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Abstract Meta-modelling plays an important role in
model driven software development. GEBNF is a graphic
extension of BNF. It is proposed to define the abstract
syntax of graphic modelling languages. From a GEBNF
syntax definition, a formal predicate logic language can
be induced so that meta-modelling can be performed for-
mally by specifying a predicate on the domain of syntac-
tically valid models. In this paper, we investigate the
theoretical foundation of this meta-modelling approach.
We formally define the semantics of GEBNF and its in-
duced predicate logic languages, then apply Goguen and
Burstall’s institution theory to prove that they form a
sound and valid formal specification language for meta-
modelling.
Keywords Meta-modelling, Modelling languages, Ab-
stract syntax, Semantics, Graphic extension of BNF,
Formal logic, Institution.

1 Introduction

In the past years, we have seen a rapid growth of re-
search on model-driven software development, in which
models are created and processed as the main artefacts
of software engineering. By raising the level of abstrac-
tion in software development, models facilitate a wider
range of automation covering all phases and aspects of
software development including requirements analysis,
architectural and detailed design, code generation, in-
tegration, testing, maintenance, reverse engineering and
evolution, and so on. Automated software tools and de-
velopment environments have been developed to support
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model construction, model analysis, model transforma-
tion, and model-based software testing. However, de-
spite of the great effort in the research on modelling lan-
guages and model-based software development tools, the
correctness of modelling tools remains an open question.
It is crucial to formally specify software modelling lan-
guages and tools since it is the basis of the verification,
validation and testing of their correctness.

Formal specification of software systems has been
a significant challenge to both communities of formal
methods and software engineering for at least three
decades [2]. The advent of model-driven methodology
raises the stakes because modelling languages and tools
are software systems one level higher than application
software. They are languages to model software systems
and tools to process software systems. In UML’s termi-
nology, they are at meta-model layer [3].

A meta-model is a model of models. Meta-modelling
is to define a set of models that have certain structural
and/or behavioural features by means of modelling. It is
the approach adopted by OMG’s model-driven architec-
ture [4] and popular among researchers and practitioners
in model-driven software engineering. It plays three key
roles, and often a combination of them, in model-driven
software development methodologies.

First, meta-models have been used to define modelling
languages by specifying both the syntax and semantics.
Currently, the syntax of a modelling language is usu-
ally defined at the abstract syntax level, while the se-
mantics is usually specified in the form of an ontology,
which presents a set of basic concepts and their inter-
relationships underlying the models. For example, the
meta-model for UML defines the abstract syntax of UML
modelling language in a class diagram that contains a set
of concepts represented as meta-classes and a set of re-
lationships between them represented as association, in-
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heritance and aggregation relations between these meta-
classes [5]. Many other languages can also be defined
in this way, such as CWM, SPEM, XMI, etc. [3]. The
transformations of a model into other types of software
artefacts can be regarded as translation between different
modelling languages.

Second, meta-models have been used to impose re-
strictions on an existing modelling language so that only
a subset of the syntactically valid models are considered
as its valid instances. For example, specifying design pat-
terns is widely considered as a meta-modelling problem.
Each design pattern can be defined as a meta-model so
that only its instances are designs that conform to the
pattern [6–8]. Checking if a model has certain structural
and/or behavioural properties is therefore equivalent to
check its conformance to a particular meta-model.

Finally, meta-models have also been used to extend
existing meta-models by introducing new concepts and
defining how the new concepts are related to the exist-
ing ones. For example, platform specific models can be
defined through introducing model elements that are spe-
cific to certain software development platforms. In [9], a
meta-model was proposed for aspect-oriented modelling
by extending the UML meta-model with basic concepts
of aspect-orientation, such as cross-cut points, etc. Verti-
cal development activities such as transformation of plat-
form independent models to platform specific models and
then to implementations can be regarded as mappings
from one modelling language to another with certain con-
sistency constraints.

Due to the importance of meta-modelling, growing re-
search efforts on meta-modelling have been made in the
past few years. In our previous work [10], we have pro-
posed a formal meta-modelling approach, which includes
• a meta-notation called GEBNF, which stands for

Graphic Extension of BNF, for the definition of ab-
stract syntax of modelling languages, and

• a technique that induces formal predicate logic lan-
guages (FPL) from GEBNF syntax definitions.

In our approach, meta-modelling is performed by defin-
ing the abstract syntax of a modelling language in
GEBNF and formally specifying the constraints on mod-
els in the formal logic language induced from GEBNF.
Formal reasoning about meta-models can be supported
by automatic or interactive inference engines. Transfor-
mation of models can be specified as mappings and rela-
tions between GEBNF syntax definitions together with
translations between the predicate logic formulas. In
particular, we have demonstrated the following uses of
our approach in the quality assurance of model-driven
software development tools.
• Definition of graphic modelling languages: A non-

trivial subset of UML, including class diagrams and
sequence diagrams, has been defined in GEBNF
[8, 11]. Case studies have also been conducted

successfully to specify the abstract syntax of the
graphical software architecture description language
ExSAVN [12] and agent-oriented software modelling
language CAMLE.

