A Formal Specification Language for Agent-Oriented Software Engineering

Hong Zhu
Department of Computing, School of Technology, Oxford Brookes University
Wheatley Campus, Oxford OX33 1HX, UK. Tel.: ++44 1865 484580, Email: hzhu@brookes.ac.uk

ABSTRACT

One of the most appealing features of agent technology is its
natural way to modularise complex systems in terms of multiple
interacting autonomous components. This feature is supported by
the language facility castes in the formal specification language
SLABS, which is designed for modular and composable
specification of multi-agent systems. The paper reports the syntax
and semantics of the language, and illustrates its style of formal
specification by a distributed synchronisation algorithm.

Keywords
Forma specification language, Multiagent Systems, Scenario,
Software Agents, Castes

1. INTRODUCTION

In recent years, agent technology has been applied to more and
more critical application areas such as telecommunications [1],
space adventure [2], power grid control, military [3], etc. to
provide viable solutions to the problems that was unable to be
solved satisfactorily by other existing techniques. It is also clearly
demonstrated that agent technology is particularly suitable to solve
problems related to web-based applications such as e-commerce
and web search engines [4]. However, developing agent-based
systems is extremely difficult because the dynamic behaviours of
agent-based systems are difficult to specify, anayse, verify and
validate. Being autonomous, proactive and adaptive, an agent-
based system may demonstrate emergent behaviours that are hard
to predict, difficult to design, and expensive to test. An early
incident of software failure attributed to autonomous agents in
particular is the crash of Air France's Airbus 320 at an air show in
June 1988 [5]. Airbus 320 was the first fly-by-wire passenger
aircraft in the world. In other words, an autonomous agent controls
the aircraft. The incident was caused by a conflict between the
human pilot's instruction and the autonomous control by the
software. While the pilot intended to fly over the airport in the air
show, the fly-by-wire control software seems to have instructed
the aircraft to land, which was believed to be the cause of the
accident [6].

The new features of agent-based systems demand new methods for
the specification of agent behaviours and for the verification and
validation of their properties to enable software engineers to
develop reliable and trustworthy agent-based systems. It has been
recognised that the lack of rigour is one of the major factors
hampering the wide-scale adoption of agent technology [7]. On the
other hand, the modularity inherent in multi-agent systems can
offer a new approach to decomposing complicated formal
specifications into composable modular components.

The past few years have seen increasing research interests in
agent-oriented software development methodology. Existing work
fals into three main classes. The first is towards the theoretical
foundations for understanding agent-based systems. Much work
has been focused on modelling and reasoning agents rational

behaviour by introducing modalities for belief, desire and intention,
eg. [8, 9, 10, 11]. Game theory has aso found its position in the
formalisation of agent models, e.g. [12]. A great number of formal
models of agents have been proposed and investigated in the
literature; see e.g. [13, 14]. Most of them are based on an internal
mental state model of agents, yet some are based on amodel of the
external social behaviours of collaborative agents, eg. [15].
Although these formal models of agents significantly improved
our understanding of agent-based systems, they do not
immediately facilitate the development of agent-based systems. As
pointed out in [16], a specification method based on a specific
model of agents may result in the existence of certain agent theory
and systems that do not match the concept in the specification
formalism. Moreover, temporal logics, particularly when
combined with modalities for belief, desire, etc., can be very
complex. The second group of researches is on the development
process and development methods for engineering agent-based
systems, see e.g. [17, 18, 19, 20, 21]. These works mostly focused
on diagrammatic notations that support the analysis and design of
multi-agent systems. Some of the notations extend object-oriented
methods and notations such as UML. Some introduce new models
and new diagrammatic notations. How such diagrammatic
notations are related to the logic and formal models of agents
remains an open problem. The third group consists of the
researches on the language facilities and features that support the
formal specification and verification of agent-based systems in a
software engineering context, athough there is little such work
reported in the literature [22]. The use of existing forma
specification languages, such as Z, has aso been explored to
specify agent architecture [23] and concepts [24, 25]. Despite the
large number of publications on agents in the literature, we are
lack of researches on language facilities that support the
development of large-scale complicated multi-agent systems. In
particular, we are lack of language facilities to explicitly specify
the environment of agents and agent-based systems although it is
widely recognised that an important characteristic of agentsis that
they are entities situated (embedded) in a particular environment
[26]. We are lack of facilities that can clearly state how agents
behaviours are related to the environment. We are lack of language
facilities that enable us to maximise the power of the way that
multi-agent systems modularise complex systems into cooperative
autonomous components. Addressing these problems, in the past 3
years we have been searching for language facilities to support the
analysis, specification, design and implementation of agent-based
systems in the context of software engineering. Some of the results
have been incorporated in the design of a formal specification
language called SLABS [27, 28].

In this paper, we report the main features of the language SLABS
and demonstrate its uses in the development of multi-agent
systems. The remainder of the paper is organised as follows.
Section 2 defines the syntax and semantics of the language.
Section 3 illustrates SLABS' style of specification by an example.
Section 4 concludes that paper with discussions on related work

H. Zhu

3/25/2003

and future work.

2. THE LANGUAGE SLABS

The meta-language used to define the syntax is EBNF; see Table 1.

In a syntax definition, meta-symbols are in bold font such as ::=.
Terminals are in italic font such as Var. Non-terminals are in normal
font such as Agent-Description.

Table 1. The meta-symbolsin EBNF

Name Symbol M eans
Definition = |A =B meansthat A is defined asB.
Concatenation AB meansthat A is followed by B.
Optional [1T [[A]meansthat A isoptional.
Choice | A | B meanseither A or B.

{ A} meansthat A may appear any times
including zero times or more times.

{ A/ B} means asequence of A

Repetition { 1}

\'?Vmet't'c;rr] ator { I } |separated by B, where the number of A's
P can be zero or more.

