
Formal Specification of Design Patterns as
Structural Properties

Ian Bayley and Hong Zhu

Department of Computing, Oxford Brookes University,
Oxford OX33 1HX, UK

(ibayley|hzhu)@brookes.ac.uk

Abstract. Design patterns are traditionally outlined in an informal
manner. If they could be formalised, we could derive tools that automati-
cally recognise design patterns and refactor designs and code accordingly.
The approach we use is to deploy predicate logic to specify conditions
on the class diagrams with which the design patterns are commonly de-
scribed. This not only enables us to recognise design patterns, but also
to reason about design patterns, so we can detect when one pattern is a
special case of another. The paper reports our specification of the origi-
nal 23 design patterns.

Keywords: Design patterns, formal specification, predicate logic, graphic
modelling

1 Introduction

The original purpose of Design Patterns (DPs) given in [4] is to “capture de-
sign experience in a form that people can use effectively”. Accordingly, DPs are
defined by explaining general principles in informal English and clarified with
formal semi-general class diagrams and specific code examples. This combination
is informative enough for software developers to guess by induction how to apply
DPs to solve their own problems. However, an opportunity is being missed. If
the general principles were formalised, then software tools could refactor designs
in accordance with chosen DPs and demarcate the DPs in legacy code and in-
form future modification. Both of these could then be automated. Indeed, the
Pattern Inference and Recovery Tool (PINOT) described in [8] has been used
successfully to identify design patterns in the Java API. However, the analysis
is done on the level of source code rather than design. The latter alternative is
preferable as it could help software developers early on in development to avoid
costly structural errors during design. Moreover, it would be better still to de-
velop tools like PINOT in such a manner that they can be proven correct. For
this reason, we shall concentrate in this paper on the problem of characterising
DPs.

2 Ian Bayley and Hong Zhu

1.1 Related work

There have been a number of attempts to formalise design patterns since the
publication of the first book of design patterns of object-oriented systems [4].
Lano et al. [5] consider DPs to be transformations from flawed solutions consist-
ing of classes organised in a particular manner to improved solutions, and they
prove the two equivalent by applying object calculus to their VDM++ specifica-
tions. Lauder and Kent [6] propose a three layer modelling approach consisting
of role models, type models and class models. Mikkonen [7] formalises temporal
behaviours in a temporal logic of actions that can be used by theorem provers.
Eden devised from scratch a new graphical language LePUS for the purpose of
modelling DPs [1, 2]. Its basic constructs correspond to the concepts used when
Design Patterns are defined informally but they are formalised in predicate logic.
He can then assert instantiations of and special cases of the Design Patterns he
has represented. Taibi [10] formalises class diagrams as relations between pro-
gram elements, specifies post-conditions with predicate logic and describes the
desired behaviour with temporal logic. While each of these approaches were il-
lustrated with examples, it remains open if they are capable of specifying all
design patterns.

1.2 Proposed approach

In this paper, we propose a method for the formal specification of DPs using
predicate logic and report our attempt to formalise all the DPs described in [4].

The generic class diagrams for each DP in [4] identify each class according
to its role, which is expounded in the accompanying text. However, it is often
difficult to discern which features of such class diagrams are characteristic, as
we see for the Facade DP below.

Fig. 1. Facade DP Class Diagram

It is not the generalisations and dependencies between classes in the subsys-
tem that are important; they are only marked to signify that the classes could be
related. The number of classes is also arbitrary, though there should clearly be

Formal Specification of Design Patterns 3

more than one. The most important feature of the diagram is not even the depen-
dencies from the Facade class to some (but not all) subsystem classes but rather
the lack of dependencies from classes outside the subsystem to classes inside;
recall that this ensures subsystem details are hidden behind a single interface.
So these generic diagrams are not suitable for highlighting non-dependencies,
nor for patterns in which the number of classes is arbitrary.

Predicate logic, in contrast, is ideal for writing the constraint we wish to
express: for some subsystem of classes ys, if a class C ′ depends on a class C in
ys then either C ′ is the facade class Facade or C ′ is in ys. Suppose that in a
class diagram that classes denotes the set of classes, inters denotes the set of
interfaces, and deps, a binary relation on classes ∪ inters, denotes the set of
dependency arrows. Then our condition can be written as follows:

∃ys ⊆ classes ∧ ∀C ∈ ys · ∀C ′ ∈ classes·

(C ′ 7→ C) ∈ deps ⇒ C ′ ∈ ys ∨ C ′ = Facade

where C ′ 7→ C represents an ordered pair 〈C ′, C〉.
In the remainder of this paper, we shall show with examples how all 23 of

the original DPs in [4] can, to different degrees of success, be characterised by
first-order logical predicates. We will also demonstrate how the predicate logic
helps with reasoning about DPs. Eden’s work is the closest to our own approach.
We shall compare Eden’s formalisations with ours throughout this text; they can
be found on his website [3] and all future references to Eden relate to this source
and [1, 2].

1.3 Organisation of the paper

In Section 2, we describe our meta-notation for the specification of DPs. In
Section 3, we show with a few examples how DPs can be specified with our
framework. In Section 4, we present examples of how the power of predicate
logic can be applied to reasoning about DPs. Finally, in Section 5, we discuss
the power of our work, distinguish it from [1–3] and conclude. A list of the
specifications of all 23 DPs is given in the appendix.

2 Specifying Constraints on Class Diagrams

We consider the formal specification of DPs as a problem of meta-modelling
as each DP can be characterized as a set of design models that have certain
structure and behaviour features. The framework below was introduced in [11]
but revised in this paper as a notation for meta-modelling.

2.1 The GEBNF Notation

Just as Extended Backus Normal Form (EBNF) is used to define the syn-
tax of programming languages, so Graphical Extended Backus Normal Form

4 Ian Bayley and Hong Zhu

(GEBNF) is used to define the syntax of graphical modelling languages. The
well-formedness constraints thus described can then be augmented with consis-
tency and completeness constraints, all stated in the form of predicate logic.
The constraints are specified with extractor functions that are both declared
and defined by the GEBNF definitions.

An abstract syntax definition of a modelling language in GEBNF is a tuple
〈R, N, T, S〉, where N is a finite set of non-terminal symbols, T is a finite set of
terminal symbols, each of which represents a set of values. Furthermore, R ∈ N
is the root symbol and S is a finite set of production rules of the form Y ::= Exp,
where Y ∈ N and Exp can be in one of the following forms.

L1 : X1, L2 : X2, · · · , Ln : Xn

X1|X2| · · · |Xn

where L1, L2 , · · ·, Ln are field names and X1, X2 , · · ·, Xn are the fields, which
can be in one of the following forms: Y , Y ∗, Y +, [Y], Y , where Y ∈ N ∪ T (i.e.
Y is a non-terminal or a terminal symbol). The meaning of the meta-notation
is give in the following table.

Table 1. Meanings of the GEBNF Notation

Notation Meaning Example and explanation

X1 | X2 | …

| Xn

Choice of X1, X2, …, Xn ActorNode | UseCaseNode means that the entity is either

an actor node or a use case node.

L1: X1

L2:X2 …

Lk: Xk

Order sequence consists of k fields of

type X1, X2, …, Xk that can be access

by the field names L1, L2, …, Lk.

