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ABSTRACT 
One of the most appealing features of agent technology is its 
natural way to modularise complex systems in terms of multiple 
interacting autonomous components. This feature is supported by 
the language facility castes in the formal specification language 
SLABS, which is designed for modular and composable 
specification of multi-agent systems. The paper reports the syntax 
and semantics of the language, and illustrates its style of formal 
specification by a distributed synchronisation algorithm.  
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1. INTRODUCTION 
In recent years, agent technology has been applied to more and 
more critical application areas such as telecommunications [1], 
space adventure [ 2 ], power grid control, military [ 3 ], etc. to 
provide viable solutions to the problems that was unable to be 
solved satisfactorily by other existing techniques. It is also clearly 
demonstrated that agent technology is particularly suitable to solve 
problems related to web-based applications such as e-commerce 
and web search engines [4]. However, developing agent-based 
systems is extremely difficult because the dynamic behaviours of 
agent-based systems are difficult to specify, analyse, verify and 
validate. Being autonomous, proactive and adaptive, an agent-
based system may demonstrate emergent behaviours that are hard 
to predict, difficult to design, and expensive to test. An early 
incident of software failure attributed to autonomous agents in 
particular is the crash of Air France's Airbus 320 at an air show in 
June 1988 [5]. Airbus 320 was the first fly-by-wire passenger 
aircraft in the world. In other words, an autonomous agent controls 
the aircraft. The incident was caused by a conflict between the 
human pilot's instruction and the autonomous control by the 
software. While the pilot intended to fly over the airport in the air 
show, the fly-by-wire control software seems to have instructed 
the aircraft to land, which was believed to be the cause of the 
accident [6].  
The new features of agent-based systems demand new methods for 
the specification of agent behaviours and for the verification and 
validation of their properties to enable software engineers to 
develop reliable and trustworthy agent-based systems. It has been 
recognised that the lack of rigour is one of the major factors 
hampering the wide-scale adoption of agent technology [7]. On the 
other hand, the modularity inherent in multi-agent systems can 
offer a new approach to decomposing complicated formal 
specifications into composable modular components.  

The past few years have seen increasing research interests in 
agent-oriented software development methodology. Existing work 
falls into three main classes. The first is towards the theoretical 
foundations for understanding agent-based systems. Much work 
has been focused on modelling and reasoning agents' rational 

behaviour by introducing modalities for belief, desire and intention, 
e.g. [8, 9, 10, 11]. Game theory has also found its position in the 
formalisation of agent models, e.g. [12]. A great number of formal 
models of agents have been proposed and investigated in the 
literature; see e.g. [13, 14]. Most of them are based on an internal 
mental state model of agents, yet some are based on a model of the 
external social behaviours of collaborative agents, e.g. [ 15 ]. 
Although these formal models of agents significantly improved 
our understanding of agent-based systems, they do not 
immediately facilitate the development of agent-based systems. As 
pointed out in [16], a specification method based on a specific 
model of agents may result in the existence of certain agent theory 
and systems that do not match the concept in the specification 
formalism. Moreover, temporal logics, particularly when 
combined with modalities for belief, desire, etc., can be very 
complex. The second group of researches is on the development 
process and development methods for engineering agent-based 
systems, see e.g. [17, 18, 19, 20, 21]. These works mostly focused 
on diagrammatic notations that support the analysis and design of 
multi-agent systems. Some of the notations extend object-oriented 
methods and notations such as UML. Some introduce new models 
and new diagrammatic notations. How such diagrammatic 
notations are related to the logic and formal models of agents 
remains an open problem. The third group consists of the 
researches on the language facilities and features that support the 
formal specification and verification of agent-based systems in a 
software engineering context, although there is little such work 
reported in the literature [ 22 ]. The use of existing formal 
specification languages, such as Z, has also been explored to 
specify agent architecture [23] and concepts [24, 25]. Despite the 
large number of publications on agents in the literature, we are 
lack of researches on language facilities that support the 
development of large-scale complicated multi-agent systems. In 
particular, we are lack of language facilities to explicitly specify 
the environment of agents and agent-based systems although it is 
widely recognised that an important characteristic of agents is that 
they are entities situated (embedded) in a particular environment 
[26]. We are lack of facilities that can clearly state how agents' 
behaviours are related to the environment. We are lack of language 
facilities that enable us to maximise the power of the way that 
multi-agent systems modularise complex systems into cooperative 
autonomous components. Addressing these problems, in the past 3 
years we have been searching for language facilities to support the 
analysis, specification, design and implementation of agent-based 
systems in the context of software engineering. Some of the results 
have been incorporated in the design of a formal specification 
language called SLABS [27, 28].  

In this paper, we report the main features of the language SLABS 
and demonstrate its uses in the development of multi-agent 
systems. The remainder of the paper is organised as follows. 
Section 2 defines the syntax and semantics of the language. 
Section 3 illustrates SLABS' style of specification by an example. 
Section 4 concludes that paper with discussions on related work 
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and future work.  

2. THE LANGUAGE SLABS 
The meta-language used to define the syntax is EBNF; see Table 1. 
In a syntax definition, meta-symbols are in bold font such as ::=. 
Terminals are in italic font such as Var. Non-terminals are in normal 
font such as Agent-Description.  

Table 1. The meta-symbols in EBNF 

Name Symbol Means 
Definition ::= A ::= B means that A is defined as B. 
Concatenation  AB means that A is followed by B. 
Optional [   ] [ A ] means that A is optional. 
Choice | A | B means either A or B. 