Positive { ¥ { A’} means that A may appear at least
repetition once.

Parenthesis () |They areused to change preference.

2.1 Agentsand Castes
The specification of a multi-agent system in SLABS consists of a
set of specifications of agents and castes.

System ::= {Agent-description | caste-description}*
Caste is one of the novel concepts in SLABS, which is a natural
evolution of the concepts of classes in object-orientation. Castes
can play a significant role in the requirements anaysis and
specification as well as design and implementation of multi-agent
systems [29]. There is a most genera caste, called AGENT, such
that al castes are its sub-castes. The main body of a caste
description contains a description of the structure of its states and
actions, a description of its behaviour, and a description of its
environment. The following gives the syntax of castes description
in EBNF.

caste-description ::=
Caste name [<= { caste-name / ,}] [instantiation ;]
[environment-description ;]
[structure-description ;] [behavior-description ;]
end name

It can also be equivaently represented as follows in a graphic form
similar to schemasin Z [30].

Name <= castes (instantiation)
rVisible state-variables and actions

" Invisible state-variables and actions

Environment
description
1L

Behaviour-specification

The clause 'Caste C <= C,, C,, ..., C,)' specifiesthat caste C inherits
the structure, behaviour and environment descriptions of existing
castes Cy, C,, ..., C. When no inherited caste is given in a caste
specification, it is by default a sub-caste of the predefined caste
AGENT. Thus, a binary inheritance relation < is defined on the
castes C; and C,, if C; is specified as a sub-caste of C,. The

inheritance relation is required to be a partial ordering on castes.
Notice that, the inheritance relation is static in the sense that it
does not change at run-time.

The relationship between agents and castes is similar to what is
between objects and classes. What is different is that an agent can
join into a caste or quit from a caste at run-time. If an agent is an
instance of a caste, it has al the structural, behaviour and
environment descriptions given in the caste's specification. The
following gives the syntax of agent descriptionsin SLABS and its
equivalent graphic form.

agent-description ::=
agent name [: { caste-name/, }] [instantiation ;]
[environment-description;]
[structure-description;] [behavior-description]
end name
Name: castes (Instantiation)

Visible state-variables and actions

Invisible state-variables and actions

Environment
description

When caste names are given in an agent description, the agent is
an instance of the castes when it is created. If no caste name is
given in an agent specification, the caste of the agent is by default
AGENT. All the parameters in the specification of the caste must
be instantiated. Moreover, it may have additiona structural,
behaviour and environment descriptions to extend its state space,
to enhance its ability to take actions and to widen its view of the
environment.

Behaviour-specification

We define that a multi-agent system consists of a finite set of
agents { Ay, Ay, ..., A}. These agents belong to a partially ordered
set of castesCy, C,, ..., Cr,. Let Ag, C denote that agent A belongs

to caste C at time t. We require that for all agents A and castes C
and C', for al timest, A, CAC<C'= Ag, C'.

2.2 Environment

The SLABS language enables software engineers to explicitly
specify the environment of an agent as a subset of the agentsin the
system that may affect its behaviour. This is another fundamental
difference between agents (castes) and objects (classes). The
syntax for the description of environmentsis given below.

Environment-description ::=
ENVIRONMENT { (agent-name | All: caste-name
| variable : caste-name)/, }*

where an agent name indicates a specific agent in the system. "All'
means that al the agents of the caste have influence on its
behaviour. As a template of agents, a caste may have parameters.
The variables specified in the form of “identifier: class-name” in the
environment description are parameters. Such an identifier can be
used as an agent name in the behaviour description of the caste. It
indicates an agent in the caste when instantiated. The instantiation
clause gives the details about how the parameters are instantiated.

Instantiation ::= { variable := agent-name / , }*

The environment of an agent is a subset of the agents in the
system Env,, < {A,A,,...,A} , which may change at run-time. Let

EC be an environment description expression. Then, the meaning

H. Zhu

3/25/2003

[EC], of the environment expression EC at time t can be defined

asfollows.
[agent], ={agent} ; 1)
[Al :Caste], ={X | X &, Caste} ; ©)
[x:Caste], ={A} , ©)

where "x := A" is the instantiation of variable x when the agent
joining the caste.

2.3 Stateand Action Spaces

In SLABS, the state space of an agent is described by a set of
variables with keyword VAR. The set of actions is described by a
set of identifiers with keyword ACTION. An action can have a
number of parameters. An asterisk before the identifier indicates
invisible variables and actions.

structure-description ::=
[Var {[*] identifier: type; }*]
[Action { [*] action-declaration / ; }*]
action-declaration ::= identifier | identifier ({ [parameter:] type /, }*)

2.4 Inheritance and Dynamic Caste

As informally stated above, a caste can inherit from multiple
super-castes. We now formally define the semantics of inheritance
and agent’s dynamic joining a caste or retreat from a caste. Let C
be a caste specified as follows.
Caste C <= Cy(X11:=€XP11, -y Xy = XPy,)
cooy Gl =X, ooy Xy 1= EXP,)
ENVIRONMENT EC,, ..., ECy;

VAR Ty e, Ve T USy, <o, WS
ACTION *Al(pl)l teny *As(ps)v Bl(ql)l teny B[(Q[)v
RULES RyR, ... R,

End C;

Let S/(C) and S(C) denote the visible and invisible state spaces of
acaste C, respectively. We define S'(C) and S(C) as follows.

S(C) = {CwvyTy, ..., CV T U OSV (c). (4)
S(C)={CuS,Cuy:Stu [JS'(C). (5)

Let £Y(C) and £'(C) denote the visible and invisible action spaces
of caste C, respectively. Similar to state spaces, we define =Y(C)
and ='(C) asfollows.

