
IEEE SMC MAGAZINE (SUBMITTED: 19 SEPT. 2017; REVISED: 5 MAR. 2018; ACCEPTED: 19 MAR. 2018) 1

CYBERPATTERNS:
Linking Data Analytics To Reusable Knowledge

Hong Zhu, Senior Member, IEEE, Ian Bayley

Abstract—One of the most compelling challenges for data ana-
lytics is to obtain reusable, verifiable and transferable knowledge
from data. One solution to this is the pattern-oriented approach to
knowledge representation proposed by this paper. The foundation
of the approach is a formal theory of patterns, including a formal
language for defining them, and an algebra of operations for
composing patterns and instantiating them. This paper outlines
a roadmap for the study of so-called cyberpatterns: the patterns
of cyberspace. It explores the scope of research, views the current
state of the art and identifies the key research questions.

I. INTRODUCTION

Cyberspace is making available a vast and ever increasing
amount of data about the physical world, manmade systems,
human behaviours and much else. This is thanks to the rapid
advances in cloud computing, the Internet and wireless com-
munication, smart devices, mobile computing, and Internet of
Things technology. Consequently, data analytics has boomed
into an active scientific / technical interdisciplinary research
area. One compelling challenge for researchers in this field
is to obtain, from data, knowledge that is reusable, testable,
verifiable and transferable, so that learning and reasoning can
be effectively integrated [1].

Much of that extraction depends on machine learning tech-
niques, however, and these have many shortcomings. The
results of these techniques do not come with the human-
comprehensible explanations needed to validate, verify and test
them. They may be short-lived too because they apply only to
the currently available data set. Thus, they are not as reusable
for different users in different situations. Finally, the results
are often in a tool-specific format that is not transferable to
other applications.

To overcome these problems, statistical learning and sym-
bolic reasoning need to be combined in an effective manner,
perhaps with knowledge representation playing a crucial role
as Shoham argued [2]. However, in the past three decades,
these two fields have mostly been developed separately by
distinct research communities. Those working on the integra-
tion of symbolic and connectionist paradigms of AI are among
the few exceptions; see [3] for a recent survey.

The solution proposed by this paper is a pattern-oriented
approach that aims at bridging the gap between data based
machine learning and reusable knowledge. It consists of two
parts:
• A formal theory of pattern, which consists of a formalism

of knowledge representation in the form of patterns, a
set of operators that allow patterns to be composed and
instantiated, and a collection of algebraic laws on these

operators to enable reasoning about and processing of
knowledge. The theory of patterns is generalised from its
original use in software design to any subject domain,
including the new area of cyberspace.

• A pattern-oriented research methodology that promotes
study of a subject domain by systematically addressing
a set of interrelated research questions with focus on
patterns. As Cao pointed out recently [4], to achieve full
the potential of data science, a discipline-wide effort and
corresponding methodology is required.

II. PATTERN-ORIENTED RESEARCH METHODOLOGY

In general, a pattern represents a discernible regularity in
nature, manmade systems, human behaviours, etc. It can be
seen as either a template from which instances can be created
(the prescriptive view) or an account of recurring observable
phenomena (the descriptive view). The latter makes it possible
to predict regularities in a subject domain and is analogous to
a scientific theory. When the subject domain is as complex
as cyberspace, there may be a large number of interacting
patterns that each describe and predict a subset of recurring
phenomena. These patterns are all interrelated and they can
be composed with each other.

The research questions for a pattern-oriented research
methodology include devising ways to do the following:
• identifying the patterns manually, semi-automatically or

even fully automatically e.g. from data mining and ma-
chine learning techniques;

• documenting patterns in a human comprehensible form
with context information such as its applicability condi-
tions, known problems, related other patterns, etc.;

• specifying patterns formally in a machine-readable un-
ambiguous form using an appropriate formalism;

• validating patterns to ensure they correspond to what was
intended;

• naming patterns to enlarge the vocabulary of discourse,
so that patterns as fragments of a domain knowledge can
be gradually accumulated and integrated into a theory;

• classifying or categorising patterns to clarify their rela-
tionships and to enable human understanding of them;

• investigating the interactions between patterns so that
complicated phenomena can be recognised and non-trivial
applications can be delivered;

• devising mechanisms for detecting pattern occurrences
and predicting their occurrences in a dynamic system and
evolving world;

• facilitating the instantiation of patterns when an instance
of a particular pattern is required.

IEEE SMC MAGAZINE (SUBMITTED: 19 SEPT. 2017; REVISED: 5 MAR. 2018; ACCEPTED: 19 MAR. 2018) 2

The pattern oriented research methodology attempts to
answer all these questions systematically in a disciplined
way that aims to link data analysis and machine learning to
reusable, testable, verifiable and transferable knowledge.

This methodology would build on more than 20 years of
research on software design patterns; see [5] for the most
cited work. That research has led to a pattern-oriented software
design method, which is now a common practice, in spite
of the elusive nature of software design. In general, patterns
are self-contained encapsulations of domain knowledge of a
complex subject domain. A methodology based on patterns,
in view of previous experience with software design, would
therefore likely have the following benefits.

• Patterns act as highly comprehensible and learnable doc-
umentation for human users.

• Patterns can relatively easily be tested, validated and
formally specified independently of other patterns.

• Pattern applicability can be recognised easily.
• Patterns can be flexibly combined, in a manner which can

be formally defined and performed by applying operators
that obey algebraic laws.

• Pattern instantiation and detection can be assisted by
automated tools, as can reasoning about the relationship
between patterns.