Repetition {      } { A } means that A may appear any times 
including zero times or more times. 

Repetition 
with separator {   /   } 

{ A / B } means a sequence of A 
separated by B, where the number of A's 
can be zero or more.  

Positive 
repetition {     }+ { A } means that A may appear at least 

once.  
Parenthesis (   )  They are used to change preference.  

2.1 Agents and Castes 
The specification of a multi-agent system in SLABS consists of a 
set of specifications of agents and castes.  
 System ::= {Agent-description | caste-description}+ 
Caste is one of the novel concepts in SLABS, which is a natural 
evolution of the concepts of classes in object-orientation. Castes 
can play a significant role in the requirements analysis and 
specification as well as design and implementation of multi-agent 
systems [29]. There is a most general caste, called AGENT, such 
that all castes are its sub-castes. The main body of a caste 
description contains a description of the structure of its states and 
actions, a description of its behaviour, and a description of its 
environment. The following gives the syntax of castes description 
in EBNF.  

 caste-description ::=  
  Caste name [ <= { caste-name / ,} ] [ instantiation ; ]  
   [ environment-description ; ] 
   [ structure-description ; ] [ behavior-description ; ] 
  end name 
It can also be equivalently represented as follows in a graphic form 
similar to schemas in Z [30]. 

 

 

 

 

 

The clause 'Caste C <= C1, C2, ..., Cn' specifies that caste C inherits 
the structure, behaviour and environment descriptions of  existing 
castes C1, C2, ..., Cn. When no inherited caste is given in a caste 
specification, it is by default a sub-caste of the predefined caste 
AGENT. Thus, a binary inheritance relation ≺  is defined on the 
castes C1 and C2, if C1 is specified as a sub-caste of C2. The 

inheritance relation is required to be a partial ordering on castes. 
Notice that, the inheritance relation is static in the sense that it 
does not change at run-time. 

The relationship between agents and castes is similar to what is 
between objects and classes. What is different is that an agent can 
join into a caste or quit from a caste at run-time. If an agent is an 
instance of a caste, it has all the structural, behaviour and 
environment descriptions given in the caste's specification. The 
following gives the syntax of agent descriptions in SLABS and its 
equivalent graphic form. 
 agent-description ::=  
  agent name [ : { caste-name / , } ]  [ instantiation ; ] 
   [ environment-description; ] 
   [ structure-description; ] [ behavior-description ]  
  end name 
 

 

 

 

 

When caste names are given in an agent description, the agent is 
an instance of the castes when it is created. If no caste name is 
given in an agent specification, the caste of the agent is by default 
AGENT. All the parameters in the specification of the caste must 
be instantiated. Moreover, it may have additional structural, 
behaviour and environment descriptions to extend its state space, 
to enhance its ability to take actions and to widen its view of the 
environment. 

We define that a multi-agent system consists of a finite set of 
agents {A1, A2, ..., An}. These agents belong to a partially ordered 
set of castes C1, C2, ..., Cm. Let tA C∈ denote that agent A belongs 
to caste C at time t. We require that for all agents A and castes C 
and C', for all times t, ' 't tA C C C A C∈ ∧ ⇒ ∈≺ .  

2.2 Environment 
The SLABS language enables software engineers to explicitly 
specify the environment of an agent as a subset of the agents in the 
system that may affect its behaviour. This is another fundamental 
difference between agents (castes) and objects (classes). The 
syntax for the description of environments is given below.  
  Environment-description ::=  
   ENVIRONMENT { ( agent-name | All: caste-name 
           | variable : caste-name ) / , }+ 
where an agent name indicates a specific agent in the system. 'All' 
means that all the agents of the caste have influence on its 
behaviour. As a template of agents, a caste may have parameters. 
The variables specified in the form of “identifier: class-name” in the 
environment description are parameters. Such an identifier can be 
used as an agent name in the behaviour description of the caste. It 
indicates an agent in the caste when instantiated. The instantiation 
clause gives the details about how the parameters are instantiated.  
 Instantiation ::= { variable := agent-name / , } + 

The environment of an agent is a subset of the agents in the 
system , 1 2{ , ,..., }A t nEnv A A A⊆ , which may change at run-time. Let 
EC be an environment description expression. Then, the meaning 

Visible state-variables and actions  
Invisible state-variables and actions  

Behaviour-specification  

Name <= castes (instantiation) 

Environment 
description 

Visible state-variables and actions  

Invisible state-variables and actions  

Behaviour-specification 

Name: castes (Instantiation) 

Environment 
description 
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a bt
EC of the environment expression EC at time t can be defined 

as follows. 

 a b { }tagent agent= ; (1) 

 a b: { | }ttAll Caste X X Caste= ∈ ; (2) 

 a b: { }ktx Caste A= ,  (3) 
where "x := Ak" is the instantiation of variable x when the agent 
joining the caste.  