Y(C) ={CApY), ..., CA(pI}U UZV (C). (6)
2/(C) ={CBy(), ..., C.B(a)} L_Jz'(cx). @)

Let RULE(C) denote the set of behaviour rules of caste C. We
have that

k
RULE(C) ={Ry, ..., R} U [JRULE(C,). (8)
x=1
Let ENV(C) denote the environment for caste C, we have that
k
ENV(C)={EC;, ..., EC,} v [JENV(C)) . 9)
x=1

Let agent A be amember of castes C,, C,, ..., C, at run-timet. Let

S, denote the state space of agent A at time t. Each state consists

of two digoint parts, the externally visible part and the internal
part. The externa part is visible for all agents in the system, while
the interna part is not visible for any other agents in the system.

Therefore, S,, = S{, xS, , where S;, and S, are the externally

visible part and internal part of the state space, and defined as
follows, respectively.

5= Us'©).ad s, = s ©). (10

Let ,, denote the set of actions that an agent can take at time t.

An action can aso be either externally visible or interna (hence

externaly invisible). Assume that an agent cannot take two actions

a the same time, thusx,, =%}, U, , where £y, "X}, =T,

Ty, and T}, arethe sets of externaly visible actions and internal
actions, respectively. They are defined as follows.

== Ur(©) a5, = (J3'(©). (1)

The environment of agent A at run-time t, denoted by Envy; is
defined as follows.

Enva, = | JIEC|EC €ENV(C)],. (12)
i=1
The set of rules that agent A must satisfy at time t is the set
RULE,,;, which is defined as follows.

RULEA, = | JRULE(C). (13)
i=1

Notice that, the value of the set ENV,, depend on time t. for two
reasons. First, the set of agents in a caste C may change when the
agent joins into or retreats from a caste. Second, the agent A may
join a caste or retreat from a caste so that the set {Cy, ..., Ci}
changes from time to time. For the sake of simplicity, when there
isno risk of confusion, we will omit the subscript t in the sequel.

For example, consider the following specification.

Caste Person;
ENV All: Persons;
VAR *Surname: String, *Name: String, *Birthday: DATE,
Nationality: String;
ACTION * Spesk(String);
RULES <r1>:[] |-> Speak(“Hello World”"),
<r2>:[] |-> Speak(“My nameis*“ , Name, Surname)
End Person;
Caste OBU-Students <= Persons,
ENV Tutor: OBU-Staff;
VAR *Number: Integer;
Field: { Computing, Business}
ACTION *ChangeField(Field);
RULES <sl>:[] |-> ChangeField(NewField),
where NewField #Field;
<s2>: [ChangeField(NewField)] |-> !Field' =NewField,
if Tutor: [ApproveChangeField(Slef, NewField);
End OBU-Students,
Caste OBU-Staffs <= Persons,
ENV Tuteel, Tutee2: OBU-Students,
VAR *Number: Integer;
*Dept: { Computing, Math, Business}

H. Zhu

3/25/2003

ACTION * ApproveChangeField(OBU-Students, Field);
RULES <st1>: [] |-> ApproveChangeField(St, NewField),
If 3Ste OBU-Student: [ChangeField(NewField)],
Where St=Tuteel or St=Tutee?

End OBU-Stéffs;

The visible state variables of caste OBU-Students contains the
following elements { Person.Surname: String, Person.Name: String,
Person.Nationality: String, OBU-Students.Number: Integer}. The
visible actions of the caste OBU-Staffs contains the following
elements: { Person.Speak(String), OBU-Staffs.
ApproveChangeField(OBU-Students, Field)}.

An agent John initially crated as a member of Persons can join the
caste OBU-Staffs a tutor in the department of business and obtain
two additional state variables OBU-Staffs.Number and Dept, and
one additional action OBU-Staff ApproveChangeFields. It is also
assigned with two tutees, say Harry and Nigel, as a part of it
environment. A member of the OBU-Staffs caste, for example
John, can join the OBU-Students. By doing so, the agent obtains
two new state variables OBU-Students. Number and OBU-
Students.Field, one action OBU-Students. ChangeField, one
environment agent Tutor, which must be instantiated when agent
John join the caste, say Chris, as its tutor, and also two new
behaviour rules <s1> and <s2>. When John quits from the OBU-
Students caste, his state space reduces by deleting the variables
OBU-Students.Number and OBU-Students.Field. This does not
affect his other parts of state space and action space. Similarly,
John can also quit from the OBU-Staff caste.

2.5 Behaviour

Agents behave in real-time concurrently and autonomously. To
capture the real-time features, an agent's behaviour is modelled by
a set of sequences of events indexed by the time when the events

happen.

251 Runsand Time
A runr of amulti-agent system is a mapping from time t to the set

[1S4. %4, - The behaviour of a multi-agent system is defined
i=1

to be a set R of possible runs. Instead of defining a fixed set of
time moments, the set of time moments are characterised by a
collection of properties.

Definition 1.

Let T be anon-empty subset of real numbers. T is said to be atime
index set, or simply the time, if

1) Bounded in the past, i.e. 3t, e T.VteT.(t, <t); (19
2) Unbounded in the future, i.e. VreR.3teT.(t > r); (15)
3) Uniformity, eV ty, to, t3eT. (t2> L=>L+t,-t e T) (16)

O

The following lemma states that a time index set T can be
characterised by two real numbers: the start time t, and the time
resolution p, where p>0. Readers are referred to [28] for the proof
of the lemma.

Lemma 1.

For all subsets T of real numbers that satisfy properties (14), (15)
and (16), we have that either T={t, | t,=t, + np, n=0, 1, 2, ... } for
some positive real number p, or T={r | reR and r > to}. In the
former case, we say that the time index set T is discrete, and in the

latter case, we say that T is continuous and p is caled the
resolution of thetimeindex set T. [

For any given run r of the system, we say that a mapping h from T
to S, xX,, is the run of agent A in the context of r, if
VteT.h(t)=r,(t) , where r,(t) is the restriction of r(t) on
Sut XX, - Letra denote the run of agent A in the context of r, and
Ra ={ra|reR} denote the behaviour of agent A in the system.