ClassName: Text Attributes: Attribute* Methods: Method*

means that the entity consists of three parts called

Classname, Attributes and Methods respectively.

X* Repetition of X (include null) Diagram* means that the entity consists of a number N of

diagrams, where N 0.

X+ Repetition of X (exclude null) Diagram+ means that the entity consists of a number N of

diagrams, where N 1.

[X] X is optional [Actor]: element of actor is optional.

X Reference to an exiting element of

type X in the model

ClassNode is a reference to an existing class node.

‘abc’ Terminal element, the literal value of

a string

‘extends’: the literal value of the string ‘extends’.

For clarity we add line breaks to separate fields. Note that where an element
is underlined, it is a reference to an existing element on the diagram as opposed
to the introduction of a new element.

2.2 GEBNF Definition of Class Diagrams

There is a semi-formal definition of UML class diagrams in [9]. The definition
is a semantic network of has-a and is-a relationships using the UML notation

Formal Specification of Design Patterns 5

itself as the meta-notation. The GEBNF definition below has been obtained by
removing the attributes not required to describe patterns, and by flattening the
hierarchy in [9] to eliminate some meta-classes for simplicity.

A class diagram consists of classes and interfaces, linked with relations, such
as associations and generalisations between classifiers and calls between opera-
tions.

ClassDiagram ::=
classes : Class+,

inters : Interface∗,

assocs : (Classifier, Classifier)∗,
geners : (Classifier, Classifier)∗,
calls : (Operation,Operation)∗

Here, a classifier is either a class or an interface.

Classifier ::=
Class | Interface

A class has a name, attributes, operations and a flag to record whether it is
abstract (missing from [9]).

Class ::=
name : String,

attrs : Property∗,

opers : Operation∗,

isAbstract : Boolean

Here of course, the terminal String denotes the type of strings of characters
and Boolean denotes the type of boolean values. An interface has no need for
the flag.

Interface ::=
name : String,

attrs : Property∗,

opers : Operation∗

Operations have a name, parameters and three flags.

Operation ::=
name : String,

isQuery : Boolean,

params : Parameter∗,

isStatic : Boolean,

isLeaf : Boolean

6 Ian Bayley and Hong Zhu

Parameters have a name, type, optional multiplicity information and direc-
tion. Since return values play much the same role as out parameters, it is con-
venient to treat them as parameters with a different direction.

Parameter ::=
direction : ParameterDirectionKind,

name : String,

type : Type,

[multiplicity : MultiplicityElement]

ParameterDirectionKind ::=
“in” | “inout” | “out” | “return”

MultiplicityElement ::=
upperV alue : Natural | “ ∗ ”,

lowerV alue : Natural

Here, Natural denotes the type of natural numbers. Properties have a name,
type, multiplicity information and a static flag.

Property ::=
name : String,

type : Type,

isStatic : Boolean,

[multiplicity : MultiplicityElement]

In practice, an attribute with a class type is often drawn in diagram as an
association instead. In the paper, for the sake of simplicity, we assume that
associations are always used in this case. In the sequel, when there is no risk of
confusion, we will also use the name field of a classifier as its identifier.

2.3 Predicates on models

The definitions of diagram’s abstract syntax in GEBNF enable us to specify
constraints as first-order predicates on diagrams since every field f : X of a term
T introduces a function f : T → X. Function application is written f(x) for
function f and argument x. For example, given the above definition of Class in
GEBNF, we have a function opers that maps each class to the set of its opera-
tions. Therefore, for a class c, the expression opers(c) is the set of operations in
c.

In the sequel, the arguments of functions on ClassDiagram will be omitted
as there is no possibility of confusion. Thus, for example, we will write classes
to abbreviate classes(cd) for a class diagram cd.

The following derived predicates will be useful:

Formal Specification of Design Patterns 7

– subs(C) is the set of C’s subclasses: C ′ such that C ′ 7→ C ∈ geners.
– red(op, C) is the redefinition of op in class C and is defined only if ¬isLeaf(op)

and for some D, C ∈ subs(D) and op ∈ opers(D). More formally,

op′ = red(op, C) ≡
op ∈ opers(D) ∧ op′ ∈ (C) ∧ C ∈ subs(D) ∧
name(op) = name(op′) ∧ ¬isLeaf(op)

– returns(op, C) states that op has a return value and it is of type C. More
formally,

returns(op, C) ≡ ∃p ∈ params(op) · type(p) = C ∧ direction(p) = “return′′

Note of course that an out parameter can be used instead. For the sake of
simplicity, we shall not discuss this further.

– access(xs, ys) indicates that all access to the classes in ys is through the
classes in xs. Formally,

∀x ∈ classes · ∀y ∈ ys · x 7→ y ∈ deps ⇒ x ∈ xs ∪ ys

Many of the class diagrams in [4] have a distinguished class called Client,
with a dependency to some of the remaining classes, xs. This would be
expressed as access(xs, ys) where ys denotes the remaining classes.

3 Specification of Design Patterns

In this section, we give some examples to show how the framework above can be
used to specify DPs. A complete list of the specifications of all 23 original DPs
can be found in the Appendix.

Our approach is to identify the classes, operations and associations involved
from the diagram in [4] and then state the conditions that must apply to them,
both in English and in predicate logic. These declarations are effectively exis-
tential quantifications with a scope equal to the conditions themselves.

This format mirrors the declarations-plus-predicates format of Z schemas,
except for the interleaving of logic and English. However, the exact format of Z
has been rejected because the interleaving is necessary for readability. Default
field values, such as multiplicity = 1 and isStatic = false, are left unstated.

3.1 Template Method Pattern

The Template Method Pattern is a good starting example as it has only one
condition.

The template method is an algorithm with a number of steps, each of which
is an operation call. The intent of this DP is to make the implementations of the
steps easy to change.

8 Ian Bayley and Hong Zhu

Fig. 2. Class Diagram of the Template Method DP

Classes: AbstractClass ∈ classes
Operations: templateMethod ∈ opers(AbstractClass)
Conditions:

1 templateMethod calls an abstract operation of the AbstractClass.

∃o ∈ opers(AbstractClass)·
(templateMethod 7→ o) ∈ calls ∧ isAbstract(o)

In [4], there are many issues left open in the description of the DPs. For
example, it is suggested that the abstract operations above may instead be hook
operations ie they are given default behaviour, often to do nothing, in Abstract-
Class and may or may not be overridden. So the requirements of isAbstract(o)
in the above specification could be relaxed. It is the process of formailsation
itself that forced us to confront such issues.

3.2 Adapter Pattern

The Template Method DP is a behavioural pattern, but it is just as easy to
specify structural patterns.

Fig. 3. Class Diagram of the Object Adapter DP

Formal Specification of Design Patterns 9

Classes: Target, Adapter,Adaptee ∈ classes
Associations: Adapter 7→ Adaptee ∈ assocs
Operations: requests ⊆ opers(Target), specificRequests ⊆ opers(Adaptee)
Conditions:

1 the Client class depends only on the Target:

access({Target}, {Adapter,Adaptee})

2 Target is an interface:
Target ∈ inters

3 Adapter implements Target:

Adapter ∈ subs(Target)

4 for at least one operation in requests, its redefinition in Adapter calls an
operation in specificRequests.