2.3 State and Action Spaces 
In SLABS, the state space of an agent is described by a set of 
variables with keyword VAR. The set of actions is described by a 
set of identifiers with keyword ACTION. An action can have a 
number of parameters. An asterisk before the identifier indicates 
invisible variables and actions.  
 structure-description ::= 
  [ Var  { [ * ] identifier: type; }+ ]  
  [ Action { [*] action-declaration / ; }+] 
 action-declaration ::=  identifier | identifier ({ [ parameter:] type / , }+) 

2.4 Inheritance and Dynamic Caste 
As informally stated above, a caste can inherit from multiple 
super-castes. We now formally define the semantics of inheritance 
and agent’s dynamic joining a caste or retreat from a caste. Let C 
be a caste specified as follows. 
 Caste C <= C1(x11:=exp11, …, 

11nx := 
11nexp ), 

    …, Ck(xk1:=expk1, …, 
1knx := 

1knexp ) 
  ENVIRONMENT EC1, …, ECw; 
  VAR   *v1:T1, …, *vm:Tm; u1:S1, …, ul:Sl; 
  ACTION  *A1(p1), …, *As(ps); B1(q1), …, Bt(qt); 
  RULES  R1, R2, …, Rh 
 End C; 
Let SV(C) and SI(C) denote the visible and invisible state spaces of 
a caste C, respectively. We define SV(C) and SI(C) as follows.  

 SV(C) = {C.v1:T1, …, C.vm:Tm}∪ 
1

( )
k

V
x

x

S C
=
∪ . (4) 

 SI(C) = {C.u1:S1, …, C.uj:Sj}∪ 
1

( )
k

I
x

x

S C
=
∪ . (5) 

Let ΣV(C) and ΣI(C) denote the visible and invisible action spaces 
of caste C, respectively. Similar to state spaces, we define ΣV(C) 
and ΣI(C) as follows.  

 ΣV(C) = {C.A1(p1), …, C.As(ps)}∪ 
1

( )
k

V
x

x

C
=

∑∪ . (6) 

 ΣI(C) = {C.B1(q1), …, C.Bt(qt)}∪ 
1

( )
k

I
x

x

C
=

∑∪ . (7) 

Let RULE(C) denote the set of behaviour rules of caste C. We 
have that 

 RULE(C) = {R1, …, Rh} ∪ 
1

( )
k

x
x

RULE C
=
∪ . (8) 

Let ENV(C) denote the environment for caste C, we have that 

 ENV(C)= {EC1, …, ECw} ∪ 
1

( )
k

x
x

ENV C
=
∪ .  (9) 

Let agent A be a member of castes C1, C2, …, Cn at run-time t. Let 

,A tS  denote the state space of agent A at time t. Each state consists 
of two disjoint parts, the externally visible part and the internal 
part. The external part is visible for all agents in the system, while 
the internal part is not visible for any other agents in the system. 
Therefore, , , ,

V I
A t A t A tS S S= × , where ,

V
A tS  and ,

I
A tS  are the externally 

visible part and internal part of the state space, and defined as 
follows, respectively.  

 ,
V
A tS = 

1

( )
n

V
i

i

S C
=
∪ , and ,

I
A tS = 

1

( )
n

I
i

i

S C
=
∪ . (10) 

Let ,A tΣ  denote the set of actions that an agent can take at time t. 
An action can also be either externally visible or internal (hence 
externally invisible). Assume that an agent cannot take two actions 
at the same time, thus , , ,

V I
A t A t A tΣ = Σ ∪ Σ , where , ,

V I
A t A tΣ ∩ Σ = ∅ , 

,
V
A tΣ  and ,

I
A tΣ  are the sets of externally visible actions and internal 

actions, respectively. They are defined as follows.  

 ,
V
A tΣ = 

1

( )
n

V
i

i

C
=

∑∪ , and ,
I
A tΣ  = 

1

( )
n

I
i

i

C
=

∑∪ .  (11) 

The environment of agent A at run-time t, denoted by EnvA,t is 
defined as follows.  

 EnvA,t = 
1

( )
n

i t
i

EC EC ENV C
=

∈a b∪ .  (12) 

The set of rules that agent A must satisfy at time t is the set 
RULEA,t, which is defined as follows.  

 RULEA,t = 
1

( )
n

i
i

RULE C
=
∪ .  (13) 

Notice that, the value of the set ENVA,t depend on time t. for two 
reasons. First, the set of agents in a caste C may change when the 
agent joins into or retreats from a caste. Second, the agent A may 
join a caste or retreat from a caste so that the set {C1, …, Cn} 
changes from time to time. For the sake of simplicity, when there 
is no risk of confusion, we will omit the subscript t in the sequel.   

