. Definition of Design Spaces

We represent a design space in the following form.
DESIGN SPACE <Name>;
<Element type definitions>;
<View definitions>
END <Name>
An element type definition is in the form of GEBNF for-
mula (1). For example, the following is the definition of ele-
ments in an object oriented design.
DESIGN SPACE OODesign;
TYPE
Class ::= name: String, attrs: Property*, ops: Operation*;
Property ::= name: String, type:Type;
Operation ::= name: String, params: Parameter*;
Parameter ::= name: String, type: Type;
VIEW ...
END OODesign.
A view defines a set of properties of the element types and
relationships between them together with some constraints.

For example, the following is the structural view of OO de-
signs at class level. The constraint states that inheritance is not
allowed to be in cycles.
VIEW Structure;
BEGIN
PROPERTY
Features:
{Class | Operation | Property} ->
{Abstract, Leaf, Public, Private, Static, Query, New}*;
Direction:
Parameter -> {In, Out, InOot, Return};
RELATION
association, inherits, composite, aggregate: Class x Class;
CONSTRANT
FOR ALL ¢, d : Class THAT
NOT (inherits(c,d) AND inherits(d,c)).
END Structure;

A view may also contain additional element types. For ex-
ample, the behavioural view of OO design contains new types
of elements such as messages, lifelines, and execution occur-
rences, frameworks.

VIEW Behaviour;
TYPE

Message::= Opld:string, params: ActuralParameter*;

Life-line::= ObjName:string, ClassName:string, Finish: [INT];

ExecutionOcc::= lifeline: Life-line, start, finish: INT; ...

PROPERYTY
Type: Message ->{synchronous, asynchronous, return};
RELATION

Message: Lifeline x Lifeline;

ActiveExec: ExecutionOcc x Lifeline;

Trigs: Message x ExecutionOcg;

END Behaviour;

C. Specification of Patterns

A pattern can be defined in two ways. The first is to define a
pattern as a set of points in a design space in the following
form.
PATTERN <Name> OF <Design space name>;

COMPONENT {<Var>: <TypeExp>}+

CONSTRANT {IN <View name> VIEW: <Predicate> }*
END <Name>

For example, the Composite pattern in the Gang-of-Four
catalogue can be defined as follows.
PATTERN Composite OF OODesign;

COMPONENT
leaves: SET OF Class;
component, composite: Class;
CONSTRAINT

IN Structure VIEW

inherits(composite, component);
composite(component, composite);

FOR ALL c IN leaves THAT inherits(c, components);
component.features = {abstract};

IN Behaviour VIEW ...

END Composite.

The second way is to define a pattern as a composition or
instance of other patterns by applying the pattern composition
operators to existing ones. For example, the following defines
a generalised version of the Composite pattern.



PATTERN G-Composite OF OODesign;
COMPONENT
components: SET OF Class;
EQUALS
Composite 1 (component / components)
END G-Composite.

IV. APPLICATION TO SECURITY DESIGN PATTERNS

In this section, we apply the proposed approach to security
design patterns to demonstrate the style of design space defini-
tion and pattern specification in the proposed approach.

A. The Design Space of Security Systems

Computer and network security replies on a wide range of
issues and various levels. Here, as an example, we focus on
the logic and context level of enterprise architecture. In this
case, we can model security systems in box diagrams [14]. A
box diagram consists of a number of boxes and arrows. Each
box represents a subsystem or entity of the system. Each arrow
represents a channel of information flow or interaction be-
tween subsystems. For the sake of space, we will only define
the structural view of the design space. The dynamic view of
system’s behaviour will be omitted.
DESIGN SPACE SecuritySystems;
TYPE
Subsystem:
name: STRING, content: [Value], description: [STRING];
InfoFlow:
name: STRING, from, to: Subsystem, type: [STRING];
VIEW Structure;
PROPERTY
type: Subsystem -> {aataStore, computation};
mode: Subsystem -> {active, passive};
RELATION
Is-a-part-of: Subsystem x Subsystem;
END structure;
END SecuritySystems

B. Security System Design Patterns

Now, we demonstrate that security system design patterns can
be design with a number of special components that fully fill
various security specific functions, such as encryption and
decryption.

