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Abstract As knowledge of solutions to recurring design problems, a large number
of software design patterns (DP) has been identified, catalogued and formalised in
the past decades. Tools have been developed to support the application and recog-
nition of patterns. However, although the notions of pattern in different subject do-
mains carry a great deal of similarity, we are in lack of a general pattern represen-
tation approach that applies to all types of design patterns. Based on our previous
work on formalisation of OO DPs and an algebra of pattern compositions, this pa-
per proposes a generalisation of the approach so that it can be applied to other types
of DPs. In particular, a pattern is defined as a set of points in a design space that
satisfy certain conditions. Each condition specifies a property of the instances of the
pattern in a certain view of the design space. The patterns can then be composed
and instantiated through applications of operators defined on patterns. The paper
demonstrates the feasibility of the proposed approach by examples of patterns of
enterprise security architecture.

Key words: Design space; Design pattern; Pattern representation; Enterprise secu-
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1 Introduction

Since 1980s, much work has been reported in the literature on the patterns of OO
software designs. Here, a design pattern (DP) is a piece of codified knowledge of de-
sign solutions to recurring design problems. A pattern-oriented design methodology
has been advanced by the identification and catalogue of patterns, the formalisation
of them and the development of techniques and tools for formal reasoning about
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patterns and automating pattern oriented design and code recovery. Its success in
improving OO design has also fostered research on patterns of other aspects of soft-
ware design, such as interface, architecture and fault tolerant designs. The notion of
patterns has also been extended to other phases of software lifecycle, such as analy-
sis patterns in requirements analysis, architectural patterns in software architectural
design, process patterns in software process modelling, test patterns in software test-
ing, etc.

In a more general context, the notion of pattern has been investigated in many
subject areas of computer science. In particular, security patterns [3, 12] and attack
patterns have been identified and catalogued in the study of computer security. How-
ever, although the notions of patterns in different subject areas carry a great deal of
similarity, we are in lack of a general theory that applies to all types of patterns.

In this paper, we propose an approach to generalise our previous work on the
formalisation of OO DPs and algebra of pattern compositions and instantiations.
We will also explore the applicability of the general theory to security and identify
the new problems in the study of security patterns.

2 Related Works

2.1 OO Design Patterns

In the past decade, several formalisms for formally specifying OO DPs have been
advanced [10]. In spite of differences in these formalisms, the basic underlying ideas
are quite similar. That is, patterns are specified by constraints on what are its valid
instances via defining their structural features and sometimes their behavioural fea-
tures too. The structural constraints are typically assertions that certain types of
components exist and have a certain configuration of the structure. The behavioural
constraints, on the other hand, detail the temporal order of messages exchanged
between the components.

Therefore, in general, a DP P can be defined abstractly as a tuple < V, Prg, Prp >,
where V. = {v; : T}, --,v, : T,,} declares the components in the pattern, while PrS
and PrD are predicates that specify the structural and behavioural features of the
pattern, respectively. Here, v;’s in V' are variables that range over the type Ti of soft-
ware elements, such as class, method, and attribute. The predicates are constructed
from primitive predicates either manually defined, or systematically induced from
the mate-model of software design models [1]. The semantics of a specification is
the ground formula 3V - (Prg, Prp).

The notion of pattern conformation, i.e, a concrete design D conforms to a pattern
P, or D is an instance of P, can be formally defined as logic entailment D = 3V - Pr
(i.e. the statement 3V - Pr is true on D), where Pr = Prg A Prp and we write D |= P.
Consequently, for patterns P,,i = 1,2,---3V - Pr; = 3V2- Prp means pattern P; is a
specialization of pattern P, and we have that for all designs D, D |= P; implies that



Design Space-Based Pattern Representation 3

D |= Py. In other words, reasoning about the specialization relation between patterns
and the conformation of designs to patterns can be performed in formal logics.

In [2], we have proposed the following operators on DPs for pattern composition
and instantiation.

e Restriction P[C]: to impose an additional constraint C to pattern P;
Superposition Py x P: to require the design to conform to both pattern P; and Px;
Generalisation P 1) x: to allow an element x in pattern P become a set of elements
of the same type of x.