For example, consider the following specification.  
Caste Person; 
 ENV All: Persons; 
 VAR *Surname: String, *Name: String, *Birthday: DATE, 
   Nationality: String; 
 ACTION *Speak(String); 
 RULES  <r1>: [] |-> Speak(“Hello World”),   
   <r2>: [] |-> Speak(“My name is “ , Name, Surname) 
End Person; 
Caste OBU-Students <= Persons; 
 ENV  Tutor: OBU-Staff; 
 VAR  *Number: Integer;  
   Field: {Computing, Business} 
 ACTION *ChangeField(Field); 
 RULES <s1>: [] |-> ChangeField(NewField),  
      where NewField ≠Field; 
   <s2>: [ChangeField(NewField)] |-> !Field’=NewField, 
    if Tutor: [ApproveChangeField(Slef, NewField); 
End OBU-Students; 
Caste OBU-Staffs <= Persons; 
 ENV Tutee1, Tutee2: OBU-Students; 
 VAR *Number: Integer; 
   *Dept: {Computing, Math, Business} 
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 ACTION *ApproveChangeField(OBU-Students, Field); 
 RULES <st1> : [] |-> ApproveChangeField(St, NewField), 
    If ∃St∈OBU-Student: [ChangeField(NewField)], 
    Where St=Tutee1 or St=Tutee2 
End OBU-Staffs; 
The visible state variables of caste OBU-Students contains the 
following elements {Person.Surname: String, Person.Name: String, 
Person.Nationality: String, OBU-Students.Number: Integer}. The 
visible actions of the caste OBU-Staffs contains the following 
elements: {Person.Speak(String), OBU-Staffs. 
ApproveChangeField(OBU-Students, Field)}.  
An agent John initially crated as a member of Persons can join the 
caste OBU-Staffs a tutor in the department of business and obtain 
two additional state variables OBU-Staffs.Number and Dept, and 
one additional action OBU-Staff.ApproveChangeFields. It is also 
assigned with two tutees, say Harry and Nigel, as a part of it 
environment. A member of the OBU-Staffs caste, for example 
John, can join the OBU-Students. By doing so, the agent obtains 
two new state variables OBU-Students. Number and OBU-
Students.Field, one action OBU-Students. ChangeField, one 
environment agent Tutor, which must be instantiated when agent 
John join the caste, say Chris, as its tutor, and also two new 
behaviour rules <s1> and <s2>. When John quits from the OBU-
Students caste, his state space reduces by deleting the variables 
OBU-Students.Number and OBU-Students.Field. This does not 
affect his other parts of state space and action space. Similarly, 
John can also quit from the OBU-Staff caste.  

2.5 Behaviour  
Agents behave in real-time concurrently and autonomously. To 
capture the real-time features, an agent's behaviour is modelled by 
a set of sequences of events indexed by the time when the events 
happen.  

2.5.1 Runs and Time 
A run r of a multi-agent system is a mapping from time t to the set 

, ,
1

i i

n

A t A t
i

S
=

× Σ∏ . The behaviour of a multi-agent system is defined 

to be a set R of possible runs. Instead of defining a fixed set of 
time moments, the set of time moments are characterised by a 
collection of properties.  

Definition 1.  
Let T be a non-empty subset of real numbers. T is said to be a time 
index set, or simply the time, if 
1) Bounded in the past, i.e. 0 0. .( )t T t T t t∃ ∈ ∀ ∈ ≤ ;  (14) 
2) Unbounded in the future, i.e. ∀r∈R.∃t∈T.(t > r); (15) 
3) Uniformity, i.e. ∀ t1, t2, t3∈T. (t2 > t1  ⇒ t3 + t2 − t1 ∈ T).  (16) 
� 

The following lemma states that a time index set T can be 
characterised by two real numbers: the start time t0 and the time 
resolution ρ, where ρ≥0. Readers are referred to [28] for the proof 
of the lemma. 

Lemma 1.  
For all subsets T of real numbers that satisfy properties (14), (15) 
and (16), we have that either T={tn | tn = t0 + nρ, n=0, 1, 2, ... } for 
some positive real number ρ, or T={r | r∈R and r ≥ t0}. In the 
former case, we say that the time index set T is discrete, and in the 

latter case, we say that T is continuous and ρ is called the 
resolution of the time index set T. � 

For any given run r of the system, we say that a mapping h from T 
to , ,A t A tS × Σ  is the run of agent A in the context of r, if 

. ( ) ( )At T h t r t∀ ∈ = , where ( )Ar t  is the restriction of r(t) on 

, ,A t A tS × Σ . Let rA denote the run of agent A in the context of r, and 
RA ={rA | r∈R} denote the behaviour of agent A in the system.  

2.5.2 Assumptions 
We assume that a multi-agent system has the following properties.  

Instantaneous actions. We assume that actions are instantaneous, 
i.e. they take no time to complete.  

Silent moments. We assume that an agent may take no action at a 
time moment t. In such a case, we say that the agent is silent at 
time t. For the sake of convenience, we treat silence as a special 
action and use the symbol τ  to denote silence. Therefore, we 
assume that for all agents A, V

Aτ ∈Σ .  

Separability. We assume that the actions taken by an agent are 
separable, i.e. for all runs r, and all agents A, there exists a real 
number εr,A>0 such that ( )C

Ar t τ≠  implies that for all x T∈ , 

( )C
At x t r xε τ< ≤ + ⇒ = , where ( )C

Ar t  denotes the action taken 
by agent A at time moment t in the run r. Consequently, an agent 
can take at most a countable number of non-silent actions in its 
lifetime.  

Initial time and sleeping state. An agent can join the system at a 
time, say tinit,A, later than the system's start time. We say that the 
agent A is sleeping before time moment tinit,A. We use a special 
symbol AS⊥∉ to indicate such a state of an agent. Of course, we 
require that if an agent is sleeping, it will take no action but silence, 
i.e. ( ). ( ) ( )S C

A At T r t r t τ∀ ∈ =⊥⇒ = , where ( )S
Ar t denotes agent A's 

state at time moment t in the run r. The initial time tinit,A of an agent 
A in a run r can be formally defined as the time moment t∈T that 

( ) .( ( ) )S S
A Ar t t T t t r t′ ′≠⊥ ∧∀ ∈ < ⇒ =⊥ .  

2.5.3 Agent's View of the Environment 
The global state Sg of the system at any particular time moment t 

belongs to the set , ,
1

i i

n

A t A t
i

S
=

× Σ∏ . However, each agent A can view 

the externally visible states and actions of the agents in ,A tEnv . In 
other words, an agent A can only view the part of Sg  in the 
space

,

, ,
A t

V V
X t X t

X Evn

S
∈

× Σ∏ . Agent A's view of the system state at a 

time moment t is defined as a mapping ViewA,t from global state Sg 

∈ , ,
1

i i

n

A t A t
i

S
=

× Σ∏  to a value in
,

, ,
A t

V V
X t X t

X Evn

S
∈

× Σ∏  as follows. 