In addition, interactions between patterns are another im-
portant part of domain knowledge, which can also be formally
defined. Patterns make it possible to develop incrementally a
complete picture of the subject domain in the form of ever-
expanding pattern catalogues, which can still be useful even
when incomplete.

III. PATTERNS IN CYBERSPACE

Cyberpatterns are the patterns found within cyberspace.
As they are so ubiquitous, this prompts the application of
the pattern-oriented research methodology to the study of
cyberspace. Here, we discuss both the scope of the research
and the core research questions to be addressed. This gives a
road map for future research.

As discussed previously, cyberspace is a complex subject
domain with many phenomena that can be observed, recorded
and detected as patterns. Here are some areas in which patterns
have already been studied by researchers in various research
communities. Patterns can be found in

• User behaviour in accessing various internet applications,
so that abnormal behaviour can be spotted as part of
intruder detection.

• Environmental data as collected through sensors and
smart devices, in order to improve energy efficiency,
operation effectiveness and other qualities associated with
the Internet-of-Things.

• Normal workload of a cluster of computers, server or
internet service, in order to improve system performance
and efficiency through load balancing and power man-
agement.

• Abnormal workload variations to detect system failures
and malicious attacks on the system.

• Network traffic, since noticing that the activities of some
users are time and date-dependent makes optimisation
possible.

• Social networks, such as the Small World and Power
Law of scale-free networks and the propagation of “fake
news”.

Other kinds of patterns include:

• Attack patterns, the regularities observed in the dynamic
characteristics of the techniques used by hackers to attack
a resource on the internet.

• Security design patterns, like software design patterns but
applied to the mechanisms used to prevent, detect and
mitigate security attacks. [6], [7]

• Vulnerability patterns, or patterns in the vulnerabilities of
these security mechanisms, though they are not usually
described as patterns in the literature.

• Digital forensic patterns, the guidelines for investigating
various types of digital computer crime.

Much research effort has gone into identifying patterns
in individual subject domains. Existing techniques for this
include knowledge engineering, statistical data analysis, data
mining, machine learning, etc. However, from the point of
view of a pattern-oriented research methodology, much more
work is needed to understand how patterns interrelate and
interact not only within a domain but also more importantly
across domains.

Relationships between patterns in a domain include one
pattern being the subpattern of another or one pattern being,
through composition, a part of another more complex pattern.
Relationships across domains between patterns of different
types are of great importance to the understanding of cy-
berspace and to the effective protection of Internet resources
and infrastructure. Fig. 1 is a first attempt at depicting some
of these relationships.

There are two key research questions for a pattern-oriented
research methodology that aims at developing theories of a
subject domain as human knowledge rather than just machine-

4. A General Theory of Patterns
A pattern in a specific subject domain consists of a collection
of elements of various types. Each type typically represents a
kind of artefact in a subject domain, or an atomic event. Each
element can be characterised by a number of attributes or
features and the elements are connected by relations.

A. Subject Domain
A subject domain can, accordingly, be characterised as a
collection of all possible element types and relationships that
may hold between them. The elements and relationships may
have some properties universally satisfied by all the elements
and relations, which are called the axioms of the domain.

Definition 1 (Domain)
A subject domain (or simply domain) D is a triple <T, R,

Ax>, where

• T is a finite collection of element types. For each type
! ∈ !, there is a finite set AT of attributes associated
with the elements of T. For each attribute ! ∈ !!, the
value of a for element e is written as e.a, and this has the
(data) type Da.

• R is a finite collection of relations on T. For each ! ∈ !,
R is a k-ary relation on T1×…×Tk, where !! ∈ !, i=1,…,
k. The proposition that a collection of elements e1,
e2, …, ek of types T1, T2, …, Tk respectively satisfies
relation R is written as R(e1, e2, …, ek).

• Ax is a finite collection of axioms about elements and
their relations. Each axiom !" ∈ !" is a well-formed
logic formula that is constructed from expressions of the
form of e.a and R(e1, e2, …, ek), as described above, but
also operations and relations on the attribute data types
(e.g. +, −, >, <), equality (i.e. = and ≠), set constructions
in the form of {x1, …, xn} or {x | p(x)}, set operators (i.e.
∩, ∪, −) and set relations (i.e. ∈, ⊆, ⊇, ⊂, ⊃), logic

connectors and (∧), or (∨), not (¬), implication (⇒),
equivalence (⇔), and quantifiers for-all (∀) and exists
(∃). ☐

For the sake of readability, in this paper we use floor tile
layout patterns to explain and illustrate our notions and
notation, rather than software design patterns or
cyberpatterns, both of which are less comprehensible.

Example 1 (Domain of Floor Tile Layout)
Consider the layout of floor tiles as the subject domain. The
elements are all of one type Tile with the following attributes:

• Shape: {Square, Rectangle}, indicating whether the tile
is in the shape of a square or a rectangle.

• Width, Length: Integer, whose value is the width (or
length) of the tile in mm.

• Image: JPEG, whose value is the image of the tile in
JPEG format;

• CSym, HSym, VSym, DSym: Boolean, which indicates
whether the image is centrally, horizontally, vertically or
diagonally symmetric, with centrally symmetric
meaning that every line through the centre is symmetric
about that centre;

• HCon, VCon: Boolean, which indicates whether or not
two tiles of that image can be the laid out next to each
other horizontally (or vertically). We then say the image
of the tile is horizontally (or vertically) connectable.