Figure 1 shows the architecture of an indirect in-line au-
thentication architecture, where A/ stands for authentication
information.
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Figure 1. Indirect in-line authentication architecture
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This architecture can be represented as follows.
PATTERN Indirect-In-Line-Authentication IN SecuritySystem;
COMPONENT
Claimant, TrustedThirdParty, Verifier: Subsystem;

ClaimAl1, VerifyAl, ClaimAl2: Subsystem
ClaimAl12VerifyAl, VerifyAl2ClaimAl2: InfoFlow;
ClaimAl22Verifier: Infoflow;
CONSTRAINT
ClaimAl is-a-part-of Claimant;
VerifyAl is-a-part-of TrustedThirdParty;
ClaimAl2 is-a-part-of TrustedThirdParty;
ClaimAl12VerifyAl.from = ClaimAl1;
ClaimAl12VerifyAl.to = VerifyAl,
VerifyAl2ClaimAI2.from= VerifyAl,
VerifyAl2ClaimAl2.to = VerifyAl;
ClaimAl22Verifier.from = ClaimAl2;
ClaimAl22Verifier.to = Verifier;
END
An alternative authentication pattern is online authentica-
tion shown in Figure 2.
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Figure 2. Online authentication architecture

PATTERN Online-Authentication IN SecuritySystem;
COMPONENT
Claimant, TrustedTP, Verifier: Subsystem;
ClaimAl, AuthorityClaimAl, VerifAl: Subsystem;
AuthorityVerifAl: Subsystem;
ClaimantTrustedTP, VerifierTrustedTP: InfoFlow;
ClaimantVerifier: InfoFlow;
CONSTRAINT
ClaimAl is-a-part-of Claimant;
AuthorityClaimAl is-a-part-of TrustedTP;
VerifAl is-a-part-of TrustedTP;
AuthorityVerifAl is-a-part-of Verifier;
... (* Some constraints are omitted for the sake of space *)
END
Another set of examples of security design patterns are en-
cryption and decryption techniques, as shown in Figure 3.

Source Text Recovered text
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Figure 3. Encryption and decryption
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PATTERN EncryptDecrypt IN SecuritySystem;
COMPONENT
encrypt, decrypt, source, ciphered, recovered,
key1l, key2: Subsystem;
source2encrypt, encrypt2ciphered, ciphered2decrypt,
decrypt2recovered, keyl2encript, key22decrypt: InfoFlow;



CONSTRAINT
encrypt.type=computation; decrypt.type=computation;
source.type=dataStore; ciphered. type=dataStore;
recovered. type=dataStore;
keyl.type=dataStore; Key2.type=dataStore;
source2encrypt.from=source; source2encrypt.to= encrypt;
encrypt2ciphered.from= encrypt;
encrypt2ciphered.to= ciphered;
ciphered2decrypt.from= ciphered;
ciphered2decrypt.to= decrypt;
decrypt2recovered.from= decrypt;
decrypt2recovered.to= recovered;

END
There are two types of encryption/decryption techniques:
symmetric and asymmetric. The former uses the same key in
encryption and decryption, while the later uses different keys.
Thus, we have two specialisations of the patterns.
PATTERN SymetricEnDEcryppt in SecuritySystem EQUALS
EncryptDecrypt [keyl.content =key2.content] END
PATTERN AsymetricEnDEcryppt in SecuritySystem EQUALS
EncryptDecrypt [not (keyl.content = key2.content)] END
Figure 4 shows a conceptual model of access control sub-
system [14]. It is in fact a design pattern for access control in
enterprise systems.

Access Control
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Figure 4. Conceptual model of access control system.

PATTERN AccessControl IN SecuritySystem
COMPONENT
Subject, EnforcementFun, DecisionFun, Object,
AuditLogs, AccessControlList, SubjectReg: Subsystem;
AccessReq, ApprovedAccessReq, DecisionReq,
DecisionResp, WriteAuditRecord, Subjectinfo,
AccessRule: InfoFlow;
CONSTRAINT ...
END.

V. CONCLUSION

In this paper we have proposed an approach to define design
spaces so that design patterns in various subject domains can
be defined in the same way as we define OO design patterns.
We demonstrated the applicability of the proposed approach
by examples of security design patterns. However, the struc-
tures of security systems have been simplified by representing
them in box diagram models. Their dynamic features are omit-
ted. The examples given in this paper are only skeletons.
Many obvious constraints have been omitted for the sake of
space. Further details must be worked out. There are also a

number of other security design patterns can be identified. A
case study of them and their composition is worth trying.

Existing research on relationships between DPs has limited
to those within the same design space. However, to study pat-
terns in cyberspaces, we need relationships between patterns
across different design spaces. In particular, a security DP may
be designated to against an attack pattern. They are in different
design spaces. Hence, we have the following research ques-
tions:

e How to formally define the ‘against’ relationship between
such pairs of patterns? And, how to prove a security pattern
can successfully prevent all attacks (i.e. instances) of a cer-
tain attack pattern?

e Assume that the composition of security DPs (and attack
patterns as well) be expressed in the same way as composi-
tion of OO DPs. Then, a question is: if a number of security
patterns are composed together to enforce the security for an
information system, can they prevent attacks of the target at-
tack patterns and their all possible compositions?
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