Flatten P | x: to enforce a set x of element in the pattern P to be a singleton.

e Lift P71 x: to duplicate the number of instances of pattern P in such a way that the
set of components in each copy satisfies the relationship as in P and the copies are
configured in the way that element x serves as the primary key as in a relational
database.

o Extension P#(V e C): to add components in V into P and connect them to the
existing components of P as specified by predicate C.

Using these operators, pattern oriented design decisions can be formally repre-
sented [14]. A complete set of algebraic laws that these operators obey has also been
established so that the result of design decisions can be worked out formally and au-
tomatically. Moreover, with the algebraic laws, the equivalence between different
pattern expressions can be proven formally and automatically through a normaliza-
tion process. For example, we can prove that the equation P[|| X || = 1] = P} X holds
for all patterns P.

2.2 Design Space

Generally speaking, a design space for a particular subject area is a space in which
design decisions can be made. Each concrete design in the domain is a point in this
space. Understanding the structure of a design space of a particular domain plays a
significant role in software design [8]. Three approaches to represent design spaces
have been advanced in software engineering research:

o Multi-dimensional discrete Cartesian space: where each dimension represents a
design decision and its values are the choices of the decision.

e Hierarchical structure: where nodes in a tree represent a design decision and
alternative values of the decision are the branches, which could also be dependent
design sub-decisions [4].

e [nstance list: where a number of representative instances are listed with their
design decisions.

In the General Design Theory (GDT) proposed by Yoshikawa [11, 6], a design
space is divided into two views: one for the observable (structural) features of the
artefacts, and the other for functional properties. These two views are linked together
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by the instances in the domain. These instances show how combinations of struc-
tural properties are associated to the combinations of functional properties. These
two views are regarded as topological spaces and the links as continuous mappings
between them. By doing so, two types of design problems can be solved automati-
cally.

e Synthesis problem is to find a set of the structural features as a solution that has
certain functional features that are given as design requirements.

e Analysis problem is to find out the functional properties from an object’s struc-
tural properties.

The existing work on OO DPs can be understood in the GDT very well, which
also provides a theoretical foundation for the approach proposed in this paper. How-
ever, existing approaches to the representation of design spaces cannot deal with
the complexity of software design satisfactorily. Thus, we propose to use meta-
modelling.

2.3 Meta-Modelling

Meta-modelling is to define a set of models that have certain structural and/or be-
havioural features by means of modelling. It is the approach that OMG defines UML
and model-driven architecture [7]. A meta-model can be in a graphic notation such
as UML’s class diagram, or in text format, such as GEBNF, which stands for graphic
extension of BNF [13]. In GEBNF approach, meta-modelling is performed by defin-
ing the abstract syntax of a modelling language in BNF-like meta-notation and for-
mally specifying the constraints on models in a formal logic language induced from
the syntax definition. Formal reasoning about meta-models can be supported by au-
tomatic or interactive inference engines. Transformation of models can be specified
as mappings and relations between GEBNF syntax definitions together with trans-
lations between the predicate logic formulas.

In GEBNEF, the abstract syntax of a modelling language is a 4-tuple < R,N,T,S >,
where N is a finite set of non-terminal symbols, and T is a finite set of terminal sym-
bols. Each terminal symbol, such as String, represents a set of atomic elements that
may occur in a model. R C N is the root symbol and S is a finite set of syntax rules.
Each syntax rule can be in one of the following two forms.

Y =X Xa] - | Xa (1)
Y:::fl:Elaf2:E27"'7fn:En (2)

where Y € N, X; € TUN, fii =1,---,n are field names, and E;’s are syntax expres-
sions, which are inductively defined as follows.

e (s abasic syntax expression, if C is a literal instance of a terminal symbol, such
as a string.
e X is a basic syntax expression, if X € TUN.
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e X@Z.f is a basic syntax expression, if X,Z € N, and f is a field name in the
definition of Z, and X is the type of f field in Z’s definition. The non-terminal
symbol X is called a referential occurrence.

e Ex, E+ and [E] are syntax expressions, if E is a basic syntax expression.

The meaning of the above meta-notation is informally explained in Table 1.

Table 1 Meanings of GEBNF Notation

Notation Meaning

X A set of elements of type X.
X+ A non-empty set of elements of type X.
[X] An optional element of type X.