Figure 2 shows a number of tiles with different attributes.
Tiles (a)-(g) are in the shape of square, while (h) and (i) are
rectangles. Tiles (a), (h) and have centrally symmetric
images; (b) is both horizontally and vertically symmetric, but
not centrally symmetry; (c) is vertically symmetric, but not
horizontally symmetric. Tiles (d) and (e) are diagonally
symmetry; (f) and (g) are not symmetric at all. Tiles (a), (b),
(f), (h) and (i) are connectable both horizontally and
vertically, but (c) is only horizontally connectable, while tiles
(d), (e) and (g) are not connectable at all.

 (a) (b) (c) (d) (e)

 (f) (g) (h) (i)

Figure 2 Tiles of different attributes

The relations on tiles important for layout are as follows:

• OnLeft: Tile × Tile, where OnLeft(x, y) means that tile x
is placed on the left of y.

• Below: Tile × Tile, where Below(x, y) means that tile x is
placed below y.

Figure 1 Potential relationships between different types of
cyberpatterns

	User	input	data	pattern
/	Environment	data	

pattern

Workload	
pattern

Network	traffic	
pattern

Social	network	
pattern

Attack	
pattern

Security	
design	pattern

Vulnerability	
pattern

Forensic		
pattern

Aggreg
ates	in

to

Aggregates	into
Aggregates	into

Is	a	subtype	of

Targets	at

Investigates Mitigates

Detects
Prevents

Software	design	
pattern

Is	a	subtype	of
Is	context	of

User	Requirements	pattern	/	
Environment	pattern

Determines

Fig. 1. Potential relationships between different types of cyberpatterns.

IEEE SMC MAGAZINE (SUBMITTED: 19 SEPT. 2017; REVISED: 5 MAR. 2018; ACCEPTED: 19 MAR. 2018) 3

readable data. One is how to describe, document and specify
patterns in a comprehensible, testable, verifiable and reusable
form? However, since we also require machine processing
of the knowledge captured by patterns, a second question
is how can cyberpatterns be stored, retrieved and applied
automatically with the support of computer software.

To lay a solid foundation for answering these questions,
in the next two sections, we generalise the formal theory of
patterns beyond just software design and demonstrate that
it can be applied to a domain completely unconnected with
software design.

IV. PATTERN AS A KNOWLEDGE REPRESENTATION
FORMALISM

A pattern in a specific subject domain consists of a col-
lection of elements of various types. Each type typically
represents a kind of artefact in a subject domain, or an
atomic event. Each element can be characterised by a number
of attributes or features and the elements are connected by
relations.

A. Subject Domain

A subject domain can, accordingly, be characterised as a
collection of all possible element types and relationships that
may hold between them. The elements and relationships may
have some properties universally satisfied by all the elements
and relations. These are called the axioms of the domain.

Definition 1: (Domain) A subject domain (or simply do-
main) D is a triple 〈T,R,Ax〉, where
• T is a finite collection of element types. For each type
T ∈ T, there is a finite set AT of attributes associated
with the elements of T . For each attribute a ∈ AT , the
value of a for element e is written as e.a, and this has
the (data) type Da.

• R is a finite collection of relations on T. For each
R ∈ R, R is a k-ary relation on T1 × · · · × Tk, where
Ti ∈ T, i = 1, · · · , k. The proposition that a collection of
elements e1, e2, · · · , ek of types T1, T2, · · · , Tk respec-
tively satisfies relation R is written as R(e1, e2, · · · , ek).

• Ax is a finite collection of axioms about elements and
their relations. Each axiom Ax ∈ Ax is a well-formed
logic formula that is constructed from expressions of the
form of e.a and R(e1, e2, · · · , ek), as described above,
but also operations and relations on the attribute data
types (e.g. +,−, <,>), equality (i.e. = and 6=), set
constructions in the form of {x1, · · · , xn} or {x|p(x)},
set operators (i.e. ∩,∪,−) and set relations (i.e. ∈,⊂
,⊆,⊃,⊇), logic connectors and (∧), or (∨), not (¬),
implication (⇒), equivalence (⇔), and quantifiers for-all
(∀) and exists (∃). ut

For the sake of readability, in this paper we use floor
tile layout patterns to explain and illustrate our notions and
notation, rather than software design patterns or cyberpatterns,
both of which are less comprehensible.

Example 1: (Domain of Floor Tile Layout)
Consider the layout of floor tiles as the subject domain. The

elements are all of one type Tile with the following attributes:

4. A General Theory of Patterns
A pattern in a specific subject domain consists of a collection
of elements of various types. Each type typically represents a
kind of artefact in a subject domain, or an atomic event. Each
element can be characterised by a number of attributes or
features and the elements are connected by relations.

A. Subject Domain
A subject domain can, accordingly, be characterised as a
collection of all possible element types and relationships that
may hold between them. The elements and relationships may
have some properties universally satisfied by all the elements
and relations, which are called the axioms of the domain.

Definition 1 (Domain)
A subject domain (or simply domain) D is a triple <T, R,

Ax>, where

• T is a finite collection of element types. For each type
! ∈ !, there is a finite set AT of attributes associated
with the elements of T. For each attribute ! ∈ !!, the
value of a for element e is written as e.a, and this has the
(data) type Da.

• R is a finite collection of relations on T. For each ! ∈ !,
R is a k-ary relation on T1×…×Tk, where !! ∈ !, i=1,…,
k. The proposition that a collection of elements e1,
e2, …, ek of types T1, T2, …, Tk respectively satisfies
relation R is written as R(e1, e2, …, ek).