• Formal specification of models’ structural and be-
havioural properties: All the design patterns in the
Gang-of-Four book [13] have been formalised by
specifying the structural and behavioural properties
of UML design models in the induced FPL [8,11]. A
set of consistency constraints on UML models have
also been formally specified in the FPL.

• Automated checking of models’ properties: A formal
specification of model’s properties can be directly
used in automated modelling tools as an input. For
example, an automated design pattern recognition
tool called LAMBDES-DP has been developed suc-
cessfully by employing the theorem prover SPASS
[14]. The formal specifications of design patterns
are included in the tool as a repository. Reasoning
about meta-models, such as proving a design pattern
is a sub-pattern of another and the composition of
patterns, has also been explored [15].

• Formal specification of and reasoning about model
transformations: A set of pattern composition op-
erators have been formally defined [16] and their al-
gebraic properties proved on bases of FPL [17].

In this paper, we further advance the approach by laying
a solid theoretical foundation via formally defining the
semantics of GEBNF meta-notation and proving that
GEBNF syntax definitions and their induced formal log-
ics form an institution of formal specification for meta-
modelling [18].

The paper is organized as follows. Section 2 gives an
introduction to the GEBNF meta-modelling approach.
Section 3 investigates how syntactic constraints imposed
by GEBNF meta-notation can be represented as predi-
cates in the induced FPL. Section 4 formally defines the
semantics of GEBNF and its induced FPL by applying
the model theory of mathematical logics. Section 5 stud-
ies the theoretical properties of GEBNF and its induced
formal logic systems in the framework of institution the-
ory. Finally, Section 6 concludes the paper with a dis-
cussion of related works and future work.

2 Overview of GEBNF

In this section, we introduce the meta-notation of
GEBNF and the FPL induced from GEBNF syntax def-
initions.

2.1 The Meta-Notation

Similar to the syntax definitions of programming lan-
guages in BNF, a syntax definition of a modelling lan-
guage in GEBNF consists of a set of syntax rules that
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contain non-terminal symbols and terminal symbols.
GEBNF extends BNF by bringing in two facilities. The
first is called labelled fields. It requires each field in a syn-
tax construction is labelled by a unique name. Therefore,
these labels form a set of function symbols in the signa-
ture of a FPL. The second is the facility for referential
occurrences of non-terminal symbols in the definition of
a syntax construction so that non-linear structures like
graphs can be defined.

In GEBNF, the abstract syntax of a modelling lan-
guage is a 4-tuple 〈R,N, T, S〉, where N is a finite set of
non-terminal symbols, and T is a finite set of terminal
symbols. Each terminal symbol, such as String, repre-
sents a set of atomic elements that may occur in a model.
R ∈ N is the root symbol and S is a finite set of syntax
rules. Each syntax rule can be in one of the following
two forms.

Y ::= X1|X2| · · · |Xn (1)
Y ::= f1 : E1, f2 : E2, · · · , fn : En (2)

where Y ∈ N , X1, X2, · · · , Xn ∈ T ∪N , f1, f2 , · · · , fn
are field names, and E1, E2, · · · , En are syntax expres-
sions, which are inductively defined as follows.

• C is a basic syntax expression, if C is a literal in-
stance of a terminal symbol, such as a string or a
number.

• X is a basic syntax expression, if X ∈ N ∪ T .
• X@Z.f is a basic syntax expression, if X,Z ∈ N ,

and f is a field name in the definition of Z, and
X is the type of f field in Z’s definition. The non-
terminal symbol X is called a referential occurrence.

• E∗, E+ and [E] are syntax expressions, if E is a
basic syntax expression.

Informally, each terminal and non-terminal symbol de-
notes a type of elements that may occur in a model.
Each terminal symbol denotes a set of predefined basic
elements. For example, the terminal symbol String de-
notes the set of strings of characters. Non-terminal sym-
bols denote the constructs of the modelling language.
The elements of the root symbol are the models of the
language.

If a non-terminal symbol Y is defined in the following
form,

Y ::= f1 : X1, · · · , fn : Xn,

then, Y denotes a type of elements that each consists of
n elements of type X1, · · · , Xn, respectively. In other
words, each element of type Y is constructed from n
elements of type X1, · · · , Xn, respectively. The k’th ele-
ment in the tuple can be accessed through the field name
fk. And, if a is an element of type Y , we write a.fk for
the k’th element of a.

For the sake of convenience, we also write X@Z and X as
abbreviation of X@Z.f when there is no risk of confusion.