25.2 Assumptions
We assume that a multi-agent system has the following properties.

Instantaneous actions. We assume that actions are instantaneous,
i.e. they take no time to complete.

Slent moments. We assume that an agent may take no action at a
time moment t. In such a case, we say that the agent is silent at
time t. For the sake of convenience, we treat silence as a specia
action and use the symbol 7 to denote silence. Therefore, we

assume that for all agentsA, r e Y.

Separability. We assume that the actions taken by an agent are
separable, i.e. for al runs r, and all agents A, there exists a red

number &,>0 such that ro(t) =7 implies that for al xeT ,
t<x<t+e=r (X)=7, where rS(t) denotes the action taken

by agent A at time moment t in the run r. Consequently, an agent
can take at most a countable number of non-silent actions in its
lifetime.

Initial time and sleeping state. An agent can join the system at a
time, say tinita, later than the system's start time. We say that the
agent A is deeping before time moment ti,;a. We use a special
symbol L¢ S, to indicate such a state of an agent. Of course, we

require that if an agent is sleeping, it will take no action but silence,
ie VteT.(r3(t)=L=r{(t)=7), where r}(t) denotes agent A's
state at time moment tin therunr. Theinitial time t; Of an agent
Ainarunr can be formaly defined as the time moment teT that
rot) #L Avt e T.(' <t=r3(t) =1) .

25.3 Agent's View of the Environment
The global state S, of the system at any particular time moment t

belongstothe set [[S, , %=, , - However, each agent A can view
i=1

the externally visible states and actions of the agentsin Env,, . In

other words, an agent A can only view the part of § in the
space H Se < Iy, - Agent A's view of the system state at a

XeBvny,

time moment t is defined as a mapping Viewa, from global state S,

n
GHSA'[XZM toavauein [] S, xZ%, asfollows.

XeBvnay

View, ({81,816, (s56) = ({8 6 (s 04)) - @D
where Env, ={A A ,..,A | , i,=v implies that s =s, ,

c =c¢ if ey ,and ¢ =7 if ¢ eX, . Because an agent's

view is only apart of the system's global state, two different global
states become equivalent from its view. The following formally

H. Zhu

3/25/2003

defines the relation.
VXY e[Sy xEy (X=4 Y < Viewa(X)=Viewa(y)). (18)
i=1

It is easy to see that the binary relation =, is an equivalence
relation.

2.5.4 Execution History

Although an agent may not be able to distinguish two global states,
the histories of the runs leading to states may be different. An
intelligent agent may decide to take different actions according to
the history rather than only depending on the visible global state.
Let t be any given time moment. The history of arunr up to t,
written as rit, is amapping that is the restriction of r to the subset

{x<t|xeT}of T. The history of arun up tot in the view of an

agent A, denoted by Viewa(rdt), is the mapping from the subset
{x<t|xeT} of time moments to its views of the system's states
intherunr. It can be defined as follows.

View, (r 4 t) = AuView, ,(r(u)) , foral ueT and u<t. (19)

Similarly, we define Viewa(r) to be an agent A's view of arunr,
and Viewx(rg) to be agent A's view of agent B's behaviour in arun
r. The equivalence relation defined on the state space can be
extended to histories and runs as follows.

~a < View, () = View,(r,) (20)
(ndt) =, (b t,) o View,(r, L t,) =View,(r, L t,) (21)
Before we finish this section, we introduce some further notation.
Let A be any given agent in a multi-agent system. Let ¢y, ..., C, , ...
e X, —{7} be the sequence of non-silent actions taken by agent A
inarunr and ty, t, ..., t,, ...eT are the times of the actions, i.e.
rAC(ti) =¢ foradli=1,2, .., n,.. Atatime moment teT, we say

that c, is agent A's current action, and c..; the next action, if
t, <t<t,,. Wewrite

n+1

Current(rpbt)=<t,, s, &>,
NeXt(rAJ't):<tn+1y Sh+1r Cne1™, and
Events(radt)=<<t;, s, C1>, ..., <tn, S, Cn>>.

2.6 Specification of Behaviour
2.6.1 Patternsof Behaviours
A pattern describes the behaviour of an agent by a sequence of
observable state changes and observable actions. A pattern is
written in the form of [py, p, ..., Pn] Where n>0. Table 2 gives the
meanings of the patterns.

pattern ::=[{event/, }] [|| constraint]

event ::= [time-stamp:] [action] [! state-assertion]

action ::= atomic-pattern [» arithmetic-expression]

atomic-pattern ::= $ | ~ | action-variable

| action-identifier [({ arithmetic-expression/, })]

time-stamp ::= arithmetic-expression

where a constraint isafirst order predicate.

Table 2. Meanings of the patterns
Pattern Meaning
$ The wild card, which matches with all actions
~ The silence event

X Action variable, which matches an action
P~k A sequence of k events that match pattern P
| Predicate |The state of the agent satisfies the predicate

An action Act that takes place with parameters
At (@ -3 | ooy (ag, ...&)

The previous sequence of events match the
patterns py, ..., Pn

[pli"'! pn]

Formally, Let p be a pattern. We write B:r, 4 t |= p to denote that
from agent B's viewpoint the behaviour of an agent Ainarunr

matches the pattern p at time moment t. The relationship |= can be
defined inductively as follows.

Definition 2.
We write B:r, 4 t|= p, if there is an assignment o such that
Bir, bt |=, p,whichisinductively defined as follows.