• Ax is a finite collection of axioms about elements and
their relations. Each axiom !" ∈ !" is a well-formed
logic formula that is constructed from expressions of the
form of e.a and R(e1, e2, …, ek), as described above, but
also operations and relations on the attribute data types
(e.g. +, −, >, <), equality (i.e. = and ≠), set constructions
in the form of {x1, …, xn} or {x | p(x)}, set operators (i.e.
∩, ∪, −) and set relations (i.e. ∈, ⊆, ⊇, ⊂, ⊃), logic

connectors and (∧), or (∨), not (¬), implication (⇒),
equivalence (⇔), and quantifiers for-all (∀) and exists
(∃). ☐

For the sake of readability, in this paper we use floor tile
layout patterns to explain and illustrate our notions and
notation, rather than software design patterns or
cyberpatterns, both of which are less comprehensible.

Example 1 (Domain of Floor Tile Layout)
Consider the layout of floor tiles as the subject domain. The
elements are all of one type Tile with the following attributes:

• Shape: {Square, Rectangle}, indicating whether the tile
is in the shape of a square or a rectangle.

• Width, Length: Integer, whose value is the width (or
length) of the tile in mm.

• Image: JPEG, whose value is the image of the tile in
JPEG format;

• CSym, HSym, VSym, DSym: Boolean, which indicates
whether the image is centrally, horizontally, vertically or
diagonally symmetric, with centrally symmetric
meaning that every line through the centre is symmetric
about that centre;

• HCon, VCon: Boolean, which indicates whether or not
two tiles of that image can be the laid out next to each
other horizontally (or vertically). We then say the image
of the tile is horizontally (or vertically) connectable.

Figure 2 shows a number of tiles with different attributes.
Tiles (a)-(g) are in the shape of square, while (h) and (i) are
rectangles. Tiles (a), (h) and have centrally symmetric
images; (b) is both horizontally and vertically symmetric, but
not centrally symmetry; (c) is vertically symmetric, but not
horizontally symmetric. Tiles (d) and (e) are diagonally
symmetry; (f) and (g) are not symmetric at all. Tiles (a), (b),
(f), (h) and (i) are connectable both horizontally and
vertically, but (c) is only horizontally connectable, while tiles
(d), (e) and (g) are not connectable at all.

 (a) (b) (c) (d) (e)

 (f) (g) (h) (i)

Figure 2 Tiles of different attributes

The relations on tiles important for layout are as follows:

• OnLeft: Tile × Tile, where OnLeft(x, y) means that tile x
is placed on the left of y.

• Below: Tile × Tile, where Below(x, y) means that tile x is
placed below y.

Figure 1 Potential relationships between different types of
cyberpatterns

	User	input	data	pattern
/	Environment	data	

pattern

Workload	
pattern

Network	traffic	
pattern

Social	network	
pattern

Attack	
pattern

Security	
design	pattern

Vulnerability	
pattern

Forensic		
pattern

Aggreg
ates	in

to

Aggregates	into
Aggregates	into

Is	a	subtype	of

Targets	at

Investigates Mitigates

Detects
Prevents

Software	design	
pattern

Is	a	subtype	of
Is	context	of

User	Requirements	pattern	/	
Environment	pattern

Determines

Fig. 2. Tiles of different attributes.

• Shape : {Square,Rectangle}, indicating whether the
tile is in the shape of a square or a rectangle.

• Width, Length : Integer, whose value is the width (or
length) of the tile in mm.

• Image : JPEG, whose value is the image of the tile in
JPEG format;

• CSym,HSym, V Sym,DSym : Boolean, which indi-
cates whether the image is centrally, horizontally, verti-
cally or diagonally symmetric, with centrally symmetric
meaning that every line through the centre is symmetric
about that centre;

• HCon, V Con : Boolean, which indicates whether or
not two tiles of that image can be laid out next to each
other horizontally (or vertically). We then say the image
of the tile is horizontally (or vertically) connectable.

Fig. 2 shows a number of tiles with different attributes.
Tiles (a)-(g) are in the shape of square, while (h) and (i)
are rectangles. Tiles (a) and (h) have centrally symmetric
images; (b) is both horizontally and vertically symmetric,
but not centrally symmetric; (c) is vertically symmetric, but
not horizontally symmetric. Tiles (d) and (e) are diagonally
symmetric; (f) and (g) are not symmetric at all. Tiles (a), (b),
(f), (h) and (i) are connectable both horizontally and vertically,
but (c) is only horizontally connectable, while tiles (d), (e) and
(g) are not connectable at all.

The relations on tiles important for layout are as follows:
• OnLeft : Tile× Tile, where OnLeft(x, y) means that

tile x is placed on the left of y.
• Below : Tile×Tile, where Below(x, y) means that tile
x is placed below y.

• Rot90, Rot180, Rot270 : Tile, where Rot90(x) means
that tile x is laid with the image rotated 90o clockwise,
and Rot180 and Rot270 are similar.

Here are some example axioms about tiles.