∃o ∈ requests,∃o′ ∈ specificRequests · (red(o,Adapter) 7→ o′) ∈ calls

Presumably, the Adapter class can have further operations not in the
Target class.

The conditions given here are for the Object Adapter variant. The Class
Adapter variant links Adapter and Adaptee by inheritance instead of composi-
tion so we need instead the condition Adapter ∈ subs(Adaptee).

3.3 Bridge Pattern

Here is another example of structural DP. The intent of this DP is to decouple
an abstraction from its implementation so that the two can vary independently.

Fig. 4. Class Diagram of the Bridge DP

10 Ian Bayley and Hong Zhu

Classes: Abstraction, Implementor ∈ classes
Associations: Abstraction 7→ Implementor ∈ assocs
Conditions:

1 Implementor is an interface:

Implementor ∈ inters

2 client dependencies are on Abstraction alone:

access({Abstraction},

{Implementor} ∪ subs(Abstraction) ∪ subs(Implementor))

3 every operation in the subclasses of Abstraction calls an operation in
Abstraction:

∀A ∈ subs(Abstraction) · ∀o ∈ opers(A)·

∃o′ ∈ opers(Abstraction) · o 7→ o′ ∈ calls

4 every operation in Abstraction calls an operation in Implementor:

∀o ∈ opers(Abstraction) · ∃o′ ∈ opers(Implementor) · o 7→ o′ ∈ calls

The final condition may be too restrictive since some operations in Abstraction
may modify its internal state.

3.4 State Pattern

Now for a second behavioural DP, slightly more complex than Template Method,
and more interesting because of its close similarity to Strategy. The intent of this
DP is to allow an object’s behaviour to vary according to its state.

Fig. 5. Class Diagram of the State DP

Classes: Context, State ∈ classes

Formal Specification of Design Patterns 11

Operations: request ∈ opers(Context), handle ∈ opers(State)
Associations: Context 7→ State ∈ assocs
Conditions:

1 handle is abstract:
isAbstract(handle)

2 the request operation of Context calls the handle operation of State:

request 7→ handle ∈ calls

Note there may be several operations with the role of handle. This DP can
only be distinguished from the Strategy pattern by looking at the information
flow from the wrapped object to the wrapping object. So we need the following
extra condition to define how the State object changes its own subclass.

3 every subclass of State has an operation that calls an operation of Context
with a subclass of State as a parameter.

∀S ∈ subs(State) ·∃o ∈ opers(S) ·∃o′ ∈ opers(Context) ·o 7→ o′ ∈ calls∧
∃p ∈ params(o) · type(p) ∈ subs(State) ∧ direction(p) = “in′′

This condition is not required by the Strategy pattern.

4 Reasoning about DPs

In this section, we use examples to demonstrate how predicate logic can be used
to reason about DPs.

4.1 Inference of the properties of DPs

Given a formal specification of a DP in predicate logic, we can infer the properties
of the DP in first order logic. For example, we can infer from the conditions for
Template Method and some further consistency constraints on class diagrams
that the abstract operations called by templateMethod are redefined in the
concrete subclasses. In predicate logic, this statement is written as follows:

∀op ∈ opers(AbstractClass)·
(templateMethod 7→ op) ∈ calls ∧ isAbstract(op) ⇒
∃ConcreteClass ∈ subs(AbstractClass) ·
∃op′ ∈ opers(ConcreteClass) · (op′ = red(op, ConcreteClass))

The consistency constraint used in the inference is that every abstract oper-
ation must be redefined in a subclass:

∀C ∈ classes · ∀op ∈ opers(C)·
(isAbstract(op) ⇒ ∃C ′ ∈ subs(C) · ∃op′ ∈ opers(C ′) · (op′ = red(op, C ′))

12 Ian Bayley and Hong Zhu

4.2 Match between designs and DPs

Because we are using predicate logic, it is now easy to see if a design model
satisfies the formal specification of a DP. Consider the class diagram below.

Fig. 6. An Instance of Abstract Factory

This clearly matches the requirements for Abstract Factory, specified below.
These requirements are quite complex, as one would expect as the diagram
indicates a precise bijection relationship between classes that must be generalised
to family sizes and variety numbers other than two.

Fig. 7. Class Diagram of the Abstract Factory DP

The following specification is inspired by Eden’s formal specification [1, 2].

Classes: AbstractFactory ∈ classes,AbstractProducts ⊆ classes
Operations: creators ⊆ opers(AbstractFactory)
Conditions:

1 AbstractFactory is an interface:

AbstractFactory ∈ inters

Formal Specification of Design Patterns 13

2 every factory method is abstract:

∀o ∈ creators · isAbstract(o)

3 every class in AbstractProducts is abstract:

∀C ∈ AbstractProducts · isAbstract(C)

4 for each abstract product, there is a unique factory method creator of
AbstractFactory that returns the product:

∀AP ∈ AbstractProducts · ∃!creator ∈ creators · returns(creator,AP)

5 the different creation operations and the concrete products are connected
by a special form of isomorphism.

{o ∈ opers(AbstractFactory)·{s ∈ subs(AbstractFactory)·red(o, s)}} 7→
{p ∈ AbstractProducts · subs(p)} ∈ iso(iso(returns))

Above, the function iso is defined as follows.

xs 7→ ys ∈ iso(R) ≡
∀x ∈ xs · ∃!y ∈ ys · x 7→ y ∈ R ∧ ∀y ∈ ys · ∃!x ∈ xs · x 7→ y ∈ R

To match the design in Fig. 6 to the Abstract Factory pattern, we just need
to bind the set AbstractProducts to {Button, ScrollBar}.

The two sets that are linked by the complex isomorphism relation are

{{PMWindow, MotifWindow}, {PMScrollBar,MotifScrollBar}}
and (with subscripts to indicate the varieties)

{{CreateWindowPM , CreateWindowMotif},
{CreateScrollBarPM , CreateScrollBarMotif}}.

4.3 Alternative specifications

The original descriptions of DPs in [4] are informal. This increases the likelihood
of ambiguity. In this way, several different formal specifications are possible be-
cause the informal descriptions can be understood in several different ways. For-
malisation not only forces us to be rigorous in the specification of the DPs, but
also offers a way to understand the differences between alternative specifications.

For example, condition 5 of the Abstract Factory pattern requires a one-
one correspondence between abstract products and concrete products. This is
actually too restrictive because in the context of component-based software de-
velopment, the abstract products represent the requirement and the concrete
products represent the corresponding implementations, so there could easily be
more products than are actually needed. In English, we’d write: each family of
products has a concrete factory that creates a corresponding concrete product
for each abstract product.

14 Ian Bayley and Hong Zhu

Classes: ConProdFams ⊆ P(classes)
Conditions: 5’

∀CPF ∈ ConProdFams,∃cf ∈ ConProdFact,

∀ap ∈ AbstractProducts,∃cp ∈ CPF ·
returns(redef(create(ap), cf), op) ∧
ap 7→ cp ∈ geners ∧ ¬isAbstract(cp)

Here, create (ap) denotes the creation method for abstract product ap, where
the function create must be total on the set of abstract products, ConProdFams
is a set of sets where products from the same family are grouped together and
ConProdFact is the set of concrete factories.