= Biralt |=,[$], for al agents A, B, runsr and time momentst;
= Biralt |2, [7], if Viewg(ralt)(®) = 7,
= Biradt |2, [X1, if Current(Viewg(radt)) = a(x);

 Biradt [24 [t Cey,....e) ! pred(s)], if Current(Views(ralt)) = <t.,
S C(a(ey),...,a(&,))>, Ssatisfies the predicate a(pred(s)), a(t)=t..

" Biradt |5, [pK], if Events(Viewg(ralt))=<...., <ty, s, ¢>, <tp, S,
>, ..., <t,, S, &>>, where v = ¢(k), and for al i=1,2,..., v,
Biradt = o[P1;

* Biradt =, [P1, P2 ... Py 1, if Events(Views(radt)=<..., <ty, sy, ¢1>,
<tp, S, C>, ..., <ty, S,, C,>>, and for al i=1,2,..., v, B:ralt |= o
[p]

= Biralt |=, (p || Constraint) , if B:radt |=, p and o(Constraint) is
true. O

Informally, Biradt |=, p means that agent A's behaviour inarun r
matches a pattern p at time moment t from an agent B's point of
view under assignment «. An assignment « for a set X of variables
is amapping that assigns valuesto variablesin X.

2.6.2 Scenarios of Environment

The use of scenarios in agent oriented analysis and design has been
proposed by a number of researchers, for example [21, 31,19]. We
define scenario as a set of typica combinations of the behaviours
of related agents in the system. In addition to the pattern of
individual agents' behaviour, SLABS also provides facilities to
describe global situations of the whole system. The syntax of
scenariosis given below.

Scenario ::= Agent-Name : pattern | atomic-predicate
| 3 [arithmeticexp] Agent-Var e Caste-Name: Pattern
| V Agent-Var e Caste-Name: Pattern
| Scenario & Scenario | Scenario v Scenario | ~ Scenario

An atomic predicate in a scenario can be an expression in one of
the following forms:

= AgenteCaste, the agent is in the caste at that time;

= AgentA=AgentB (or AgentA=AgentB), the identifiers indicates
the same (or different) agent;

= A set relation expression, which may contain expressions in the
form of {XeCaste | X : Pattern}, which is the set of agents

H. Zhu

3/25/2003

whose behaviour matches the pattern; or

= An arithmetic relation, which may contain an expression in the
form of XeCaste.Pattern, which is the number of agentsin the
caste whose behaviour matches the pattern.

The semantics of scenario descriptions are given in Table 3.

Table 3. Semantics of scenario descriptions
Scenario Meaning
The situation when agent A's behaviour matches
pattern P
The situation when the behaviours of al agentsin
caste C match pattern P

The situation when there exists at least m agentsin

ImX eC: P|caste C whose behaviour matches pattern P where

the default value of the optional expression misl1

The situation when both scenario S; and scenario

S, aretrue

SivS The situation when either scenario S; or scenario
v S, or both are true

-S The situation when scenario Sis not true

AP

vXeC:. P

S$& S

The following are two examples of scenarios.
(1) 3 peParties: taooo: [nominate-president(Bush)] || tzoco=(March/2000).

It describes the situation that at least one agent in the caste called
Parties took the action nominate-president(Bush) at the time of March
2000.

(2) (uxe Voter: [vote(Bush)] > i xe Voter: [vote(Gore)])

It describes the situation that there are more agents in the caste
Voter who took the action of vote(Bush) than those in the caste who
took the action of vote(Gore).

Let Sc be a scenario. We write A:r 4 t|= S to denote that from
agent A's point of view, the scenario Sc occurs at time moment t in
arunr.

Definition 3.

From an agent A's point of view, a scenario Sc occurs at time
moment t in a run r, iff A:rlt}=Sc, which is inductively
defined as follows.

s AirdtEB:ipe A dtl=p; (22)
s ArdteESoaS, o AirdtESg andAir Lt S, (23)
= AirdtlE—=Sce Airdt|= Scisnot true; (24)

ArdtEVXeG(x:) < Air L tl=, fordl xe G ;(25)
A:rdtEaIxeG(x:) < Air, Lt |= <, forsomexe G (26)

O

2.6.3 Rules

In SLABS, an agent's behaviour is defined by a set of transition
rules to describe its responses to environment scenarios.

Behaviour-rule ::=
[<rule-name>] pattern|[prob]—>event, [Scenario] [where pre-cond] ;

In a behaviour rule, the pattern on the left-hand-side of the —>
symbol describes the pattern of the agent's previous behaviour.
The scenario describes the situation in the environment, which
specifies the behaviours of the agents in its environment. The

where-clause is the pre-condition of the action to be taken by the
agent. The event on the right-hand-side of —> symbol is the action
to be taken when the scenario happens and if the pre-condition is
satisfied. The agent may have a non-deterministic behaviour. The
expression prob in a behaviour rule is an expression that defines
the probability for the agent to take the specified action on the
scenario. SLABS also alows specifications of non-deterministic
behaviours without giving the probability distribution. In such
cases, the probability expression is omitted. It means that the
probability is greater than 0 and less than or equal to 1.

Let R be the set of runs in a formal model of agent-based system.
To define the semantics of rules, we first define a probabilistic
space as follows.

For each scenario Sc, agent A, and constraint Cn(r, t) — {tt, ff), we
define RJ(Sc, A, Cn) as a subset of histories H={rlt | reR, teT}
such that

RJ(S, A Cn)={ rit|reR teT, Airdt|=S,Cn(r,)} (27)

Let H" bethe set that contains H and all the subsets in the form of
RJ(S, A, Cn) and closed under set complementary, finite
intersections and countable unions. Therefore, H™ constitutes a
o—field. A probabilistic space can then be constructed over the
o—field H" by associating a probabilistic distribution over H” .
Let Pr(RJ(Sc, A, Cn) be the probability that the scenario Sc with
constraint Cn occurs from agent A's point of view. Notice that
agent A's behaviour matches a pattern p can be expressed
equivalently as a scenario (A:p)a. The order pair <R, Pr> is called
the probabilistic model of the agent-based system.