∀x ∈ T ile.(x.Shape = Square⇔ x.Width = x.Length)

∀x ∈ T ile · (x.Shape = Square ∧ x.CSym)

⇒ (x.HSym ∧ x.V Sym)

∀x ∈ T ile.(x.V Sym⇒ x.HCon)

∀x ∈ T ile.(x.HSym⇒ x.V Con)

These axioms state, in order, that square tiles have equal
width and length, that centrally symmetric square tiles are
also vertically and horizontally symmetric, that vertically sym-
metric tiles are horizontally connectable and that horizontally
symmetric tiles are vertically connectable. ut

IEEE SMC MAGAZINE (SUBMITTED: 19 SEPT. 2017; REVISED: 5 MAR. 2018; ACCEPTED: 19 MAR. 2018) 4

Axioms like these represent knowledge that is universally
applicable in the subject domain. Element types, attributes and
relations also represent knowledge that is often found in the
form of ontology and which can often be obtained from data
through feature extraction and data mining. Image processing
could be used to deduce symmetry and connectability of
tiles. The pattern oriented research methodology we promote
in this paper uses all of these techniques alongside human
knowledge engineering to create reusable, validatable, testable,
comprehensible and transferable knowledge.

B. Instances of Phenomena

In a given subject domain, it is possible to observe certain
phenomena which consists of a number of elements, i.e.
artefacts and events of the domain, related to each other in
a particular way. To recognise a phenomenon as an instance
of a pattern is to recognise its constituent elements, noting
their types and the values of their attributes, and noting also
how the elements relate to each other.

Definition 2: (Instance) Given a subject domain D =
〈T,R,Ax〉, an instance φ is an ordered pair 〈E,R〉, where

• E = {e1, · · · , en} is a collection of particular elements
ei, i = 1, · · · , k, of type Ti ∈ T in the domain D , and

• R = {r1, · · · , rm} is a set of relations that hold between
elements in E. ut

Example 2: (An Instance of Floor Layout)
For example, Fig. 3 shows an instance of floor tile layouts.

In this instance, elements are E = {ei,j |i, j = 0, · · · , 3},
where ei,j is the tile laid in row i column j. They have the
following attributes:

∀x ∈ {e0,0, e0,3, e3,0, e3,3} · (x.Image = Corner.jpeg)

∀x = {e0,1, e0,2, e1,0, e1,3, e2,0, e2,3, e3,1, e3,2}
· (x.Image = Border.jpeg)

∀x ∈ {e1,1, e1,2, e2,1, e2,2} · (x.Image = Center.jpeg)

The following rules determine the other attributes:

∀x ∈ T ile.(x.Image = Corner.jpeg ⇒ x.DSym)

∀x ∈ T ile.(x.Image = Border.jpeg ⇒ x.V Sym)

∀x ∈ T ile.(x.Image = Center.jpeg ⇒ x.DSym)

∀x ∈ T i.(x.Shape = Square)

The central part is laid out with the tiles rotated, i.e.

Rot90(e1,2), Rot180(e2,2), Rot270(e2,1)

The borders and corner tiles are also rotated as follows,
relative to the three tiles on top e0,0, e0,1, e0,2.

Rot90(x), for x = e0,3, e1,3, e2,3

Rot180(x), for x = e3,1, e3,2, e3,3

Rot270(x), for x = e1,0, e2,0, e3,0

The relationships between the elements are as follows.

OnLeft(ei,j , ei,j+1), for i = 0, · · · , 3, j = 0, · · · , 2.
Below(ei+1,j , ei,j), for i = 0, · · · , 2, j = 0, · · · , 3. ut

Fig. 3. An Instance of Tile Laid Floor.

C. Patterns

Definition 3: (Pattern) A pattern Π in a domain D =
〈T,R,Ax〉 is an ordered pair 〈V, P 〉, where
• V = {v1 : TE1, · · · , vk : TEk} is a collection of

elements vi of type TEi, which is a type expression.
V defines what are the elements in the pattern.

• P is well-formed logic formula (i.e. a predicate) with
{v1 : TE1, · · · , vk : TEk} as its free variables. It speci-
fies the constraints on the elements and the relationships
between the elements in the pattern.

The semantics of pattern Π = 〈V, P 〉, written Sem(Π), is that

∃v1 ∈ TE1, · · · , ∃vk ∈ TEk · P.

A type expression TE can be a type T ∈ T, or a power set
type P(TE) if TE is a type expression. Here, the values of a
power set type P(T) are non-empty finite sets of elements of
type T . ut

Example 3: (An Example of Pattern: Bordered Centre)
For example, a common pattern of floor tile layout is the so-

called “bordered-centre” (BC), in which the centre is an n×m
matrix of tiles surrounded by matching borders and corner
tiles. Fig. 3 is an instance of such a pattern. We can formally
specify it by defining the set of variables with V ar(BC) ,
{X : P(Tile)} and Pred(BC) as follows.

The layout is an (n+ 2)× (m+ 2) matrix (with n,m > 0)
in which the tiles are laid one next to another:

X = {xi,j |i = 0, · · · , n + 1, j = 0, · · · ,m + 1}.

Informally, xi,j is the tile laid on row i column j.

OnLeft(xi,j , xi,j+1), for i = 0, · · · , n + 1, j = 0, · · · ,m;

Below(xi+1,j , xi,j), for i = 0, · · · , n, j = 0, · · · ,m + 1;

The properties of the central tiles are:

xi,j .Image = x1,1.Image, for i = 1, · · · , n, j = 1, · · ·m.