X@Z.f Areference to an existing element of type X in field f of an element of type Z.

Informally, each terminal and non-terminal symbol denotes a type of elements
that may occur in a model. Each terminal symbol denotes a set of predefined ba-
sic elements. For example, the terminal symbol String denotes the set of strings of
characters. Non-terminal symbols denote the constructs of the modelling language.
The elements of the root symbol are the models of the language.

If a non-terminal symbol Y is defined in the form( 1), it means that an element
of type Y can be an element of type X;, where 1 <i<n.

If a non-terminal symbol Y is defined in the form (2), then, Y denotes a type of
elements that each consists of n elements of type Xi,---,X,, respectively. The k’th
element in the tuple can be accessed through the field name f;, which is a function
symbol of type Y — X;. That is, if a is an element of type Y, we write a.f; for the
k’th element of a.

Given a well-defined GEBNF syntax G =< R,N, T, S > of a modelling language
L, we write Fun(G) to denote the set of function symbols derived from the syntax
rules. From Fun(G), a predicate logic language can be defined as usual (C.f. [5])
using variables, relations and operators on sets, relations and operators on types
denoted by terminal and non-terminal symbols, equality and logic connectives or v,
and A, not —, implication Rightarrow and equivalent equiv, and quantifiers for all vV
and exists 3.

3 The Proposed Approach

3.1 Overview

The proposed approach consists of the following aspects.
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3.1.1 Definition of design space

We will use GEBNF-like meta-notation to define a meta-model as the design space.
The meta-model will defines a number of views. In each view, the meta-model will
define a number of types of component elements in the subject domain and relations
and properties of the elements.

From a GEBNF-like meta-model, a predicate logic language will be induced as
in [13]. In this language, the sorts of the elements are the types defined in the meta-
model. The primitive relation symbols, function symbols and predicate symbols are
the functions, relations and properties defined for the design space.

3.1.2 Specification of patterns in a design space

The patterns in a design space can then be specified formally using the induced
predicate logic in the same way as we define OO DPs. That is, each pattern is defined
by a predicate in the induced predicate logic language.

Patterns can also be defined as compositions and instantiations of existing pat-
terns by applying the operators on patterns defined in [2]. We believe that the al-
gebraic laws proved in [14] should also hold for such design spaces. Therefore, the
proofs of properties of patterns can be performed in the same way as in OO design
patterns.

3.1.3 Definition of Design Spaces

We represent a design space in the following form.

DESIGN SPACE <Name>;
<Element type definitions>;
<View definitions>

END <Name>

An element type definition is in the form of GEBNF formula (1). For example,
the following is the definition of elements in an object oriented design.

DESIGN SPACE OODesign;
TYPE
Class ::=
name: String,
attrs: Propertyx,
ops: Operationx;
Property ::=
name: String,
type:Type;
Operation ::=
name: String,
params: Parameterx;
Parameter ::=
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name: String,
type: Type;
VIEW
END OODesign.

A view defines a set of properties of the element types and relationships between
them together with some constraints. For example, the following is the structural
view of OO designs at class level. The constraint states that inheritance is not al-
lowed to be in cycles.

VIEW Structure;
BEGIN
PROPERTY
Features:
{Class | Operation | Property} ->
{Abstract, Leaf, Public, Private, Static, Query, New}x;
Direction:
Parameter -> {In, Out, InOot, Return};
RELATION
association, inherits, composite, aggregate: Class x Class;
CONSTRAINT
FOR ALL c, d : Class THAT
NOT (inherits(c,d) AND inherits(d,c)).
END Structure;

A view may also contain additional element types. For example, the behavioural
view of OO design contains new types of elements such as messages, lifelines, and
execution occurrences, frameworks.

