Modelling Cooperative Multi-Agent Systems

Lijun Shan Hong Zhu
Department of Computer Science Department of Computing
National Univ. of Defence Technology Oxford Brookes University
Changsha, 410073, China Oxford OX33 1HX, UK
Email: lijunshancn@yahoo.com Email: hzhu@brookes.ac.uk

Abstract. Cooperative computing is becoming inevitable with the
emerging of service-oriented computing and GRID becoming a
ubiquitous computing resource. It is widely recognized that agent
technology can be employed to construct cooperative systems due to
agents’ autonomous and collaborative characteristics. We devise an
agent-oriented modelling language called CAMLE for the analysis and
design of MAS (Multi-Agent Systems). This paper presents the
collaboration model that captures communication between agents. The
structure of the collaboration model and the notation of collaboration
diagrams are presented. Uses of the modelling language are illustrated
by examples.

1. Introduction

Cooperation between software systems shows its importance as GRID is becoming a
ubiquitous computing resource. The recent years has also witnessed the emergence of
service-oriented computing such as web services, where services can be dynamically
discovered, negotiated, requested and provided. Agent technology has been widely
recognized to be a viable approach due to agents’ autonomous and collaborative
characteristics. Although cooperation is one of the key concepts in MAS, researchers
have offered various definitions and typologies [1]. We consider cooperation as the
embodiment of agents’ social ability. Agents can determine, to certain extent, when,
how and with whom to interact at run-time. However, they must obey certain
cooperation protocols to achieve their designed objectives. Design and analysis of
such protocols is one of the central problems in the research on cooperative
computing. This paper addresses this problem from an agent-oriented modelling
approach.

Researchers have investigated general problems associated with cooperation.
Based on the speech act theory, a number of ACL (agent communication language)
have been proposed, including KQML [2], FIPA ACL [3], etc. Recently, graphic
notations are employed to model communication in MAS. For example, AUML
describes agent communication protocols in a graphic notation that extends UML

sequence diagrams [4]. However, few modelling language has been formally defined
and reported in the literature.

In [5, 6, 7, 8], we developed SLABS (Specification Language for Agent-Based
System) and CAMLE (Caste-centric Agent-oriented Modelling Language and
Environment) for engineering MAS. One of the central issues in MAS development is
the modelling of agents’ cooperative behaviour. We address the problem at three
levels. At the top level, a caste model defines the architecture of the system by
grouping agents into various castes, which can be roughly considered as agent class;
see [6] for more details and formal definition of the concept. At the middle level,
communications between agents are specified in a collaboration model. At the lower
level, a behaviour model defines the internal behaviour of various agents so that their
cooperation with each other is realized by taking certain actions in certain scenarios.
This paper focuses on the collaboration model. A collaboration model consists of a
number of collaboration diagrams. Horizontally, the diagrams are organized as one
general and some scenario-specific collaboration diagrams. Vertically, a hierarchy of
collaboration models supports collaboration modelling on different granularity.

The remainder of paper is organized as follows. Section 2 gives the background
by briefly reviewing the conceptual model underlying our agent-oriented
methodology. Section 3 presents the structure, notation and uses of collaboration
model. Section 4 concludes the paper with a brief summary and outline of our related
work.

2. Overview of the conceptual model

This section briefly reviews the underlying conceptual model for MAS defined in
SLABS and used in CAMLE. The conceptual model is from a software engineering
perspective. The basic concepts can be characterized by a set of pseudo-equations. In
particular, equation (1) states that agents are defined as real-time active computational
entities that encapsulate data, operations and behaviour and situate in their designated
environments. Here, data represent an agent’s state. Operations are the actions that an
agent can take. Behaviour is a collection of sequences of state changes and operations
performed by the agent in the context of its environment. By encapsulation, we mean
that an agent’s state can only be changed by itself and it has its own rules that govern
its behaviour in the designated environment to decide ‘when to go’ and ‘whether to
say no’.

Agent = <Data, Operations, Behaviour>g,ironment (D

As an extension to the notion of class in object-orientation, a caste has a set of
agents as its members. As stated in equation (2), these members share a set of
structural and behavioural characteristics defined by the caste. An agent can
dynamically change its membership to castes during its existence by joining in a caste
or retreating from its current caste at run-time. A caste may inherit from a number of
other castes. Fig. 1 shows the structure of the description of a caste.