The properties of the non-corner border tiles are:

x0,1.V Con ∧ (x0,1.Width = x1,1.Width)

∧∀j ∈ {1, · · · ,m} · (x0,j .Image = x0,1.Image

∧ xn+1,j .Image = x0,1.Image ∧Rot180(xn+1,j))

∧∀i ∈ {1, · · · , n} · (xi,0.Image = x0,1.Image ∧Rot270(xi,0)

∧Rot90(xi,m+1) ∧ xi,m+1.Image = x0,1.Image)

IEEE SMC MAGAZINE (SUBMITTED: 19 SEPT. 2017; REVISED: 5 MAR. 2018; ACCEPTED: 19 MAR. 2018) 5

The properties of the corner tiles are:
x0,0.Image = x0,m+1.Image,

= xn+1,0.Image = xn+1,m+1.Image,

x0,0.Width = x0,0.length = x1,1.Width,

Rot90(x0,m+1), Rot180(xn+1,m+1), Rot270(xn+1,0). ut

It is easy to see that the tile layout given in Fig. 3 is an
instance of pattern BC because the conditions of pattern BC
are all true when we assign element ei,j in the instance to
variables xi,j in the pattern.

Definition 4: (Satisfaction) Let D be a given domain, φ =
〈E,R〉 be a given phenomenon and Π = 〈V, P 〉 be a pattern
in domain D . If there is a type preserving assignment α of
the variables in V to elements in E, such that [[P]]α,R = true,
we say that phenomenon φ is an instance of pattern Π, and
write φ � Π. ut

Note that, [[P]]α,R = true means that the evaluation of P
under assignment α with the conditions of R is true. The
detailed definition is omitted for the sake of space.

The above definition of the notion of pattern and satisfaction
enable us to deal with the recognition of an instance of a
pattern as the evaluation of logic formulas in a finite structure.
For example, to show that the floor layout in Fig. 3 is an
instance of the BC pattern, we simply need to assign variables
in the pattern to particular elements in the instance and thereby
prove all the conditions of the pattern are true.

V. REASONING ABOUT AND APPLYING OF PATTERNS

Now, let’s see how to reason about patterns, and to apply
patterns.

A. Subpattern Relation

Many kinds of relationships between patterns can be defined
in predicate logic so that the verification of such a relationship
can be converted into logic inference problems. A typical
example of such relationships is sub-pattern.

Definition 5: (Sub-Pattern and Equivalent Patterns)
Let Π and Ψ be two patterns in a domain D . We say that

Π and Ψ are equivalent, and write Π ≈ Ψ, iff Sem(Π) ⇔
Sem(Ψ). We say that Π is a sub-pattern of Ψ, and write
Π 4 Ψ iff Sem(Π)⇒ Sem(Ψ). ut

For example, for the bordered-centre floor tile layout pattern
BC, if we add a condition that the tiles in the central are
horizontal and vertical connectable, we obtain a sub-pattern,
which we called it BC-HVCon. If we replace the connectabil-
ity conditions of BC-HVCon with the condition that the image
of tiles in the central block is central symmetry, then the result
pattern, called BC-CSym, is a sub-pattern of BC-HVCon.
This is because we can prove from the axioms that central
symmetry implies horizontal and vertical connectability.

B. Operators on Patterns for Composition and Instantiation

Operators on patterns have been shown to be particularly
valuable in the context of software design patterns where they
can be used to define pattern compositions and instantiations
[8]. Now we revisit those definitions to demonstrate their
applicability to a more general notion of patterns.

Definition 6: (Pattern Operators) Let Π and Θ be any given
patterns of a domain D , VΠ = V ar(Π) = {xi : Ti|i =
1, · · · , n} and Pred(Π) = p(x1, · · · , xn).
• Restriction. Let c be a predicate on VΠ. Π[c] is the pattern

that

V ar(Π[c]) , V ar(Π), and

Pred(Π[c]) , p ∧ c.

• Superposition. Assume that VΠ ∩ V ar(Θ) = ∅. Π ∗Θ is
the pattern such that

V ar(Π ∗Θ) , V ar(Π) ∪ V ar(Θ), and

Pred(Π ∗Θ) , Pred(Π) ∧ Pred(Θ).

• Generalisation. Assume that x = xi ∈ VΠ, X /∈ VΠ.
Π(x ⇑ X) is the pattern such that

V ar(Π(x ⇑ X)) , VΠ − {xi : Ti} ∪ {X : P(Ti)},
P red(Π(x ⇑ X)) , ∀xi ∈ X.p(x1, · · · , xi, · · · , xn).

• Flattening. Assume that X = xi ∈ VΠ and Ti = P(T).
Π(X ⇓ x) is the pattern such that

V ar(Π(X ⇓ x)) , V ar(Π)− {xi : P(T)} ∪ {x : T},
P red(Π(X ⇓ x)) , p(x1, · · · , {x}, · · · , xn).

• Lifting. Assume that X = {xi|i = 1, · · · ,m} ⊂ VΠ,
m ≤ n. Π(X ↑ Xs) is the pattern such that

V ar(Π(X ↑ Xs)) , {xsi : P(Ti)|i = 1, · · · , n},
P red(Π(X ↑ Xs)) , ∀x1 ∈ xs1, · · · , ∀xm ∈ xsm ·
∃xm+1 ∈ xsm+1, · · · ,∃xn ∈ xsn · p(x1, · · · , xn). ut

Note that, first, the operators on patterns are defined con-
structively. They can be easily implemented as syntactical
transformations of the logical statements of the patterns.
Second, a correct renaming of the variables in a pattern will
not affect its meaning. In the sequel, we write Π(x/x′) to
denote the systematic replacement in pattern Π of the variable
x with variable x′.

We write pattern expressions with pattern variables, con-
stants and operators to define predicates and functions on
patterns. This results in a formalism of very powerful ex-
pressiveness to represent knowledge of a subject domain. The
following example demonstrates how pattern operators can be
used to represent domain knowledge, such as how to compose
and instantiate patterns.