A similar condition to this one is as follows: for every abstract product there
is a unique set of creators such that for every concrete product of the abstract
product there is a unique operation in creators that creates it.

Conditions: 5”

∀AP ∈ AbstractProducts, ∃!cs ⊆ creators·
∀CP ∈ subs(AP) · ∃!c ∈ cs · creates(c, CP)

This also allows families to have extra products not corresponding to the
abstract products, again in contrast to condition 5. Finally, a further condition
is as follows.

Condition: 6 The relationships between elements of abstract products are pre-
served by the corresponding elements of a concrete product. Formally, let
X ′ represent the corresponding concrete product of a class X of abstract
product for the family of interest, and R ∈ {geners, assoc, calls}.

∀X,Y ∈ AbsProd ·X 7→ Y ∈ R ⇒ X ′ 7→ Y ′ ∈ R,

where R is either geners, or assocs, or calls.

For example, if a Window aggregates ScrollBar then MotifWindow aggre-
gates MotifScrollBar.

4.4 Relationships between DPs

A logical relationship between the predicates of two DPs can be promoted to
a relationship between the DPs themselves. So, for DPs A and B, the syntax
A ⇒ B denotes that A is a special case of B. Two design patterns are in
conflict with each other if their intersection is not satisfiable, whereas they are
composable if their intersection is satisfiable. In this way, relationships between
DPs can be formally proved in first order logic.

For example, it is quite easy to see that the Interpreter Pattern is an instance
of the Composite Pattern. The description for Composite is as follows.

Formal Specification of Design Patterns 15

Fig. 8. Class Diagram of the Composite DP

Classes: Component, Composite, Leaf ∈ classes
Operations: operation ∈ opers(Component)
Associations: parent 7→ children ∈ assocs
Conditions:

1 Component is an interface:

Component ∈ inters

2 Composite and Leaf inherits from Component:

{Composite, Leaf} ⊆ subs(Component)

3 the Client class depends on Component alone:

access(Component, subs(Component))

4 the association is from Composite to Component with multiplicity *:

type(parent) = Composite ∧ type(children) = Component

∧multiplicity(children) = “∗′′

5 operation is overridden in the Composite class and called by it.

¬isLeaf(operation) ∧ red(operation,Composite) 7→ operation ∈ calls

6 there is no association from Leaf to Composite:

¬∃leaf 7→ component · type(leaf) = Leaf

∧type(component) = Component

Before we turn to Interpreter, here are a few points to note about Composite.
We must represent classes with variables to specify the multiplicities of “*”.
We cannot express using predicates the requirement that the operation must

16 Ian Bayley and Hong Zhu

be called several times, once on each component. Also there may be several
operations defined in this way, as in Eden’s constraints. Finally, note too that
Eden misses out both the first and last conditions, and allows there to be several
classes like Leaf but only one like Composite.

The conditions above are exactly the same for the Interpreter DP except
that the classes are called Abstraction Expression (=Component), Terminal Ex-
pression (=Leaf), Nonterminal Expression (=Composite) and Client should
aggregate Context as an extra condition. A further condition is that the opera-
tion must take an instance of Context as its only argument.

If # is the cardinality operator and interpret is the operation of Interpreter
then we can write this last condition as follows:

#interpret.parameters = 1 ∧ ∃p ∈ interpret.parameters · type(p) = Context

Since the six conjoined conditions for Interpreter imply, modulo renaming,
the eight conjoined conditions for Composite, it clearly follows that Interpreter
is a special case of Composite.

5 Conclusion

In this paper we have demonstrated the expressiveness of first order logic for
the formal description of design patterns. We now discuss the advantages of the
approach, then some open problems and finally, we compare it to existing work.

5.1 Advantages

The approach has the following main features.

– The formal descriptions are readable and they help the novice to under-
stand the design patterns. The formalisation of DPs also helps to clarify
the concepts and issues that were ambiguous or left open in the informal
description.

– It is easy to recognise if a system design presented as a class diagram is
an instance of a design pattern. One only needs to simply prove that the
constraints in the first order logic are true, as we did for the Abstract Factory
DP.

– The formal descriptions facilitate the formal reasoning about design patterns
using first order logic, which is well understood. For example, the Interpreter
DP is a sub-case of the Composite DP. This is inferred from the formal de-
scriptions using first order logic, as the constraints of Interpreter imply the
constraints of Composite. Similarly, we can formally define other relation-
ships between design patterns. For example, two design patterns are in con-
flict with each other if their intersection is not satisfiable. And, in contrast,
two design patterns are composable if their intersection is satisfiable.

Formal Specification of Design Patterns 17

5.2 Open problems

There are however still some open problems that need to be solved. Not all
DPs can be captured very well by the method, partly because class diagrams
do not contain all the information that characterises the DPs. Where such in-
formation is expressed in the form of notes containing sample code, we can do
nothing more than state which operations should be implemented by calls to
which other operations. For example, for the Iterator pattern, such operations
are too implementation-specific so only the type signatures of the operations
give a clue as to their purpose.

Often sequence diagrams need to be used for clarification as with Builder
pattern, where it is suggested that operations are needed to create both the
Director and the Builder classes and to return the result at the end. Further-
more, it appears to be important that only the operation construct can call
operations on the subclasses of Builder and each operation must build a dif-
ferent subclass. Other operations whose purpose we cannot express well include
the operations of the Originator class in Memento and the clone operation in
Prototype.

Sometimes the subtleties not captured by the class diagram concern the state
of the object, as with the State pattern, the Flyweight pattern where extrinsic
and intrinsic state is distinguished and Decorator where both extra state and
behaviour may be added.

We saw with Composite that our descriptions must be changed slightly for
collections. In addition, the semantics of collection operations are not specified
precisely, thereby affecting not only Composite but also Flyweight and Builder
too. There are also getters and setters for the Observer pattern but here the
more general notions of query and non-query operations are used instead, which
is fortunate as these notions are recognised by UML.

The role of the class Client is often unclear in the original informal descrip-
tion in [4]. The Interpreter pattern has an association from Client so its condi-
tions must explicitly mention the class, unlike all other DPs. In the Command
DP, the distinction between Client and Invoker classes is unclear. Prototype
is also unusual in that Client is given specific operations. In all other cases, we
can avoid mention of the Client class by using the predicate access.

5.3 Comparison with Eden’s Approach

Other related works have been discussed in section 1.2. We focus on Eden’s work
in particular as it is the one closest to our own.

Eden has invented a graphical language called LePUS for representing both
class diagrams and the constraints on them required by Design Patterns. The
language has a formal foundation in predicate logic. Eden captures all but five of
the DPs, missing out Protoype, Singleton, Interpreter, Mediator and Memento,
whereas we encounter our greatest problems discussed above with Iterator, Me-
mento and Singleton instead. The major differences between his formalisations
reported in [3] and ours are as follows.

18 Ian Bayley and Hong Zhu

– LePUS is a whole new language with a notation specific to DPs whereas our
approach is more general and we can specify constraints in languages other
than UML. Our approach is also more flexible and easy to specify alternative
descriptions of a design pattern as shown in the Abstract Factory pattern.