Caste , = {agents | structure characteristics & behaviour characteristics} (2)

rNewCasteName <= Caste Names (Instantiation)

Visible actions and state variables

Environment]
description

Behaviour specifications

Fig. 1. Structure of Caste Description in SLABS

Equation (3) states that a MAS consists of a set of agents. The environment of an
agent is a subset of all agents in the system, as stated in equation (4). The
environment description of an agent defines which agents are visible.

MAS = {Agent ,} 1 3)

Environment ; (Agent, MAS) < MAS — {Agent} 4

The mechanism of communication is that an agent’s actions and states are
divided into two parts, the visible and invisible ones. Agents communicate with each
other by taking visible actions and changing visible state variables, and by observing
other agent’s visible actions and state variables, as expressed in equation (5).

Communication from agent A to B = A. Action + B. Observation %)

3. The Collaboration Model

A collaboration model captures cooperation in a MAS by a collection of diagrams.
Communication defined in section 2 is represented in collaboration diagrams by a
notation shown in Fig. 2. An agent node denotes a specific agent. Agents are the basic
components of a system and are considered as black boxes with only their names
inscribed in the nodes. A caste node denotes any agent in the caste. Interaction
between agents is modeled by communication links that connect agent/caste nodes. A
communication link labeled with a list of actions from node N; to N, represents that
agent N; influences N, by N; taking and N, observing the actions. Actions can be
numbered to denote the temporal order of their occurrence.

Agent node:
Caste node: -

Communication link: ﬂ)

Fig. 2. Notation of Collaboration Diagrams

Fig. 3 shows an example of collaboration diagram that represents the
interactions between the members of a university. For instance, an undergraduate

student listens to his personal tutor for academic advice on selection of modules,
attends lectures given by faculty members and practical classes given by PhD
students. When he graduates, he may want to apply for graduate course.

Report[progress)]

Supervisor.Faculty PhDStudent

Suggest{research topic]

Give[practical class)

Attend[practical class]

Suggestfacademic advice]
AgreeReferee(]

Attend[lecture]
PersonalTutor:Faculty ‘ Undergraduate | E ﬁ Faculty
Givel(l el

Request[course advice] f,
Request[reference)

Announce[module resul] Selectimodule]
Offer[graduate course] Applylgraduate course]

Result{exam]

DeptHead:Faculty = DeptOffice ”“J

Report(]

Assignfteaching]
Inform[class list]

Fig. 3. Example of Collaboration diagram

Although the notation of our collaboration diagrams looks similar to that of
collaboration diagrams in object-oriented methodologies such as UML [9], there are
significant differences in the semantics. In OO paradigm, when a message is passed
from object A to object B, object B must execute the corresponding method.
Therefore, actions annotated on the link from A to B in UML diagrams are actually
methods of B. In our model, however, the actions annotated on a link from A to B are
visible actions of A, and agent B does not necessarily respond to agent A’s action. It
fits well with the autonomous nature of agents.

A flat diagram representation does not scale well for complex systems, so we
extend the basic collaboration diagram to a collaboration model that comprises a set
of diagrams to help handle systems’ complexity. We consider collaboration modelling
from two perspectives: the agent perspective, viz. which agents are to be involved in
each scenario of system behaviour, and the communication perspective viz. what
communication the agents take to meet a specific global requirement. Therefore, the
collaboration model is organized from the two aspects: the hierarchical organization
of super-sub diagrams makes explicit the modelling domain, and the horizontal
organization of general-specific diagrams characterizes various scenarios the agents
participate in. Fig. 4 shows the example of a collaboration model’s structure. The
system is directly composed of agents of three castes: 4, B and C. Each of them can
be decomposed into some components, called component agents. The process of
decomposition terminates when some agents, such as M;, M, and M, are identified as
atomic components. An agent that is consists of a number of agents as component is
called a compound agent. For each compound agent, such as the System, A, B and C,
a collaboration model including one general and a number of specific diagrams is
constructed to describe the collaboration between its components.