VIEW Behaviour;

TYPE
Message ::=
OpIld:string, params: ActuralParameterx;
Lifeline ::=
ObjName:string, ClassName:string, Finish: [INT];
ExecutionOcc ::=

lifeline: Lifeline, start, finish: INT;

PROPERYTY

Type: Message —> {synchronous, asynchronous, return};
RELATION

Message: Lifeline x Lifeline;
ActiveExec: ExecutionOcc x Lifeline;
Trigs: Message x ExecutionOcc;

END Behaviour;

3.1.4 Specification of Patterns

A pattern can be defined in two ways. The first is to define a pattern as a set of points
in a design space in the following form.
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PATTERN <Name> OF <Design space name>;
COMPONENT
{<Var>: <TypeExp>}+
CONSTRANT
{IN <View name> VIEW: <Predicate>}+*
END <Name>

For example, the Composite pattern in the Gang-of-Four catalogue can be defined
as follows.

PATTERN Composite OF OODesign;
COMPONENT
leaves: SET_OF Class;
component, composite: Class;
CONSTRAINT
IN Structure VIEW
inherits (composite, component);
composite (component, composite);
FORALL c IN leaves THAT inherits(c, components);
component.features = {abstract};
IN Behaviour VIEW

END Composite.

The second way is to define a pattern as a composition or instance of other pat-
terns by applying the pattern composition operators to existing ones. For example,
the following defines a generalised version of the Composite pattern.

PATTERN G-Composite OF OODesign;

COMPONENT
components: SET_OF Class;
EQUALS
Composite ||~ (component / components)

END G-Composite.

3.2 Application to Security Design Patterns

In this section, we apply the proposed approach to security design patterns to
demonstrate the style of design space definition and pattern specification in the pro-
posed approach.

3.2.1 The Design Space of Security Systems

Computer and network security replies on a wide range of issues and various levels.
Here, as an example, we focus on the logic and context level of enterprise architec-
ture. In this case, we can model security systems in box diagrams [9]. A box diagram
consists of a number of boxes and arrows. Each box represents a sub-system or en-
tity of the system. Each arrow represents a channel of information flow or interaction
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between subsystems. For the sake of space, we will only define the structural view
of the design space. The dynamic view of system’s behaviour will be omitted.

DESIGN SPACE SecuritySystems;
TYPE
Subsystem:
name: STRING,
content: [Value],
description: [STRING];
InfoFlow:
name: STRING,
from, to: Subsystem,
type: [STRING];
VIEW Structure;
PROPERTY
type: Subsystem -> {data_store, computation};
mode: Subsystem -> {active, passive};
RELATION
Is—a-part-of: Subsystem x Subsystem;
END structure;
END SecuritySystems

3.2.2 Security System Design Patterns

Now, we demonstrate that security system design patterns can be design with a
number of special components that fully fill various security specific functions, such
as encryption and decryption.

Figure 1 shows the architecture of an indirect inline authentication architecture,
where Al stands for authentication information.

This architecture can be represented as follows.

PATTERN Indirect-Inline-Authentication IN SecuritySystem;
COMPONENT
Claimant, TrustedThirdParty, Verifier: Subsystem;
ClaimAIl, VerifyAI, ClaimAI2: Subsystem
ClaimAIl12VerifyAI, VerifyAI2ClaimAI2: InfoFlow;
ClaimAI22Verifier: Infoflow;

CONSTRAINT
. Trusted Third
Claimant usted Tt
party
Claim Al Al
Verify Al

Verified Al .
» Verifier

Claim Al

Fig. 1 Indirect inline authentication architecture



10 Hong Zhu

ClaimAI is—-a-part-of Claimant;
VerifyAIl is-a-part-of TrustedThirdParty;
ClaimAI2 is-a-part-of TrustedThirdParty;
ClaimAIl2VerifyAIl.from = ClaimAIl;
ClaimAIl2VerifyAI.to = VerifyAI;
VerifyAI2ClaimAI2.from = VerifyAI;
VerifyAI2ClaimAI2.to = VerifyAI;
ClaimAI22Verifier.from = ClaimAI2;
ClaimAI22Verifier.to = Verifier;

END

An alternative authentication pattern is online authentication shown in Figure 2.

PATTERN Online-Authentication IN SecuritySystem;
COMPONENT
Claimant, TrustedTP, Verifier: Subsystem;
ClaimAI, AuthorityClaimAI, VerifAI: Subsystem;
AuthorityVerifAI: Subsystem;
ClaimantTrustedTP, VerifierTrustedTP: InfoFlow;
ClaimantVerifier: InfoFlow;
CONSTRAINT
ClaimAI is-a-part-of Claimant;
AuthorityClaimAI is-a-part-of TrustedIP;
VerifAI is-a-part-of TrustedTIP;
AuthorityVerifAI is-a-part-of Verifier;
(* Some constraints are omitted for the sake of space
END

Another set of examples of security design patterns are encryption and decryption
techniques, as shown in Figure 3.