– Some of Eden’s constraints concern sets of operations in the same class.
Examples include the request handlers of Adapter, Bridge, Proxy, State and
Decorator in which the requests are delegated to other operations.

– Eden specifies more bijections between classes and methods than we do and
this applies to many DPs such as Iterator and Visitor.

– Eden distinguishes between invocation and forwarding, a special case of in-
vocation where the caller and callee have exactly the same arguments. We
can introduce this distinction ourselves since we can identify our own stereo-
types.

– The constraints for the Facade DP are rather different, as Eden distinguishes
creator and manipulator classes.

5.4 Further Work

We now consider possible changes to our framework that will allow some DPs
to be captured more precisely.

Design By Contract (DBC) can be used to define the pre/post-conditions of
the operations for addition to and removal from collections in the Composite and
Observer DPs. It can also be used to specify the post-conditions of getter and
setter operations. More precisely, an intra-diagram constraint on class diagrams
will require that all operations with get or set prefixes have the post-conditions
that one would expect. In OCL 2.0, it is possible to specify which operations call
which others. This information is also given by the calls relationship but OCL
2.0 allows us to be more precise. We can for example, specify that an operation
must be called once on each member of a collection, as required for Composite
and Visitor.

As an alternative, this dynamic behaviour can also be specified using com-
munication diagrams. More importantly, so too can the conditional behaviour
found in the code samples for Flyweight and Singleton, and it seems that this
cannot be done in any other way. We shall investigate specifying the intent of a
DP too.

At the same time as we make these improvements, we shall also investigate
using the framework to specify model transformations such as refactoring and we
shall develop tools to support this. We shall also specify the semantics of UML
diagrams more formally. Finally, we shall consider other DPs such as those for
concurrency and distributed computing.

References

1. A. H. Eden. Formal specification of object-oriented design. In International Con-
ference on Multidisciplinary Design in Engineering, Montreal, Canada, November
2001.

Formal Specification of Design Patterns 19

2. A. H. Eden. A theory of object-oriented design. Information Systems Frontiers,
4(4):379–391, 2002.

3. A.H. Eden. Website at www.eden-study.org/lepus.
4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
5. K. Lano, J. C. Bicarregui, and S. Goldsack. Formalising design patterns. In BCS-

FACS Northern Formal Methods Workshop, Ilkley, UK, September 1996.
6. A. Lauder and S. Kent. Precise visual specification of design patterns. In Lecture

Notes in Computer Science Vol. 1445, pages 114–134. ECOOP’98, Springer, 1998.
7. T. Mikkonen. Formalizing design patterns. In Proc. of ICSE’98, Kyoto, Japan,

pages 115–124. IEEE CS, April 1998.
8. N. Nija Shi and R. Olsson. Reverse engineering of design patterns from java source

code. In Proc. of ASE’06, Tokyo, Japan, pages 123–134, September 2006.
9. OMG. Unified modeling language: Superstructure, version 2.0, formal/05-07-04.

10. T. Taibi. Formalising design patterns composition. Software, IEE Proceedings,
153(3):126–153, June 2006.

11. H. Zhu and L. Shan. Well-formedness, consistency and completeness of graphic
models. In Proc. of UKSIM’06, Oxford, UK, pages 47–53, April 2006.

20 Ian Bayley and Hong Zhu

6 Appendix. A List of Formal Specifications of Design
Patterns

Now we list our formal specifications of the DPs in [4] in alphabetic order. To
make this section be as self-contained as possible, we repeat the DPs that have
already discuss in the main text of the report.

6.1 Abstract Factory Pattern

Fig. 9. Class Diagram of the Abstract Factory DP

The following specification is inspired by Eden’s formal specification [1, 2].

Classes: AbstractFactory ∈ classes,AbstractProducts ⊆ classes
Operations: creators ⊆ opers(AbstractFactory)
Conditions:

1 AbstractFactory is an interface:

AbstractFactory ∈ inters

2 every factory method is abstract:

∀o ∈ creators · isAbstract(o)

3 every class in AbstractProducts is abstract:

∀C ∈ AbstractProducts · isAbstract(C)

4 For each abstract product, there is a unique factory method creator of
AbstractFactory that returns the product:

∀AP ∈ AbstractProducts · ∃!creator ∈ creators · returns(creator,AP)

Formal Specification of Design Patterns 21

5 The different creation operations and the concrete products are connected
by a special form of isomorphism.

{o ∈ opers(AbstractFactory)·{s ∈ subs(AbstractFactory)·red(o, s)}} 7→

{p ∈ AbstractProducts · subs(p)} ∈ iso(iso(returns))

where the function iso is defined as follows.

xs 7→ ys ∈ iso(R) ≡
∀x ∈ xs · ∃!y ∈ ys · x 7→ y ∈ R ∧ ∀y ∈ ys · ∃!x ∈ xs · x 7→ y ∈ R.

5’ An alternative condition to 5 is the following. Each family of products
has a concrete factory that creates a corresponding concrete product for
each abstract product:

∀CPF ∈ ConProdFams,∃cf ∈ ConProdFact,

∀ap ∈ AbstractProducts,∃cp ∈ CPF ·
returns(redef(create(ap), cf), op) ∧
ap 7→ cp ∈ geners ∧ ¬isAbstract(cp)

5” Another alternative to condition 5 is that for every abstract product
there is a unique set of creators such that for every concrete product of
the abstract product there is a unique operation in creators that creates
it. Formally,

∀AP ∈ AbstractProducts,∃!cs ⊆ creators·

∀CP ∈ subs(AP) · ∃!c ∈ cs · creates(c, CP)

6 The relationships between elements of abstract products are preserved
by the corresponding elements of a concrete product. Formally, let X ′

represent the corresponding concrete product of a class X of abstract
product for the family of interest, and R ∈ {geners, assoc, calls}.

∀X,Y ∈ AbsProd ·X 7→ Y ∈ R ⇒ X ′ 7→ Y ′ ∈ R,

where R is either geners, or assocs, or calls.
Discussion: Condition 5 is inspired by Eden and asserts that the products

and factory methods are in bijection. We believe that the requirements of
bijection is too restrictive and unnecessary, thus we suggested alternative
conditions 5’ and 5” to replace it. On the other hand, Eden’s bijection re-
quirements are not strong enough. Thus, condition 6 is introduced.

Intention: Easy to change the classes of objects created while ensuring they all
belong to the same family.

22 Ian Bayley and Hong Zhu

Fig. 10. Class Diagram of the Adapter DP

6.2 Adapter Pattern

The two diagrams are given in [4] for the Object Adapter (above) and the Class
Adapter (below), respectively. The description given below is for Object Adapter.
The constraints for Class Adapter are very similar.