r—————=-=-=-
1

System collaboration model ,

General
diagram

Specific
diagrams

r | o f

: & . '
1 1
i | General Specific ! | | General Specific ! I'| General Specific :
| | diagram diagrams i ! diagram diagrams v | diagram diagrams '
___________________ | (e - -—-———_-. S 1
I

[I
| I

PM L M| P M, |

Fig. 4. Example: A Collaboration Model's Structure

3.1 Horizontal structure of collaboration model

One of the complications in collaboration modelling is on account of agents’ various
behaviour in different scenarios during the system’s execution. By scenario, we mean
a typical situation in the operation of a system. Various scenarios involving various
sets of communications occur in their respective temporal sequences, therefore it is
better to describe them separately. The collaboration model supports separation of
scenarios by the general-specific diagram organization. A general collaboration
diagram gives an overall picture of the communication between all the agents in a
system by describing all visible actions an agent may take and all observers of the
actions. Specific collaboration diagrams provide the means of grouping
communications into separate diagrams in terms of scenarios. Each specific diagram
describes a specific scenario by capturing a collection of related communications
between some agents. For example, Fig. 5 shows two specific collaboration diagrams
for the example of university. Diagrams in (a) and (b) respectively depict the
scenarios of undergraduate’s study and applying for graduate course. They can be
considered as presentation of specific parts described in Fig. 3. In each diagram, the
actions are numbered to indicate their temporal orders in the specific scenario.
Similarly, other scenarios in the university, such as graduate’s study and faculty’s
work can also be described separately in specific collaboration diagrams.

PhDStudent

6.Give([practical class] | | 5.Attend|practical class]

2.Suggest(academic advice) 4.Give[lecture)

PersonalTutor:Faculty Undergraduate

1.Request{course advice]

(a) Scenario of Undergraduate Study

|

3.Attend(lecture]

1.Request[reference]

PersonalTutor:Faculty E:Undergraduate

2.AgreeReferee()

3.Apply[graduate course]

4.0ffer[graduate course)

DeptComputing:DeptOffice

(b) Scenario of Undergraduate Graduate
Fig. 5. Examples of Specific Collaboration Diagram

With the general and specific diagrams as complementary facilities for
collaboration modelling, our language supports both decomposition and scenario-
driven analysis approach. The decomposition approach means a whole-dividing
process that begins by identifying all the agents’ actions and communications in a
general diagram according to global system requirements. Then various scenarios that
may occur during the system’s execution are plot out and communications involved in
the specific scenarios are elaborated into specific diagrams. This approach may be
suitable for the applications with a global requirement. In contrast, the scenario-driven
approach means a part-integrating process that starts with specific situations
modelling and finishes with a general description. This approach is suitable when a
scenario-based representation of the application requirements has been given. It is up
to the users to apply either of the two approaches or a hybrid of them in certain
applications.

3.2 Vertical structure of collaboration model

The modelling language allows describing systems at a coarse granularity, that is, a
system can be viewed as an agent that interacts with users and/or other systems in its
external environment. Moreover, a sub-system can also be viewed as an agent that
interacts with other sub-systems. As analysis deepens, the agents can be decomposed
into components. Analysis of interaction among such component agents is in the same
way as the analysis of the whole system. The only difference is that the environment
of the components is clearer than the whole system, and such information can be
carried over to the analysis of the components. Therefore a lower level collaboration
diagram may have environment nodes, denoting the agents in the compound agent’s
environment, drawn on the boundary. The lower level diagram which describes
communication among component agents is called a sub-diagram. And the higher
level diagram is called the sub-diagram’s super-diagram. Component agents are
capable of communicating with the peer component agents as well as with external
agents. A communication link from a component to an environment node indicates
that the component agents take some particular tasks of its compound agent. In this
way, the compound agent has its functionality decomposed through the
decomposition of its structure.