 ( ) 11 1 1 1, , ,..., , , , ,..., , '
k kA n n n i i iView s s c s s c s c s c′ ′ ′=  (17) 

where { }1 2, , ,...,
kA t i i iEnv A A A= , ui v=  implies that 

ui vs s= , 

ui vc c′ =  if 
v

V
v Ac ∈ Σ , and 

ui
c τ′ =  if 

v

I
v Ac ∈ Σ . Because an agent's 

view is only a part of the system's global state, two different global 
states become equivalent from its view. The following formally 
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defines the relation.  

 
1

,
i i

n

A A
i

x y S
=

∀ ∈ × Σ∏ .( Ax y≈  ⇔ ViewA(x)=ViewA(y)).  (18) 

It is easy to see that the binary relation A≈  is an equivalence 
relation.  

2.5.4 Execution History 
Although an agent may not be able to distinguish two global states, 
the histories of the runs leading to states may be different. An 
intelligent agent may decide to take different actions according to 
the history rather than only depending on the visible global state. 
Let t be any given time moment. The history of a run r up to t, 
written as r↓t, is a mapping that is the restriction of r to the subset 
{ }x t x T≤ ∈ of T.  The history of a run up to t in the view of an 

agent A, denoted by ViewA(r↓t), is the mapping from the subset 
{ }x t x T≤ ∈  of time moments to its views of the system's states 
in the run r. It can be defined as follows.  

 ( ) ,. ( ( ))A A uView r t u View r uλ↓ = , for all u T∈ and u t≤ . (19) 

Similarly, we define ViewA(r) to be an agent A's view of a run r, 
and ViewA(rB) to be agent A's view of agent B's behaviour in a run 
r. The equivalence relation defined on the state space can be 
extended to histories and runs as follows. 
 1 2 1 2( ) ( )A A Ar r View r View r≈ ⇔ =  (20) 

 1 1 2 2 1 1 2 2( ) ( ) ( ) ( )A A Ar t r t View r t View r t↓ ≈ ↓ ⇔ ↓ = ↓  (21) 

Before we finish this section, we introduce some further notation. 
Let A be any given agent in a multi-agent system. Let c1, ..., cn , ... 
∈ { }A τΣ − be the sequence of non-silent actions taken by agent A 
in a run r and t1, t2, ..., tn, ...∈T are the times of the actions, i.e. 

( )C
A i ir t c=  for all i =1, 2, ..., n, .... At a time moment t∈T, we say 

that cn is agent A's current action, and cn+1 the next action, if 
1n nt t t +≤ < . We write  

 Current(rA↓t)=<tn, sn, cn> ,  
 Next(rA↓t)=<tn+1, sn+1, cn+1>,  and  
 Events(rA↓t)=<<t1, s1, c1>, ..., <tn, sn, cn>>.  

2.6 Specification of Behaviour 
2.6.1 Patterns of Behaviours 
A pattern describes the behaviour of an agent by a sequence of 
observable state changes and observable actions. A pattern is 
written in the form of [p1, p2, ..., pn] where n≥0. Table 2 gives the 
meanings of the patterns.  
 pattern ::= [ { event / , } ]  [ || constraint ] 
 event ::= [ time-stamp: ]  [ action ] [ ! state-assertion ]   
 action ::= atomic-pattern [ ^ arithmetic-expression ] 
 atomic-pattern ::= $ | ~ | action-variable  
  | action-identifier [ ( { arithmetic-expression / , } ) ]  
 time-stamp ::= arithmetic-expression  
where a constraint is a first order predicate.  

Table 2. Meanings of the patterns 
Pattern Meaning 

$ The wild card, which matches with all actions 
∼ The silence event 

X  Action  variable, which matches an action 
P^k A sequence of k events that match pattern  P 

! Predicate The state of the agent satisfies the predicate 

Act (a1, ...ak)
An action Act that takes place with parameters 
match (a1, ...ak) 

[p1,..., pn] 
The previous sequence of events match the 
patterns p1, ..., pn  

Formally, Let p be a pattern. We write : |AB r t p↓ = to denote that 
from agent B's viewpoint the behaviour of an agent A in a run r 
matches the pattern p at time moment t. The relationship |= can be 
defined inductively as follows.  

Definition 2.  

We write : |AB r t p↓ = , if there is an assignment α such that 

: |AB r t pα↓ = , which is inductively defined as follows. 

  B:rA↓t |=α [$], for all agents A, B, runs r and time moments t;   

 B:rA↓t |=α [τ ], if ViewB(rA↓t)(t) = τ, 

 B:rA↓t |=α [ x ], if Current(ViewB(rA↓t)) = α(x); 

 B:rA↓t |=α [tx: C(e1,...,en) ! pred(s)], if Current(ViewB(rA↓t)) = <tc, 
S, C(α(e1),...,α(en))>, S satisfies the predicate α(pred(s)), α(tx)=tc.  