Example 4: (Application of Pattern Operators)
We start with a simple pattern H2 that consists of two tiles

A and B of the same image that A is laid on the left of B.
V ar(H2) , {A,B : T ile}
Pred(H2) , OnLeft(A,B) ∧ (A.Image = B.Image)

∧A.HCon

A horizontal line (HL) of tiles that laid one next to another
can be defined by applying the lift operator with a constraint
condition as follows.

HL , H2(A ↑ As , {Ai|i = 1, · · · , n})
[Bs , {Bi|OnLeft(Ai, Bi), i = 1, · · · , n}
∧ ∀i ∈ {1, · · · , n− 1}.(Ai+1 = Bi)].

IEEE SMC MAGAZINE (SUBMITTED: 19 SEPT. 2017; REVISED: 5 MAR. 2018; ACCEPTED: 19 MAR. 2018) 6

Matrix is a pattern that consists of n ×m tiles. It can be
defined as a number of horizontal lines placed one below
another. Thus, we have that

Matrix , HL(l ⇑ ls = {l1, ..., ln})
[∀i ∈ {1, · · · , n− 1} · ((|li| = |li+1|) ∧Below(li+1, li))]

Here, the binary predicate Below(x, y) on horizontal lines
of equal length is defined as follows. Let n = |x.l| = |y.l|.

Below(x, y) , ∀i ∈ {1, · · · , n} ·Below(x.li, y.li).

Similarly, we can generalise other attributes and relations
of tiles to that of horizontal lines L of n tiles, even a matrix
M of n×m tiles. New functions and predicates can also be
defined. For example, let M.Cols and M.Rows denote the
numbers of columns and rows of a matrix M . The width of a
matrix M can be defined as follows.

M.Width , x.Width×M.Cols, where x ∈M.b.

Note that, in the above we used the so-called “modifier-
dot notation” M.x to denote the variable x in an instance or
pattern variable M so that naming conflicts can be avoided
without renaming the variables.

A matrix of identical tiles that are connectable, called
Styled Matrix (SM), can be defined by applying the restriction
operator on the Matrix pattern.

SM ,Matrix[∀x ∈ b.((x.Image = b1,1.Image)

∧ x.V Con ∧ x.HCon)].

The pattern Bordered Centre with connectivity (BC-
HVCon) can be defined as being composed of top, bottom,
left and right borders and a styled central matrix plus four
corners. The left and right borders are Vertical Lines (VL),
which can be defined as a matrix of one column with the
condition that the tiles are vertically connectable.

V L ,Matrix[Cols = 1 ∧
∀x, y ∈ b · (x.Image = y.Image ∧ x.V Con)].

The Corners pattern specifies the constraints on the tiles
placed on four corners of a bordered central layout.

V ar(Corners) , {cn : P (T ile)},
P red(Corners) , (cn = {cul, cur, cll, clr})
∧ ∀x ∈ cn · ((x.Image = cul.Image) ∧ x.DSym)

∧Rot90(cur) ∧Rot180(clr) ∧Rot270(cll).

Now, we apply the pattern operators to define pattern BC.
First, we rename the variables of the borders to avoid naming
conflicts in the pattern composition.

Top , HL(l/bt); Bottom , HL(l/bb);

Left , V L(l/bl); Right , V L(l/br).

BC can now be defined as follows.

BC , (Top ∗Bottom ∗ Left ∗Right ∗ SM ∗ Corners)

[Connection],

where Connection consists of the following conditions.

OnLeft(Left, Central) OnLeft(Corners.cul, T op)

OnLeft(Central, Right) OnLeft(Top,Corners.cur)

Below(Central, Top) OnLeft(Bottom,Corners.clr)

Below(Bottom,Central) OnLeft(Corners.cll, Bottom) ut

C. Algebra of Pattern Operators

The operators on patterns obey a set of algebraic laws,
which can be proven from the definitions of the operators.
Fig. 4 shows some of the complete set of laws in [8].

2 SUBMITTED TO IEEE SMC MAGAZINE

1. Laws on Sub-pattern Relation !:

Π ! Π

(Π ! Θ) ∧ (Θ ! Ψ) ⇒ (Π ! Ψ)

Π ! Θ ∧ Θ ! Π ⇒ Π ≈ Θ

FALSE ! Π ! TRUE

2. Laws on Restriction [c]:

(c1 ⇒ c2) ⇒ Π[c1] ! Π[c2]

Π[c][c] ≈ Π[c]

Π[c1][c2] ≈ Π[c2][c1]

Π[c1][c2] ≈ Π[c1 ∧ c2]

Π[true] ≈ Π

Π[false] ≈ FALSE

3. Laws on Superposition ∗:

(Π ∗ Θ) ! Π

Θ ! Π ⇒ Π ∗ Θ ≈ Θ

Π ∗ Π ≈ Π

Π ∗ TRUE ≈ TRUE ∗ Π ≈ Π

Π ∗ FALSE ≈ FALSE ∗ Π ≈ FALSE

Π ∗ Θ ≈ Θ ∗ Π

(Π ∗ Θ) ∗ Ψ ≈ Π ∗ (Θ ∗ Ψ)

4. Laws on ⇓ and ⇑:

Π(X ⇓ x)(Y ⇓ y) ≈ Π(Y ⇓ y)(X ⇓ x)