Definition 4.

Let Ra='p |(exp)—e if Sc where Cn' be arule for agent A, where
S is a scenario and Cn is a constraint. We say that in a
probabilistic agent-based system <R, Pr> the agent A's behaviours
satisfy the rule Ry and write <R, Pr>: A |= Ry, if

Pr(RJ(A:p#e, A, True) | R4(Sc ™ (A:p), A, Cn)) = exp, (28)
where p#e: [plv p21 e pn: e], if p: [pl! p2! Lk} pf'L] 0

3. EXAMPLE

A number of examples of intelligent agents have been specified in
SLABS in our previous papers, which include the Ma€e's personal
assistant Maxim [27], Ants[32], a simple communication protocol,
speech-act [28] and the evolutionary multi-agent ecosystem
Amalthaea [35], etc. In this paper, we use an example of a
distributed algorithm to demonstrate how SLABS supports the
modularity and composability of formal specifications.

The agorithm is for synchronisation of the accesses to critical
regions in distributed systems. The following is the origina
informal specification of the algorithm given in the textbook [33]

(Page 267).

When a process wants to enter a critical region, it builds
message containing the name of the critical region it wants to
enter, its process number, and the current time. It then sends
the message to all other processes. The sending of messages is
assumed to be reliable; that is, every message is
acknowledged. Reliable group communication if available, can
be used instead of individual messages.

When a process receives a request message from another
process, the action it takes depends on its state with respect to

H. Zhu

3/25/2003

the critical region named in the message. Three cases have to
be distinguished:

1.1f the receiver is not in the critical region and does not want
to enter it, it send back an OK message to the sender;

2.If the receiver is already in the critical region, it does not
reply. Instead, it queues the request.

3.If the receiver wants to enter the critical region but has not
yet done so, it compares the timestamp in the incoming
message with the one contained in the message that it has
sent everyone. The lowest one wins. If the incoming message
is lower, the receiver sends back an OK message. If its own
message has a lower timestamp, the receiver queues the
incoming request and send nothing.

After sending out requests asking permission to enter a critical
region, a process sits back and waits until everyone else has
given permission. As soon as all the permissions are in, it may
enter the critical region. When it exits the critical region, it
sends OK message to all processes on its queue and deletes
them all from the queue.

It is assumed that processes are executed in a distributed system
concurrently. The communications between the processes are
reliable. They all use the synchronisation agorithm to access
shared resources as critical regions. Regarding each process as an
agent, this algorithm can be easily translated into SLABS' formal
specification asfollows.

—— CRegionUsers

VAR Region: String

ACTION
Request(RName, AName: String, TimeStamp:Integer);
PermissionOK (RName, AName: String, timestamp:Int)

VAR State: { Want, InRegion, Waiting, Finishing, Free};
Queue: List of (RName, AName: String, TStamp:Int);
ReguestTime: Int

All: CRegionUsers |

[!State=Want] |- t: Request(Region, MyName, t)
| State’ =Waiting & RequestTime'=t;
[!State=Free] |—> PermissionOK (Region, AN, TStamp);
if 3A: CRegionUsers.[Request(Region, AN, TStamp)]
[!State= InRegion]
|—> Queue’ =Queuet(Region, AN, TStamp);
if 3A: CRegionUsers.[Request(Region, AN, TStamp)]
[!State=Waiting & RequestTime>TStamp]
|—> PermissionOK (Region, AN, Tstamp);
if 3A: CRegionUsers.[Request(Region, AN, TStamp)]
[!State=Waiting & RequestTime<T Stamp]
|— Queue’ =Queuet(Region, AN, Tstamp);
if 3A: CRegionUsers.[Request(Region, AN, TStamp)]
['State=Waiting] |—> ! State’ =InRegion;
if VA: CRegionUsers.[PermissionOK (Region,
MyName, RequestTime), $7k]
[State=Finishing]
|—> ForAll (Region, AN, TStamp) in Queue Do
PermissionOK (Region, AN, TStamp) End
IState’ = Free & Queue = <>

The specification of the agorithm is generic. It does not over

specify the specific feature of the critical region. The issues like
when and how an agent wants to use the region and when to
finishes the uses of the resource are left to the specification of the
agent. For a specific resource, a sub-caste can be specified to make
it acritical region. For example, a shared printer can be controlled
by the caste specified as follows.

= PrinterUsers<=CRegionUsers
(Region:="Printer’, State:=Free)

Agents that use the printer can be specified as an instance of the
caste PrinterUsers or dynamically joint the caste. Similarly, other
critical regions can be specified through other sub-castes so that
their uses are synchronised. The properties of the algorithms can
be deducted from the generic specification, which hold for al sub-
castes. Moreover, different synchronisation agorithms can be
specified and used by the same agent to access different shared
recourses. For example, suppose the token ring synchronisation
algorithm is specified by a caste TokenRingUsers, and the access
of a scanner is controlled by the agorithm, i.e. a caste
ScannerUsers is specified as a sub-caste of TokenRingUsers. An
agent A that uses both the printer and the scanner at the same time,
can be declared as an instance of both castes of PrinterUsers and
ScannerUsers.

This example shows that specifications can be modularised by
using caste with parameters and composed through sub-castes and
instantiations and used through instances, i.e. agents.