Classes: Target, Adapter,Adaptee ∈ classes
Associations: Adapter 7→ Adaptee ∈ assocs
Operations: requestX ⊆ opers(Target), specificRequestX ⊆ opers(Adaptee)
Conditions:

1 the Client class depends only on the Target:
access({Target}, {Adapter,Adaptee})

2 Target is an interface:
Target ∈ inters

3 Adapter implements Target:
Adapter ∈ subs(Target)

4 for some operation in requestX, its redefinition in Adapter calls an oper-
ation in specificRequestX:
∃o ∈ opers(requestX), o′ ∈ opers(specificRequestX)·
red(o,Adapter) 7→ o′ ∈ calls

Discussion: Presumably, the Adapter class can have further operations not in
the Target class. Such freedom is often present with DPs, but there are some
exceptions to this, such as in the Proxy DP where the classes RealSubject
and Proxy must have the same interfaces. The constraints given are for

Formal Specification of Design Patterns 23

Object Adapter DP. The Class Adapter, where the Adapter and Adaptee
are linked by inheritance, is similar. Instead of the association, there is an
extra condition Adapter ∈ subs(Adaptee).

Intent: Change the interface of an object.

6.3 Bridge Pattern

Fig. 11. Class Diagram of the Bridge DP

Classes: Abstraction, Implementor ∈ classes
Associations: Abstraction 7→ Implementor ∈ assocs
Conditions:

1 Implementor is an interface:
Implementor ∈ inters

2 client dependencies are on Abstraction alone:
access({Abstraction}, {Implementor} ∪ subs(Abstraction)
∪subs(Implementor))

3 every operation in the subclasses of Abstraction call an operation in
Abstraction:
∀A ∈ subs(Abstraction) · ∀o ∈ opers(A) ·
∃o′ ∈ opers(Abstraction) · o 7→ o′ ∈ calls

4 every operation in Abstraction calls an operation in Implementor:
∀o ∈ opers(Abstraction) · ∃o′ ∈ opers(Implementor) ·
o 7→ o′ ∈ calls

Discussion: The final condition may be too restrictive since some operations
in Abstraction may modify its state

Intention: Easy to change both the interface of Abstraction and Implementor.

6.4 Builder Pattern

24 Ian Bayley and Hong Zhu

Fig. 12. Class Diagram of the Builder DP

Participants: Director,Builder ∈ classes
Operations: construct ∈ opers(Director)
Associations: director 7→ builder ∈ assocs
Conditions:

1 the association is from director to builder:
type(director) = Director ∧ type(builder) = Builder

2 Builder is abstract:
isAbstract(Builder)

3 each subclass of Builder creates an object and one of its operations returns
it:
∀B ∈ subs(Builder) · ∃C ∈ classes ·Builder 7→ C ∈ create ∧
∃o ∈ opers(B) · returns(o, C) ∧ ∀o ∈ opers(B) · construct 7→ o ∈ calls

Discussion: We cannot express the requirement that the other operations of the
Builder subclasses each build a different part of the Product, nor that the
operation to return it is the last to be called. Also, it might be important that
only the operation construct can call operations on the subclasses of Builder.
Eden suggests there should be operations for creating both Director and
the Builder subclass, and an association from the Builder subclass to the
Product subclass. If so, the operation GetResult could be marked as a getter,
in the manner suggested in Section 4.

Intent: Easy to change the way in which a composite object is created.

6.5 Chain of Responsibility Pattern

Classes: Handler ∈ classes
Associations: predecessor 7→ successor ∈ assocs
Operations: handleRequest ∈ opers(Handler)
Conditions:

1 association is to and from Handler:
type(predecessor) = type(successor) = Handler

2 handleRequest is overridden:
∀H ∈ subs(Handler) ·red(handleRequest, H) 7→ handleRequest ∈ calls

Formal Specification of Design Patterns 25

Fig. 13. Class Diagram of the Chain Of Responsibility DP

3 handleRequest calls itself:
handleRequest 7→ handleRequest ∈ calls

Intent: Easy to change the receivers of the handleRequest message and their
order too.

6.6 Command Pattern

Fig. 14. Class Diagram of the Command DP

Classes: Command, Invoker,Receiver ∈ classes
Associations: invoker 7→ command ∈ assocs
Operations: execute ∈ opers(Command), action ∈ opers(Receiver)
Conditions:

1 every subclass of Command associates with the Receiver class and the
operation overriding execute calls an operation of Receiver:
∀C ∈ subs(Command) · ∃o ∈ opers(Receiver) ·
red(execute, C) 7→ o ∈ calls

26 Ian Bayley and Hong Zhu

2 association is from Invoker to Command:
type(invoker) = Invoker ∧ type(command) = Command

3 execute calls action:
execute 7→ action ∈ calls

Discussion: It is unclear what the difference is between the classes Client
and Invoker so Client dependencies have been left out. Eden suggests that
Client creates Command and that Invoker calls execute but also specifies
operations to set the receiver and assign the command.

Intent: Easy to change both the operation on which an object is called and the
class of the object itself.

6.7 Composite

Fig. 15. Class Diagram of the Composite DP

Note that associations must be described using variables so that multiplicities
can be specified.

Classes: Component, Composite, Leaf ∈ classes
Operations: operation ∈ opers(Component)
Associations: parent 7→ children ∈ assocs
Conditions:

1 Component is an interface:
Component ∈ inters

2 Composite and Leaf inherits from Component:
{Composite, Leaf} ⊆ subs(Component)

3 the Client class depends on Component alone:
access(Component, subs(Component))

4 the association is from Composite to Component with multiplicity *:
type(parent) = Composite ∧ type(children) = Component
∧multiplicity(children) = “∗′′

Formal Specification of Design Patterns 27

5 operation is overridden in the Composite class and called by it.
¬isLeaf(operation) ∧ red(operation,Composite) 7→ operation ∈ calls

6 there is no association from Leaf to Composite:
¬∃leaf 7→ component ·
type(leaf) = Leaf ∧ type(component) = Component

Discussion: We cannot express the requirement that the operation must be
called several times, once on each component. Also there may be several
operations defined in this way, as in Eden’s constraints. Eden misses out
both the first and last conditions, and allows there to be several classes like
Leaf but only one like Composite.

Intent: Not designed to make anything easier to change.

6.8 Decorator Pattern

Fig. 16. Class Diagram of the Decorator DP

Classes: Component, Decorator ∈ classes
Operations: operation ∈ opers(Component)
Associations: decorator 7→ component ∈ assocs
Conditions:

1 association is from Decorator to Component:
type(decorator) = Decorator ∧ type(component) = Component

2 Decorator inherits from Component:
Decorator ∈ subs(Component)

3 operation is overridden in Decorator by an operation that calls it.
¬isLeaf(operation) ∧ red(operation,Decorator) 7→ operation ∈ calls

4 the overriding operation is itself overridden by an operation that calls it
in every one of the subclasses of Decorator:
Let opInDec = red(operation, Decorator).
¬isLeaf(opInDec) ∧
∀D ∈ subs(Decorator) · red(opInDec, D) 7→ opInDec ∈ calls

28 Ian Bayley and Hong Zhu

Discussion: The intermediate class Decorator seems superfluous. Eden sug-
gests there could be many operations like operation. The use of tribes makes
the final condition simpler in his version. The notion of added state and be-
haviour is not captured here.

Intent: Change the behaviour of an object, while keeping its interface the same.