Π(x ⇑ X)(y ⇑ Y) ≈ Π(y ⇑ Y)(x ⇑ X)

5. Laws connecting ∗ with others:

Π[c] ∗ Θ ≈ (Π ∗ Θ)[c]

Π(x ⇑ X) ∗ Θ ≈ (Π ∗ Θ)(x ⇑ X)

Π(X ⇓ x) ∗ Θ ≈ (Π ∗ Θ)(X ⇓ x)

Π(X ↑ Xs) ∗ Θ ≈
(Π ∗ Θ)(X ↑ Xs)(P(VΘ) ⇓ VΘ)

6. Laws connecting ⇑, ⇓ and ↑:

Π(x ⇑ X)(X ⇓ x) ≈ Π

Π(X ⇓ x)(x ⇑ X) ≈ Π

Π(X ↑ Xs)(Xs ⇓ V ar(Π)) ≈ Π

Π(x ⇑ X) ≈ Π(X ↑ Xs)(Xs − X↑ ⇓ X)

7. Laws connecting [c] with ⇑, ⇓ and ↑:

Π(X ⇓ x) ≈ Π[∃x · (X = {x})]

Π(x ⇑ X) ≈ Π[∃X · (∀x ∈ X · p)]

Π(X ↑ Xs) ≈ Π[∃Xs · (pX↑Xs)]

Π[c](x ⇑ X) ≈ Π(x ⇑ X)[cx⇑X]

Π[c](X ↑ Xs) ≈ Π(X ↑ Xs)[cX↑Xs]

Π[c](X ⇓ x) ≈ Π(X ⇓ x)[cX⇓x]

Fig. 1. Laws of Pattern OperatorsFig. 4. Laws of Pattern Operators

Using laws like this, we can simplify pattern expressions
to prove that two patterns are equivalent or that one is a sub-
pattern of the other. One example is that for all patterns Π
that contain variable X of power set type P(T), we have that

Π(X ⇓ x) = Π[|X| = 1].

Such reasoning about patterns has been proven to be very
useful for software design [8], [9].

For example, we can define Vertical Line (VL) patterns as
a lift of Vertical Two (V2) similar to the way that HL pattern
is defined, and then to prove that this definition is equivalent
to what we have defined VL in the previous subsection.

In general, any pattern expression can be transformed into
a unique normal form using the complete set of algebraic
laws given in [8]. Therefore, the equivalence between two
pattern expressions can be deduced by logic inferences of the
equivalence of their normal forms using the axioms of the
subject domain with a logic inference engine like SPASS as
shown in [8], [9].

VI. CONCLUSION

Nobel Laureate Ernest Rutherford once pointed out that “all
science is either physics or stamp collecting”. By physics,
he meant clean, succinct principles that apply to diverse
phenomena. By stamp collecting, he meant the act of cat-
aloguing and organising large sets of observations. Since
patterns are reusable knowledge about recurring phenomena,
we believe they form a bridge from “stamp collecting” to
“physics”. This is because pattern-oriented research methods
not only recognise, catalogue and organise observations, but
also discover regularities, interrelationships and interactions.
Such knowledge is the mother of clean, succinct principles.

Rutherford also pointed out that “scientists are not depen-
dent on the ideas of a single man, but on the combined wisdom

IEEE SMC MAGAZINE (SUBMITTED: 19 SEPT. 2017; REVISED: 5 MAR. 2018; ACCEPTED: 19 MAR. 2018) 7

of thousands of men, all thinking of the same problem, and
each doing his little bit to add to the great structure of knowl-
edge which is gradually being erected”. The pattern-oriented
research methodology offers such a platform for thousands
of computer scientists to contribute to the construction of
knowledge about cyberspace, an activity we have only just
started. The first step towards this will be a common pattern
specification language that is suitable for all subject domains.
This is what we are working on at the moment.

REFERENCES

[1] L. G. Valiant, “Knowledge Infusion: In Pursuit of Robustness in Artificial
Intelligence”, in Foundations of Software Technology and Theoretical
Computer Science, 2008. Editors: R. Hariharan, M. Mukund, V. Vinay,
pp. 415-422, 2008.

[2] Y. Shoham, “Why Knowledge Representation Matters”, C. ACM, Vol.
59, No. 1, pp47-49, Jan 2016.

[3] A. dAvila Garcez, et al., “Neural-Symbolic Learning and Reasoning:
Contributions and Challenges”, Workshop on Knowledge Representation
and Reasoning: Integrating Symbolic and Neural Approaches at the 2015
AAAI Spring Symposium, pp18-21, Mar. 2015.

[4] L. Cao, “Data Science: Challenges and Directions”, C. ACM, Vol. 60,
No. 8, pp59-68, August 2017.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns-
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] C. Blackwell and H. Zhu, (eds.), CyberPatterns: Unifying Design Patterns
with Security Patterns and Attack Patterns, Springer, 2014.

[7] C. Blackwell and H. Zhu, (eds.), Proceedings of the Third International
Workshop on CyberPatterns: From Big Data to Reusable Knowledge, in
Proceedings of IEEE 8th International Symposium on Service Oriented
System Engineering, April 2014.

[8] H. Zhu, and I. Bayley, “An Algebra of Design Patterns”, ACM Transac-
tions on Software Engineering and Methodology, Vol. 22, No. 3, Article
23. July 2013.

[9] H. Zhu and I. Bayley, “On the Composibility of Design Patterns”, IEEE
Transactions on Software Engineering Vol. 41, No. 11, pp1138-1152.
Nov. 2015.