4. CONCLUSION

In this paper, we presented the formal specification language
SLABS for multi-agent systems. The SLABS language integrates a
number of novel language facilities that support the development
of agent-based systems, especialy the specification of such
systems. Among these facilities, the notion of caste plays a crucia
role. A caste represents a set of agentsin a multi-agent system that
have same capability of performing certain tasks and have same
behaviour characteristics. Such common capability and behaviour
can be the capability of speaking a language, using an ontology,
following a communication and/or collaboration protocol, and so
on. It is a notion that generalises the notion of types in data type
and the notion of classes in object-oriented paradigm. This facility
can be effectively used to specify or implement a number of
notions proposed in agent-oriented methodologies, such as the
notions of role, team, agent society, organisation, and so on. For
example, a caste can be the set of agents playing the same role in
the system. However, agents of the same caste can aso play
different roles especially when agents form teams dynamically and
determine their roles at run time. Based on the caste facility, a
number of other facilitiesin SLABS are defined. For example, the
environment of an agent can be described as the agents of certain
castes. A global scenario of a multi-agent system can be described
as the patterns of the behaviours of the agents of a certain caste.
The example systems and features of agent-based systems
specified in SLABS have shown that these facilities are powerful
and useful for the formal specification of agents in various models
and theoriesin amodular and composable way.

4.1 Related Work

The model of software agents used in this paper is closely related
to the work by Lesperance et al [34], which also focused on the

H. Zhu

3/25/2003

actions of agents. However, there are two significant differences.
Firstly, they consider objects and agents are different types of
entities, while we consider them as the same type of encapsulated
computational entities. As argued in [28], we consider objects as a
degenerate form of agents that obey simple behaviour rules and
open to its environment so that everything in the environment can
affect its behaviour. As a consequence of regarding objects as
deferent entities from agents, they allow an agent to change the
state of objects in the environment while we only allow an agent to
modify its own state. Secondly, the most important difference is,
of course, there is no notion of caste or any similar facility in their
system.

The notion of groups of agents has been used in a number of
researches on the multimodality logic of rationale agents, such as
in Wooldridge's work [11], etc. However, such notion of groups of
agents is significantly different from the notion of caste, because
there is neither inheritance relationship between the groups, nor
dynamic instance relationship between an agent and a group. Their
only relationship is the membership relationship.

Many agent development systems are based on object-oriented
programming. Hence, there is a native and primitive form of castes
as classes in OO paradigm. However, although agents can be
regarded as evolved from object and caste as evolved from class,
there are significant differences between agents and objects, and
thus between caste and class. Therefore, the new notion deserves a
new name.

In our previous papers [27~29], an agent's membership to a caste
is staticaly determined by agent description. Static membership
has a number of advantages, especialy its simplicity and easiness
to prove the properties of agents. Examples have shown that
introducing some state variables to represent the role that an agent
is playing can specify dynamic team formation [29]. In this paper,
we revised the notion of caste to allow a dynamic membership

facility in order to specify and implement dynamic team formation.

The formal and informal definitions of the language SLABS given
in this paper supersedes our previous ones. An advantage of this
approach is that the dynamic formation of ateam can be explicitly
specified. It is natural to specify the dynamic process of evolution
in amulti-agent system [35].

Another design decision that we faced in the design of SLABS was
whether we should alow redefinition of behaviour rules in the
specification of sub-castes. An advantage of disabling redefinition
is that provable properties of a supper caste are inherited by all
sub-castes. The example given in this paper shows that it enables
composable modular specifications.

4.2 Further Work

There are a number of open problems that need further
investigation. Although the language facilities in SLABS, such as
caste and scenario, were first introduced as a specification facility,
we believe that they can be easily adopted in an agent-oriented
programming language for the implementation of multi-agent
systems. How to implement these facilities is an important issue in
the design and implementation of agent-oriented programming
languages.

The design of SLABS is aimed to support as many agent-oriented
methodologies as possible. How to link from such methodologies
to formal specifications in SLABS deserves further investigation.
We are currently working on tools and graphic notations to support

the development of formal specifications in SLABS. In [35], a
process and a diagrammatic notation for modelling multi-agent
systems are proposed so that formal specifications in SLABS can
be derived from models of multi-agent systems represented in
diagrams.

ACKNOWLEDGEMENT

The author is most grateful to his colleagues at Oxford Brookes
University, especially Mr. Ken Brownsey, Prof. David Duce, Ms.
Sue Greenwood, Mr. John Nealon, Dr. Nick Wilson, et a., for
discussions on agent technology and many related subjects. The
author would also like to thank Prof. Huaglory Tianfield for many
invaluable discussions.

REFERENCES

[1] Albayrak, S. Agent-Oriented Technology for Telecommuni-
cations, CACM 44(4) (April 2001), 30-33.

[2] Chien, S. et al. The Techsat-21 Autonomous Space Science
Agent, in Proc. of AAMAS 2002 (Italy, July 2002) 570-577.

[3] Heinze, C., et al. Interchanging agents and humans in mili-
tary simulation, Al Magazine 23(2) (Summer 2002) 37-47.

[4] Jennings, N. R., Wooldridge, M. J. (eds.). Agent Technology:
Foundations, Applications, And Markets. Springer, 1998.

[5] Webster, P., Smith, M., Murtagh, P. Four Killed as Airbus
Crashes. The Guardian (27 June 1988), page 1.

[6] ACM, TheRisks Digest: Forum on Risks to the Publicin
Computers and Related Systems 7(10~12) (June 1988).

[7] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R.,
Treur, J. DESIRE: Modelling Multi-Agent Systemsin a
Compositional Formal Framework, in Int. J. of Cooperative
Information Systems 1(6) (1997), 67-94.

[8] Rao, A.S, Georgreff, M. P. Modeling Rational Agents
within A BDI-Architecture. in Proc. of the International
Conference on Principles of Knowledge Representation and
Reasoning (1991), 473-484.

[9] Singh, M. P. Semantical considerations on some primitives
for agent specification, in Intelligent Agents, Wooldridge,
M., Muller, J. & Tambe, M. (eds), LNAI 1037, Springer,
1996, 49-64.