6.9 Facade Pattern

Fig. 17. Class Diagram of the Facade DP

Classes: Facade ∈ classes
Conditions:

1 there are no dependencies (for some suitable definition of deps) from out-
side the Facade to classes inside:
∃ys ⊆ classes ∧ ∀C ∈ ys · ∀C ′ ∈ classes · (C ′ 7→ C) ∈ deps ⇒ C ′ ∈
ys ∨ C ′ = Facade

6.10 Factory Method Pattern

Classes: Creator, Product ∈ classes
Operations: factoryMethod ∈ opers(Creator)
Conditions:

1 factoryMethod is overriden:
¬isLeaf(factoryMethod)

2 Product is an interface:
Product ∈ inters

3 every subclass of Creator creates a unique subclass of Product which is
returned by an operation overriding FactoryMethod:
∀C ∈ subs(Creator) · ∃!P ∈ subs(Product) ·
C 7→ P ∈ creates ∧ returns(red(factoryMethod,C), P)

Formal Specification of Design Patterns 29

Fig. 18. Class Diagram of the Factory Method DP

Discussion: The class diagram has a further operation AnOperation which
calls factoryMethod, as if to indicate that all other operations defined for
Creator must do so too; this requirement has been ignored above though.
It could be argued that there should not exist subclasses of Product that
cannot be created and returned by FactoryMethod. If so, we would require
a bijection between Creator subclasses and Product subclasses. There seems
to be no reason why the class Product is an interface. Eden allows there to
be several different factory methods. Finally, the instance of Product could
be returned in an out parameter but that possibility has been ignored here
and elsewhere.

Intention: Easy to change the class of objects created.

6.11 Flyweight Pattern

Fig. 19. Class Diagram of the Flyweight DP

30 Ian Bayley and Hong Zhu

Classes: FlyweightFactory, F lyweight ∈ classes
Operations: getF lyweight ∈ opers(FlyweightFactory)
Associations: factory 7→ flyweight ∈ assocs
Conditions:

1 getF lyweight returns an instance of Flyweight:
returns(getF lyweight, F lyweight)

2 the association is from FlyweightFactory to Flyweight with multiplicity
“*”: type(factory) = FlyweightFactory ∧
type(flyweight) = Flyweight ∧
multiplicity(flyweight) = “∗′′

Discussion: There should be two subclasses of Flyweight, capturing intrinic
state and extrinsic state, but there seems to be no way of specifying this,
even though it is the most important aspect of the DP. Eden also requires
that FlyweightFactory creates instances of Flyweight.

Intent: Not designed to make anything easier to change as it concerns time/space
efficiency.

6.12 Interpreter Pattern

Fig. 20. Class Diagram of the Interpreter DP

Classes: AbstractExpression, TerminalExpression, NonterminalExpression ∈
classes

Operations: operation ∈ opers(AbstractExpression)
Associations: parent 7→ children ∈ assocs
Conditions:

Formal Specification of Design Patterns 31

1 AbstractExpression is an interface:
AbstractExpression ∈ inters

2 Classes NonterminalExpression and TerminalExpression inherit from
AbstractExpression:
{NonterminalExpression, TerminalExpression}
⊆ subs(AbstractExpression)

3 the Client class depends on AbstractExpression alone:
access(AbstractExpression, subs(AbstractExpression))

4 the association is from NonterminalExpression to AbstractExpression
with multiplicity *:
type(parent) = AbstractExpression ∧
type(children) = NonterminalExpression ∧
multiplicity(children) = “∗′′

5 operation is overridden in the NonterminalExpression class and called
by it.
¬isLeaf(operation) ∧
red(operation, NonterminalExpression) 7→ operation ∈ calls

6 there is no association from TerminalExpression to AbstractExpression:
¬∃te 7→ absexp · type(te) = TerminalExpression ∧
type(absexp) = AbstractExpression

Discussion: These conditions are exactly the same as those of Composite. In
other words, Iterator is an instance of Composite, obtained by substituting
variables and adding two further conditions. First, there must be a further
association from Client to Context. Secondly, the operation must take an
instance of Context as its only argument. If # is the cardinality operator
then we can write:
#interpret.parameters = 1 ∧
∃p ∈ interpret.parameters · type(p) = Client

Note however that we have omitted the distinguished class Client from other
DPs so it is a shame to include it here.

Intention: Easy to change the grammar of the language being interpreted.

6.13 Iterator Pattern

Classes: Aggregate, Iterator ∈ classes

Operations: createIterator ∈ opers(Aggregate)
Conditions:

1 createIterator is overridden:
¬isLeaf(createIterator)

2 every subclass of Aggregate creates a subclass of Iterator that is returned
by the operation overriding createIterator:
∀A ∈ subs(Aggregate) · ∃I ∈ subs(Iterator) ·
A 7→ I ∈ creates ∧ returns(red(createIterator,A), I)

32 Ian Bayley and Hong Zhu

Fig. 21. Class Diagram of the Iterator DP

Discussion: Other operations such as those to return first and next elements
can only be expressed as English words; though their type signatures, which
give a hint of their purpose, can be part of the constraints. Eden represents
the class for elements on his diagram and is able to specify multiplicities.

Intent: Easy to change the way in which a collection is accessed by ensuring a
common interface.

6.14 Mediator Pattern

Fig. 22. Class Diagram of the Mediator DP

Classes: Mediator, ConcreteMediator, Colleague ∈ classes
Associations: colleague 7→ mediator ∈ assocs
Conditions:

1 the association is from Colleague to Mediator with multiplicity many to
one:
type(colleague) = Colleague ∧
type(mediator) = Mediator ∧
multiplicity(colleague) = “ ∗′′ ∧
multiplicity(colleague) = 1

Formal Specification of Design Patterns 33

2 ConcreteMediator inherits from Mediator:
ConcreteMediator ∈ subs(Mediator)

3 every subclass of Mediator has a dependency to some subclass of Colleague:
∀c ∈ subs(Mediator) · ∀c′ ∈ subs(Colleague) · c 7→ c′ ∈ deps

4 every subclass of Colleague is the target of a dependency from class
ConcreteMediator:
∀C ∈ subs(Colleague) · ConcreteMediator 7→ C ∈ deps

Discussion: This DP is often illustrated with an object diagram; perhaps the
constraints should be defined on this instead.

Intent: Easy to change the way in which objects interact because it is all en-
capsulated within Mediator.

6.15 Memento Pattern

Fig. 23. Class Diagram of the Memento DP

Classes: Caretaker,Originator,Memento ∈ classes
Associations: Caretaker 7→ Memento ∈ assocs
Conditions:

1 Originator creates an instance of Memento:
Originator 7→ Memento ∈ creates

2 the operations getState and setState are getters and setters:
∃C ∈ classes · isSetter(setState, C) ∧ isGetter(getState, C)

Discussion: The effect of the operations of Originator cannot be expressed.
Intent: Not designed to make something easier to change.

6.16 Observer Pattern

Note that associations must be described in the old satisfactory way because
we need to mark multiplicities.