T DeptOffice
Applylgraduate course]

P student

T
Offer[graduate course]

Select{module)

Underglaw

Announce(module result)

DeptHead:Faculty

Inform[module list]
Inform[exam result]

Inform(class list]

Assign(hing} l Instruct])
[[Facutty € 5 stattmanager |
e

Fig. 6. Collaboration Diagram for Decomposition of DeptOffice

Fig. 6 shows an example of the decomposition of the caste DeptOffice in a lower
level collaboration diagram. The caste DeptOffice in Fig. 3 means a department office
in the university. The castes Undergraduate and Faculty and agent DeptHead that
interact with the caste DeptOffice described in Fig. 3 are carried to Fig. 6 as the
environment nodes. The DeptOffice consists of three castes: the StudentManager,
ModuleManagers and StaffManagers. This lower level diagram describes the internal
structure of the DeptOffice and the interactions between the component agents.

Component agents can be further decomposed into a set of components if
necessary, followed by analysis of their communications in lower level diagrams.
Such a refinement can be carried on until the problem is specified adequately in
detail. Thus, a collaboration diagram on system level that specifies the boundary of
the application can be eventually refined into a collaboration model comprising a
hierarchy of collaboration diagrams on various abstract levels. Of course, the
hierarchical structure of collaboration diagrams can also be used for bottom-up design
and composition of existing components to form a system.

In order to obtain a meaningful collaboration model, consistency between
general and specific diagrams and that between models at different levels must be
assured. Consistency constraints on collaboration model as well as other constraints
for CAMLE model are defined in [8].

4. Conclusion

This paper presents a collaboration model that captures communications in MAS by
describing the agents’ interconnections through action taking and observing. Thus
actions as a part of an agent’s internal capability are related to its external behaviour
in terms of its cooperation with others. This view of communication leads to the
independence of collaboration model to ad hoc communication languages or
protocols, therefore makes it easy to model cooperation in a rather early stage of

system analysis and enable engineers to focus on the conceptual analysis and design
of agent communication. Diagrams in a collaboration model are organized into a
hierarchy to represent agents on different levels. Separation of concerns in terms of
various scenarios of system behaviour helps engineers to manage complexity and to
employ decomposition analysis or scenario-driven approach in specific applications.

The work reported in this paper is a part of our research for modelling, formally
specifying and developing MAS. An environment supporting multi-view modelling of
MAS in CAMLE language has been designed and implemented. Besides the support
to model construction, the environment can perform consistency checking for models
of an application against the consistency constraints and can transform diagrammatic
models in CAMLE to formal specifications in SLABS. Work in this direction will be
reported separately.

Acknowledgement

The work reported in this paper is partly supported by China High-Technology
Programme (863) under the Grant 2002AA116070.

Reference

[1] J. E. Doran, S. Franklin, N. R. Jennings & T. J. Norman. On Cooperation in Multi-Agent
Systems. Panel discussion at the First UK Workshop on Foundations of Multi-Agent
Systems (held at the University of Warwick on Oct. 23rd 1996).

[2] Y. Labrou and T. Finin. A Proposal for a New KQML Specification. Tech. Report TR-CS-
97-03, Computer Science and Electrical Engineering Dept., Univ. of Maryland, Baltimore
County, Baltimore, Md., 1997.

[3] FIPA. FIPA’99 Specification Part 2: Agent Communication Language. Available at http:
www.fipa.org

[4] B. Bauer, J. P. Muller and J. Odell. Agent UML: A Formalism for Specifying Multiagent
Software Systems. [International Journal of Sofiware Engineering and Knowledge
Engineering. Vol. 11, No. 3, pp.1-24, 2001.

[5]1 H. Zhu. SLABS: A Formal Specification Language for Agent-Based Systems. International
Journal of Software Engineering and Knowledge Engineering, Vol. 11. No. 5, pp529~558.
2001

[6] H. Zhu. Representation of roles in caste, Technical report TR-DoC-03-01, Department of
Computing, Oxford Brookes University, 2003.

[7] L. Shan and H. Zhu. Modelling and specification of scenarios and agent behaviour, To
appear in IEEE/WIC Conference on Intelligent Agent Technology (IAT’03), Halifax,
Canada, Oct. 2003.

[8] L. Shan and H. Zhu Consistency Constraints on Agent-Oriented Modeling of Multi-Agent
Systems, Technical Report TR-DOC-03-03, Department of Computing, Oxford Brookes
University, Oxford, UK, Nov. 2003.

[9] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison Wesley. 1999