[10] Chainbi, W., Jmaiel, M., Abdelmgjid, B. H., Conception,
Behavioural Semantics and Formal Specification of Multi-
Agent Systems, in Multi-Agent Systems, Zhang, C., Lukose,
D. (eds), LNAI 1544, Springer, 1998, 16-28.

[11] Wooldrighe, M., Reasoning About Rational Agents, The
MIT Press, 2000.

[12] Ambroszkiewicz, S. and Komar, J., A model of BDI-agent in
game-theoretic framework, in [13], 1999, 8-19.

[13] Myer, JJ., Schobbens, P-Y. (eds.), Forma Models of Agents
- ESPRIT Project Model Age Final Workshop Selected
Papers, LNAI 1760, Springer, 1999.

[14] Wooldridge, M. J. and Jennings, N. R. Agent theories,
architectures, and languages: a survey, in Intelligent Agents,
LNAI 890, Springer-Verlag, 1995, 1-32.

[15] Ossowski, S., and Garcia-Serrano, A. Socia structurein
artificial agent societies: implications for autonomous
problem-solving agents, in Intelligent AgentsV, Muller, J. P.,
Singh, M. P. and Rao, A. S. (eds.), LNCS 1555, Springer,
1999, 133-148.

[16] Fisher, M. If Z isthe answer, what could the question
possibly be? in Intelligent Agents |11, Muller, J., Wooldridge,
M., Jennings, N. (eds.). LNAI 1193, Springer, 1997, 65-66.

[17] Kinny, D., Georgeff, M., and Rao, A. A methodology and

H. Zhu

3/25/2003

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[29]

(26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

modelling technology for systems of BDI agents, in Agents
Breaking Away: Proc. of MAAMAW'96, LNAI 1038,
Spriger-Verlag, 1996.

Moulin, B. and Cloutier, L. Collaborative work based on
multiagent architectures. a methodological perspective, in
Soft Computing; Fuzzy Logic, Neural Networks and
Distributed Artificial Intelligence, Aminzadeh, F. and
Jamshidi, M. (eds.), Prentice-Hall, 1994, 261-296.

Moulin, B., and Brassard, M. A scenario-based design
method and an environment for the devel opment of
multiagent systems, in First Australian Workshop on
Distributed Artificial Intelligence, Lukose, D. and Zhang C.
(eds.), LNAI 1087, Springer-Verlag, 1996, 216-231.
Wooldridge, M., Jennings, N. and Kinny, D. A methodology
for agent-oriented analysis and design, in Proc. of ACM
Third International Conference on Autonomous Agents,
Sesttle (WA, USA, 1999) 69-76.

Iglesias, C. A., Garijo, M. Gonzalez, J. C. A Survey of
Agent-Oriented Methodologies, in Intelligent Agents V,
Muller, J. P., Singh, M. P., Rao, A., (eds.), LNAI 1555.
Springer, 1999, 317-330.

Conrad, S, Saake, G., Turker, C. Towards an Agent-
Oriented Framework for Specification of Information
Systems, in [13], 1999, 57-73.

D'Inverno, M., Kinny, D., Luck, M., and Wooldridge, M. A
formal specification of AMARS, in Intelligent Agents 1V,
Singh, M. P., Rao, A. Wooldridge, M. (eds.) LNAI 1365,
Springer, 1998, 155-176.

Luck, M. and d'Inverno, M. A formal framework for agency
and autonomy, in Proc. of First Int Conf on Multi-Agent
Systems, AAAI Press/ MIT Press, 1995, 254-260.
D’Inverno, M. and Luck, M. Understanding Agent Systems.
Springer, 2001.

Jennings, N. R. Agent-Oriented Software Engineering, in
Multi-Agent System Engineering, Proc of 9th European
Workshop on Modelling Autonomous Agentsin a Multi-
Agent World (Valencia, Spain, June/July 1999) Garijo, F. J.,
Boman, M. (eds.), LNAI 1647, Springer, 1999, 1-7.

Zhu, H. Formal Specification of Agent Behaviour through
Environment Scenarios, Formal Aspects of Agent-Based
Systems, Rash, J. et al. (eds.), LNCS 1871, Springer, 263-
277.

Zhu, H. SLABS: A Formal Specification Language for
Agent-Based Systems, Int. J. of Software Engineering and
Knowledge Engineering 11(5) (Nov. 2001), 529-558.

Zhu, H. Therole of caste in formal specification of MAS, in
Proc. of PRIMA’2001, LNCS 2132, Springer, 1-15.

Spivey, J. M. The Z Notation: A Reference Manual (2nd
edition), Prentice Hall, 1992.

Iglesias, C. A., Garijo, M., Gonzalez, J. C., Velasco, J. R.
Analysis And Design of Multiagent Systems Using MAS-
Common KADS, in Intelligent Agents IV, Singh, M. P., Rao,
A., Wooldridge, M. J. (eds.), LNAI 1356, Springer, 1998,
313-327.

Zhu, H. A formal specification language for MAS
engineering, in Proc. of 2™ International Workshop on
Agent-Oriented Software Engineering (May 29, 2001).
Tanenbaum, A. S. and van Steen, M., Distributed Systems:
Principles and Paradigms, Prentice Hall, 2002.

Lesperance, Y., levesque, H. J.,, Lin, F., Marcu, D., Reiter, R.
and Scherl, R. Foundations of logical approach to agent
programming, in Intelligent Agents |1, Wooldridge, M.,

Muller, J., and Tambe, M. (eds.) LNAI 1037, Springer-
Verlag, 1996, 331-346.
[35] Zhu, H. Formal Specification of Evolutionary Software

Agents, Proc. of ICFEM’ 2002 (Shanghai, China, Oct. 2002)