 B:rA↓t |=α [p^k ], if Events(ViewB(rA↓t))=<...., <t1, s1, c1>, <t2, s2, 
c2>, ..., <tv, sv, cv>>, where v = α(k), and for all i=1,2,..., v, 
B:rA↓ti |= α [ p ]; 

 B:rA↓t |=α [p1, p2, ..., pv ], if Events(ViewB(rA↓t))=<..., <t1, s1, c1>, 
<t2, s2, c2>, ..., <tv, sv, cv>>, and for all i=1,2,..., v, B:rA↓ti |= α 
[ pi ].   

 B:rA↓t |=α  (p || Constraint) , if B:rA↓t |=α  p and α(Constraint) is 
true.      � 

Informally, B:rA↓t |=α p means that agent A's behaviour in a run r 
matches a pattern p at time moment t from an agent B's point of 
view under assignment α. An assignment α for a set X of variables 
is a mapping that assigns values to variables in X.   

2.6.2 Scenarios of Environment 
The use of scenarios in agent oriented analysis and design has been 
proposed by a number of researchers, for example [21, 31,19]. We 
define scenario as a set of typical combinations of the behaviours 
of related agents in the system. In addition to the pattern of 
individual agents' behaviour, SLABS also provides facilities to 
describe global situations of the whole system. The syntax of 
scenarios is given below. 
 Scenario ::=  Agent-Name : pattern | atomic-predicate  
   | ∃ [ arithmetic-exp ] Agent-Var ∈ Caste-Name: Pattern   
   | ∀ Agent-Var ∈ Caste-Name: Pattern  
   | Scenario & Scenario | Scenario ∨ Scenario | ~ Scenario  
An atomic predicate in a scenario can be an expression in one of 
the following forms:  
 Agent∈Caste, the agent is in the caste at that time; 
 AgentA=AgentB (or AgentA≠AgentB),  the identifiers indicates 
the same (or different) agent; 

 A set relation expression, which may contain expressions in the 
form of {X∈Caste | X : Pattern}, which is the set of agents 
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whose behaviour matches the pattern; or 
 An arithmetic relation, which may contain an expression in the 
form of µX∈Caste.Pattern, which is the number of agents in the 
caste whose behaviour matches the pattern.   

The semantics of scenario descriptions are given in Table 3.  

Table 3. Semantics of scenario descriptions 
Scenario Meaning 

A: P The situation when agent A's behaviour matches 
pattern P 

∀X∈C: P The situation when the behaviours of all agents in 
caste C match pattern P 

∃[m]X∈C: P 
The situation when there exists at least m agents in 
caste C whose behaviour matches pattern P where 
the default value of the optional expression m is 1

S1 & S2 
The situation when both scenario S1 and scenario 
S2 are true 

S1 ∨ S2 
The situation when either scenario S1 or scenario 
S2 or both are true 

¬ S The situation when scenario S is not true 

The following are two examples of scenarios.   
(1)  ∃ p∈Parties: t2000: [nominate-president(Bush)] || t2000=(March/2000). 
It describes the situation that at least one agent in the caste called 
Parties took the action nominate-president(Bush) at the time of March 
2000.  
(2)  (µ x∈ Voter: [ vote(Bush) ] > µ x∈ Voter: [vote(Gore)])   
It describes the situation that there are more agents in the caste 
Voter who took the action of vote(Bush) than those in the caste who 
took the action of vote(Gore).  

Let Sc be a scenario. We write : |A r t Sc↓ =  to denote that from 
agent A's point of view, the scenario Sc occurs at time moment t in 
a run r.  

Definition 3.  
From an agent A's point of view, a scenario Sc occurs at time 
moment t in a run r, iff : |A r t Sc↓ = , which is inductively 
defined as follows. 

 : | : : |BA r t B p A r t p↓ = ⇔ ↓ = ; (22) 

 1 2 1 2: | : |  and : |A r t Sc Sc A r t Sc A r t Sc↓ = ∧ ⇔ ↓ = ↓ = ; (23) 

 : | : |  is not trueA r t Sc A r t Sc↓ = ¬ ⇔ ↓ = ; (24) 
 : | .( : ) : | ,  for all  xA r t x G x Sc A r t Sc x G↓ = ∀ ∈ ⇔ ↓ = ∈ ; (25) 

 : | .( : ) : | ,  for some  xA r t x G x Sc A r t Sc x G↓ = ∃ ∈ ⇔ ↓ = ∈ (26) 

� 

2.6.3 Rules 
In SLABS, an agent's behaviour is defined by a set of transition 
rules to describe its responses to environment scenarios.  
 Behaviour-rule ::=  
 [<rule-name>] pattern|[ prob]−>event, [Scenario] [where pre-cond] ; 
In a behaviour rule, the pattern on the left-hand-side of the −> 
symbol describes the pattern of the agent's previous behaviour. 
The scenario describes the situation in the environment, which 
specifies the behaviours of the agents in its environment. The 

where-clause is the pre-condition of the action to be taken by the 
agent. The event on the right-hand-side of −> symbol is the action 
to be taken when the scenario happens and if the pre-condition is 
satisfied. The agent may have a non-deterministic behaviour. The 
expression prob in a behaviour rule is an expression that defines 
the probability for the agent to take the specified action on the 
scenario. SLABS also allows specifications of non-deterministic 
behaviours without giving the probability distribution. In such 
cases, the probability expression is omitted. It means that the 
probability is greater than 0 and less than or equal to 1.  

Let R be the set of runs in a formal model of agent-based system. 
To define the semantics of rules, we first define a probabilistic 
space as follows.  