Classes: Subject, Observer ∈ classes
Operations: update ∈ opers(Observer)

34 Ian Bayley and Hong Zhu

Fig. 24. Class Diagram of the Observer DP

Associations: subject 7→ observer ∈ assocs
Conditions:

1 the association is from Subject to Observer with multiplicity *:
type(subject) = Subject ∧
type(observer) = Observer ∧
multiplicity(obs) = “∗′′

2 operation update is not a leaf operation:
¬isLeaf(update)

3 each Observer subclass associates with a Subject subclass:
∀O ∈ subs(Observer) · ∃S ∈ subs(Subject) ·
∃observer′ 7→ subject′ ∈ assoc ·
type(observer′) ∈ subs(Observer) ∧ type(subject′) ∈ subs(Subject)

4 every non-query operation of a Subject subclass calls update for a subclass
of Observer and update calls a query operation of that Subject subclass:
∀S ∈ subs(Subject) · ∀o ∈ opers(S) · ∀O ∈ subs(Observer) ·
¬isQuery(o) ⇒ o 7→ red(update,O) ∈ calls ∧
∃o ∈ opers(O) · red(update,O) 7→ o ∈ calls ∧ isQuery(o)

Discussion: There is library support for this DP in Java with class Observable
and interface Observer in the package java.util but it does not appear that
the language can support any other patterns. It is difficult to specify the
behaviour of the operations add and remove (without using Design By Con-
tract for example) so they have been omitted. The diagram implies that there
should only be one concrete subclass for each of Subject and Observer but
this has not been reflected in the conditions above. The notion of query and
non-query operations has been used instead of setters and getters since the
latter are too specific. Eden specifies that there need only be one operation
to get the state but several to change it.

Intent: Easy to change the way the subjects report to the observer because it
is encapsulated within the update operation.

6.17 Prototype Pattern

Formal Specification of Design Patterns 35

Fig. 25. Class Diagram of the Prototype DP

Classes: Prototype ∈ classes
Operations: clone ∈ opers(Prototype)
Conditions:

1 the Client class depends only on Prototype:
access(Prototype, subs(Prototype))

2 for every subclass of Prototype, the operation overriding clone returns an
instance of the subclass:
∀P ∈ subs(Prototype) · returns(red(clone, P), P)

3 every subclass of Prototype creates a copy of itself:
∀P ∈ subs(Prototype) · P 7→ P ∈ creates

Discussion: There is an association from the class Client to the class Prototype,
instead of merely a dependency, as with all other appearances of Client.

Intent: Not designed to make anything easy to change.

6.18 Proxy Pattern

Fig. 26. Class Diagram of the Proxy DP

36 Ian Bayley and Hong Zhu

Classes: Subject, Proxy, RealSubject ∈ classes
Operations: request ∈ opers(Proxy)
Associations: proxy 7→ realSubject ∈ assocs
Conditions:

1 Client depends on Subject alone:
access({Subject}, subs(Subject))

2 the association is from Proxy to RealSubject:
type(proxy) = Proxy ∧ type(realSubject) = RealSubject

3 Proxy and RealSubject are subclasses of Subject:
{Proxy, RealSubject} ⊆ subs(Subject)

4 The operation request is not a leaf operation:
¬isLeaf(request)

5 The redefinition of operation request in Proxy must call the redefinition
in RealSubject:
redef(request, Proxy) 7→ redef(request, RealSubject) ∈ calls.

Discussion: The class Proxy could have several operations like Request, not
just one. Eden specifies this and in addition that there must be exactly one
class like Proxy with an association to RealSubject and it must also have
exactly the same interface.

Intent: Similar to that of Decorator.

6.19 Template Method Pattern

Fig. 27. Class Diagram of the Template Method DP

Classes: AbstractClass ∈ classes
Operations: templateMethod ∈ opers(AbstractClass)
Conditions:

Formal Specification of Design Patterns 37

1 templateMethod calls an operation that is overridden in a subclass of
AbstractClass:
∃o ∈ opers(AbstractClass)·templateMethod 7→ o ∈ calls∧isAbstract(o)

Discussion: The condition of isAbstract(o) could be too restrictive. An alter-
native is ¬isLeaf(o), but this could be too weaker as it does not force the
steps to be redefined.

Intention: Easy to change the operation o called as part of an algorithm.

6.20 Singleton Pattern

Fig. 28. Class Diagram of the Singleton DP

Classes: Singleton ∈ classes
Operations: getInstance ∈ opers(Singleton)
Conditions:

1 getInstance is static and both a getter and a setter.
isStatic(getInstance) ∧
isGetter(getInstance, Singleton) ∧
isSetter(getInstance, Singleton)

2 Singleton has a static attribute of class Singleton:
∃p ∈ attrs(Singleton) · type(p) = Singleton ∧ isStatic(p)

Intent: It is not designed to make anything easier to change.

6.21 State Pattern

Classes: Context, State ∈ classes
Operations: request ∈ opers(Context), handle ∈ opers(State)
Associations: Context 7→ State ∈ assocs
Conditions:

1 handle is abstract:
isAbstract(handle)

2 the request operation of Context calls the handle operation of State:

request 7→ handle ∈ calls

38 Ian Bayley and Hong Zhu

Fig. 29. Class Diagram of the State DP

6.22 Strategy Pattern

Fig. 30. Class Diagram of the Strategy DP

Classes: Context, Strategy ∈ classes
Operations: contextInterface ∈ opers(Context),

algorithmInterface ∈ opers(Algorithm)
Associations: context 7→ strategy ∈ assocs
Conditions:

1 operation algorithmInterface is abstract:
isAbstract(algorithmInterface)

2 the association is from Context to Strategy:
type(context) = Context ∧ type(strategy) = Strategy

3 operation contextInterface calls operation algorithmInterface:
contextInterface 7→ algorithmInterface ∈ calls

Discussion: See State DP which has similar conditions.
Intent: Easy to change the operation called.

6.23 Visitor Pattern

Formal Specification of Design Patterns 39

Fig. 31. Class Diagram of the Visitor DP

Classes: V isitor, Element, ObjectStructure ∈ classes

Association: structure 7→ element ∈ assocs

Operations: accept ∈ opers(Element), visitX ⊆ opers(V isitor)
Conditions:

1 V isitor is an interface:
V isitor ∈ inters

2 association is from ObjectStructure to Element:
type(structure) = Object ∧
type(element) = Element ∧
multiplicity(element) =′′ ∗′′

3 Client depends only on V isitor and ObjectStructure:
access({V isitor,ObjectStructure},
{Element} ∪ subs(Element) ∪ subs(V isitor))

4 accept has a parameter of class V isitor:
∃p ∈ params(accept) · type(p) = V isitor

5 accept is the only operation in Element:
opers(Element) = {accept}

6 for every subclass of Element, there is an operation in visitX with the
subclass as a parameter such that this operation is called by the opera-
tion overriding accept and itself calls an operation different from accept
in the subclass.
∀E ∈ subs(Element) · ∃vo ∈ visitX ·
∃p ∈ params(vo) · type(p) = E ∧
∃o ∈ opers(E) · red(accept, E) 7→ vo ∈ calls ∧
vo 7→ o ∈ calls ∧ o 6= red(accept, E)

40 Ian Bayley and Hong Zhu

Discussion: Eden requires that there be a bijection (given by method invo-
cation) between subclasses of Element and V isitor, and that parameter
passing should use the first argument specifically.