PATTERN EncryptDecrypt IN SecuritySystem;

COMPONENT
encrypt, decrypt: Subsystem;
source, ciphered, recovered, keyl, key2: Subsystem;

sourceZ2encrypt, encrypt2ciphered, ciphered2decrypt,
decrypt2recovered, keyl2encript, key22decrypt: InfoFlow;

Claimant Exchange Al Verifier
>
Claim Al Authority Verification Al
Trusted Third party
Exciange Al Exchanfge Al
‘ Authority Claim Al ’
[ Verification Al ]

Fig. 2 Online authentication architecture
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CONSTRAINT
encrypt.type=computation;
decrypt.type=computation;
source.type=dataStore;
ciphered.type=dataStore;
recovered.type=dataStore;
keyl.type=dataStore;
Key2.type=dataStore;
sourceZencrypt.from=source;
sourceZ2encrypt.to= encrypt;
encrypt2ciphered. from= encrypt;
encrypt2ciphered.to= ciphered;
ciphered2decrypt.from= ciphered;
ciphered2decrypt.to= decrypt;
decrypt2recovered. from= decrypt;
decrypt2recovered.to= recovered;

END

There are two types of encryption/decryption techniques: symmetric and asym-
metric. The former uses the same key in encryption and decryption, while the later
uses different keys. Thus, we have two specialisations of the patterns.

PATTERN SymetricEnDEcryppt in SecuritySystem

EQUALS
EncryptDecrypt [keyl.content =key2.content]
END
PATTERN AsymetricEnDEcryppt in SecuritySystem
EQUALS

EncryptDecrypt [not (keyl.content = key2.content)]
END

Figure 4 shows a conceptual model of access control sub-system [9]. It is in fact
a design pattern for access control in enterprise systems.

PATTERN AccessControl IN SecuritySystem
COMPONENT
Subject, EnforcementFun, DecisionFun, Object,
AuditLogs, AccessControlList, SubjectReg: Subsystem;

Source Text Recovered text

¢ A

A

Keyl Key2

Fig. 3 Encryption and decryption
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AccessReq, ApprovedAccessReq, DecisionReq,
DecisionResp, WriteAuditRecord, SubjectInfo,
AccessRule: InfoFlow;
CONSTRAINT
END.

4 Conclusion

In this paper we have proposed an approach to define design spaces so that design
patterns in various subject domains can be defined in the same way as we define
OO design patterns. We demonstrated the applicability of the proposed approach by
examples of security design patterns. However, the structures of security systems
have been simplified by representing them in box diagram models. Their dynamic
features are omitted. The examples given in this paper are only skeletons. Many
obvious constraints have been omitted for the sake of space. Further details must
be worked out. There are also a number of other security design patterns can be
identified. A case study of them and their composition is worth trying.

Existing research on relationships between DPs has limited to those within the
same design space. However, to study patterns in cyberspaces, we need relationships
between patterns across different design spaces. In particular, a security DP may be
designated to against an attack pattern. They are in different design spaces. Hence,
we have the following research questions:

e How to formally define the against relationship between such pairs of patterns?
And, how to prove a security pattern can successfully prevent all attacks (i.e.
instances) of a certain attack pattern?

e Assume that the composition of security DPs (and attack patterns as well) be
expressed in the same way as composition of OO DPs. Then, a question is: if
a number of security patterns are composed together to enforce the security for

- Access Control -
Subject Access Approved Object
- Enforcement ) t
(initiator) request . ccess fo (target)

Function object
Decision Decision
request response
Y

Audit Wit dof Access Control A s of Access
‘rite record O ) Cccess rules o
Logs request and Decision the object Control

decision Function List

Subject registration
and profile info
Subject Registration

+ Profiles (Rule)

Fig. 4 Conceptual model of access control system
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an information system, can they prevent attacks of the target attack patterns and
their all possible compositions?
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