For each scenario Sc, agent A, and constraint Cn(r, t) → {tt, ff), we 
define R↵(Sc, A, Cn) as a subset of histories H={r↓t | r∈R, t∈T} 
such that  

R↵(Sc, A, Cn) = { r↓t | r∈R, t∈T, : |A r t Sc↓ = , Cn(r, t) } (27) 

Let *H  be the set that contains H and all the subsets in the form of 
R↵(Sc, A, Cn) and closed under set complementary, finite 
intersections and countable unions. Therefore, *H  constitutes a 
σ−field. A probabilistic space can then be constructed over the 
σ−field *H  by associating a probabilistic distribution over *H . 
Let Pr(R↵(Sc, A, Cn) be the probability that the scenario Sc with 
constraint Cn occurs from agent A's point of view. Notice that 
agent A's behaviour matches a pattern p can be expressed 
equivalently as a scenario (A:p)A.  The order pair <R, Pr> is called 
the probabilistic model of the agent-based system.  

Definition 4.  
Let RA= 'p |(exp)→e if Sc where Cn' be a rule for agent A, where 
Sc is a scenario and Cn is a constraint. We say that in a 
probabilistic agent-based system <R, Pr> the agent A's behaviours 
satisfy the rule RA and write <R, Pr>: A |= RA, if  
 Pr(R↵(A:p#e, A, True) | R↵(Sc ^ (A:p), A, Cn)  ) = exp,  (28) 
where p#e = [p1, p2, ..., pn, e], if p = [p1, p2, ..., pn].   � 

3. EXAMPLE 
A number of examples of intelligent agents have been specified in 
SLABS in our previous papers, which include the Mae’s personal 
assistant Maxim [27], Ants [32], a simple communication protocol, 
speech-act [28] and the evolutionary multi-agent ecosystem 
Amalthaea [35], etc. In this paper, we use an example of a 
distributed algorithm to demonstrate how SLABS supports the 
modularity and composability of formal specifications.  
The algorithm is for synchronisation of the accesses to critical 
regions in distributed systems. The following is the original 
informal specification of the algorithm given in the textbook [33] 
(Page 267).  

When a process wants to enter a critical region, it builds 
message containing the name of the critical region it wants to 
enter, its process number, and the current time. It then sends 
the message to all other processes. The sending of messages is 
assumed to be reliable; that is, every message is 
acknowledged. Reliable group communication if available, can 
be used instead of individual messages.  
When a process receives a request message from another 
process, the action it takes depends on its state with respect to 
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the critical region named in the message. Three cases have to 
be distinguished: 
1. If the receiver is not in the critical region and does not want 

to enter it, it send back an OK message to the sender; 
2. If the receiver is already in the critical region, it does not 

reply. Instead, it queues the request. 
3. If the receiver wants to enter the critical region but has not 

yet done so, it compares the timestamp in the incoming 
message with the one contained in the message that it has 
sent everyone. The lowest one wins. If the incoming message 
is lower, the receiver sends back an OK message. If its own 
message has a lower timestamp, the receiver queues the 
incoming request and send nothing. 

After sending out requests asking permission to enter a critical 
region, a process sits back and waits until everyone else has 
given permission. As soon as all the permissions are in, it may 
enter the critical region. When it exits the critical region, it 
sends OK message to all processes on its queue and deletes 
them all from the queue.  

It is assumed that processes are executed in a distributed system 
concurrently. The communications between the processes are 
reliable. They all use the synchronisation algorithm to access 
shared resources as critical regions. Regarding each process as an 
agent, this algorithm can be easily translated into SLABS’ formal 
specification as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The specification of the algorithm is generic. It does not over 

specify the specific feature of the critical region. The issues like 
when and how an agent wants to use the region and when to 
finishes the uses of the resource are left to the specification of the 
agent. For a specific resource, a sub-caste can be specified to make 
it a critical region. For example, a shared printer can be controlled 
by the caste specified as follows. 

 

 

 

Agents that use the printer can be specified as an instance of the 
caste PrinterUsers or dynamically joint the caste. Similarly, other 
critical regions can be specified through other sub-castes so that 
their uses are synchronised. The properties of the algorithms can 
be deducted from the generic specification, which hold for all sub-
castes. Moreover, different synchronisation algorithms can be 
specified and used by the same agent to access different shared 
recourses. For example, suppose the token ring synchronisation 
algorithm is specified by a caste TokenRingUsers, and the access 
of a scanner is controlled by the algorithm, i.e. a caste 
ScannerUsers is specified as a sub-caste of TokenRingUsers. An 
agent A that uses both the printer and the scanner at the same time, 
can be declared as an instance of both castes of PrinterUsers and 
ScannerUsers.  

This example shows that specifications can be modularised by 
using caste with parameters and composed through sub-castes and 
instantiations and used through instances, i.e. agents.  

4. CONCLUSION 
In this paper, we presented the formal specification language 
SLABS for multi-agent systems. The SLABS language integrates a 
number of novel language facilities that support the development 
of agent-based systems, especially the specification of such 
systems. Among these facilities, the notion of caste plays a crucial 
role. A caste represents a set of agents in a multi-agent system that 
have same capability of performing certain tasks and have same 
behaviour characteristics. Such common capability and behaviour 
can be the capability of speaking a language, using an ontology, 
following a communication and/or collaboration protocol, and so 
on. It is a notion that generalises the notion of types in data type 
and the notion of classes in object-oriented paradigm. This facility 
can be effectively used to specify or implement a number of 
notions proposed in agent-oriented methodologies, such as the 
notions of role, team, agent society, organisation, and so on. For 
example, a caste can be the set of agents playing the same role in 
the system. However, agents of the same caste can also play 
different roles especially when agents form teams dynamically and 
determine their roles at run time. Based on the caste facility, a 
number of other facilities in SLABS are defined. For example, the 
environment of an agent can be described as the agents of certain 
castes. A global scenario of a multi-agent system can be described 
as the patterns of the behaviours of the agents of a certain caste. 
The example systems and features of agent-based systems 
specified in SLABS have shown that these facilities are powerful 
and useful for the formal specification of agents in various models 
and theories in a modular and composable way.  

4.1 Related Work 
The model of software agents used in this paper is closely related 
to the work by Lesperance et al [34], which also focused on the 

CRegionUsers 

VAR Region: String 
ACTION  
 Request(RName, AName: String, TimeStamp:Integer); 
 PermissionOK(RName, AName: String, timestamp:Int)

VAR  State: {Want, InRegion, Waiting, Finishing, Free}; 
 Queue: List of (RName, AName: String, TStamp:Int); 
 RequestTime: Int 

 [!State=Want] |−> t: Request(Region, MyName, t)  
  ! State’=Waiting & RequestTime’= t; 
[!State=Free] |−> PermissionOK(Region, AN, TStamp); 
   if ∃A: CRegionUsers.[Request(Region, AN, TStamp)] 
[!State= InRegion]  
 |−> Queue’=Queue#( Region, AN, TStamp); 

if ∃A: CRegionUsers.[Request(Region, AN, TStamp)] 
[!State=Waiting & RequestTime≥TStamp]  
 |−> PermissionOK(Region, AN, Tstamp); 
   if ∃A: CRegionUsers.[Request(Region, AN, TStamp)] 
[!State=Waiting & RequestTime<TStamp]  
 |−> Queue’=Queue#( Region, AN, Tstamp); 

if ∃A: CRegionUsers.[Request(Region, AN, TStamp)] 
[!State=Waiting] |−> !State’=InRegion;  
  if ∀A: CRegionUsers.[ PermissionOK(Region,  
    MyName, RequestTime), $^k] 
[!State=Finishing]  
 |−>  ForAll (Region, AN, TStamp) in Queue Do  
   PermissionOK(Region, AN, TStamp) End 
   !State’= Free & Queue = <> 

All: CRegionUsers 

PrinterUsers<=CRegionUsers  
(Region:=’Printer’, State:=Free) 
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actions of agents. However, there are two significant differences. 
Firstly, they consider objects and agents are different types of 
entities, while we consider them as the same type of encapsulated 
computational entities. As argued in [28], we consider objects as a 
degenerate form of agents that obey simple behaviour rules and 
open to its environment so that everything in the environment can 
affect its behaviour. As a consequence of regarding objects as 
deferent entities from agents, they allow an agent to change the 
state of objects in the environment while we only allow an agent to 
modify its own state. Secondly, the most important difference is, 
of course, there is no notion of caste or any similar facility in their 
system.  

The notion of groups of agents has been used in a number of 
researches on the multimodality logic of rationale agents, such as 
in Wooldridge's work [11], etc. However, such notion of groups of 
agents is significantly different from the notion of caste, because 
there is neither inheritance relationship between the groups, nor 
dynamic instance relationship between an agent and a group. Their 
only relationship is the membership relationship.  

Many agent development systems are based on object-oriented 
programming. Hence, there is a native and primitive form of castes 
as classes in OO paradigm. However, although agents can be 
regarded as evolved from object and caste as evolved from class, 
there are significant differences between agents and objects, and 
thus between caste and class. Therefore, the new notion deserves a 
new name.  

In our previous papers [27~29], an agent's membership to a caste 
is statically determined by agent description. Static membership 
has a number of advantages, especially its simplicity and easiness 
to prove the properties of agents. Examples have shown that 
introducing some state variables to represent the role that an agent 
is playing can specify dynamic team formation [29]. In this paper, 
we revised the notion of caste to allow a dynamic membership 
facility in order to specify and implement dynamic team formation. 
The formal and informal definitions of the language SLABS given 
in this paper supersedes our previous ones. An advantage of this 
approach is that the dynamic formation of a team can be explicitly 
specified. It is natural to specify the dynamic process of evolution 
in a multi-agent system [35].  

Another design decision that we faced in the design of SLABS was 
whether we should allow redefinition of behaviour rules in the 
specification of sub-castes. An advantage of disabling redefinition 
is that provable properties of a supper caste are inherited by all 
sub-castes. The example given in this paper shows that it enables 
composable modular specifications.  

4.2 Further Work 
There are a number of open problems that need further 
investigation. Although the language facilities in SLABS, such as 
caste and scenario, were first introduced as a specification facility, 
we believe that they can be easily adopted in an agent-oriented 
programming language for the implementation of multi-agent 
systems. How to implement these facilities is an important issue in 
the design and implementation of agent-oriented programming 
languages.  

The design of SLABS is aimed to support as many agent-oriented 
methodologies as possible. How to link from such methodologies 
to formal specifications in SLABS deserves further investigation. 
We are currently working on tools and graphic notations to support 

the development of formal specifications in SLABS. In [35], a 
process and a diagrammatic notation for modelling multi-agent 
systems are proposed so that formal specifications in SLABS can 
be derived from models of multi-agent systems represented in 
diagrams.   
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