If a non-terminal symbol Y is defined in the form of

Y ::= X1|X2| · · · |Xn,

it means that an element of type Y can be an element of
type Xi, where 1 ≤ i ≤ n.

The meaning of the meta-notation is informally ex-
plained in Table 1.

Example 1 (Directed Graphs)

The following is a definition of the abstract syntax of di-
rected graphs in GEBNF. In the sequel, it will be referred
to as DG and used throughout the paper to illustrate the
notions and notations.

Graph ::= nodes : Node+, edges : Edge∗

Node ::= name : String, weight : [Real]

Edge ::= from, to : Node@Graph.nodes,

weight : Real

where Graph is the root symbol. Graph,Node and Edge
are non-terminal symbols, and String and Real are ter-
minal symbols.

The first syntax rule states that a graph consists of a
non-empty set of nodes and a set of edges. The second
rule states that each node has a name, which is a string
of characters, and it may have an optional weight, which
is a real number. Finally, the third rule states that each
edge refers to two nodes in the graph; one is referred to
as the ’from’ node and the another as the ’to’ node. And,
each edge has a weight, which is a real number. �

2.2 Well-Formed Syntax Definitions

If a non-terminal symbol X ∈ N occurs on the right-
hand-side of the definition of a non-terminal symbol Y ,
we say that X is directly reachable from Y . For exam-
ple, Node and Edge are directly reachable from Graph
through field names nodes and edges, respectively.

We define the reachable relation as the transitive clo-
sure of the directly reachable relation.

If there is a non-terminal symbol that is not reachable
from the root symbol R, its elements do not play any role
in the construction of any model. Such cases should not
occur in a well defined syntax. Similarly, we do not want
a non-terminal symbol to be used but not defined, or to
be defined more than once. Thus, we have the following
notion of well-formed syntax definitions.

Definition 1 (Well-Formed Syntax Definition)
A GEBNF syntax definition G = 〈R,N, T, S〉 is well-

formed, if it satisfies the following two conditions.

1. Completeness. For each non-terminal symbol X ∈
N , there is one and only one syntax rule s ∈ S that
defines X; i.e., X is on the left-hand-side of s.
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Table 1 Meanings of GEBNF Notation
Notation Meaning Example

X∗ A set of elements of type X. Model ::= diags : Diagram∗ : A model consists of a number N of
diagrams, where N ≥ 0.

X+ A non-empty set of elements of type X. Model ::= diags : Diagram+ : A model consists of a number N of
diagrams, where N ≥ 1.

[X] An optional element of type X. StickF ig ::= actor : [Actor] : A StickF ig has an optional element of
type Actor.

X@Z.f A reference to an existing element of type
X in field f of an element of type Z.

Assoc ::= end : Node@ClassDiag.classes : An association has an
end that refers to an existing node in the field of classes of ClassDiag.

2. Reachability. For each non-terminal symbol X ∈
N , X is reachable from the root R. �

Obviously, the syntax of directed graphs given above
is well-formed.

2.3 Induced Predicate Logic Language

Consider the syntax definition of directed graphs given
in Example 1. The first syntax rule introduces two field
names nodes and edges. They can be regarded as two
functions mapping from a graph to two types of elements
in the graph: its non-empty set of nodes and the set of
edges, respectively. That is, if g is a graph, then g.nodes
is the set of nodes in g. In general, every field f : X
in the definition of a symbol Y introduces a function
f : Y → X . Function application is written a.f for
function f and argument a of type Y .

Given a non-terminal symbol X , we will also use IsX
to check if an element x is of type X . This is useful only
if X occurs in a definition in the form of "Y ::= ...|X |...".
Thus, the type of IsX is Y → Bool.

In general, given a well-formed syntax, a set of func-
tion symbols and their types can be derived as follows.

First, we define the types of expressions and symbols.

Definition 2 (Types)
Let G = 〈R,N, T, S〉 be a GEBNF syntax definition.

The set of types of G, denoted by Type(G), is defined
inductively as follows.

1. For all s ∈ T ∪N , s is a type, which is called a basic
type.

2. P(τ) is a type, called the power type of τ , if τ is a
type.

3. τ1 → τ2 is a type, called a function type from τ1 to
τ2, if τ1 and τ2 are types. �

Definition 3 (Induced functions)
A syntax rule “A ::= B1|B2| · · · |Bn” introduces a set

of function symbols IsBi (i = 1, · · · , n) of type A →
Bool.

A syntax rule “A ::= f1 : B1, · · · , fn : Bn” introduces
a set of function symbols fi (i = 1, · · · , n) of type A →
Γ(Bi), where Γ(Bi) is defined as follows.

• Γ(B) = B, if B ∈ T ∪N ;
• Γ(B) = C, if B = [C] and C ∈ T ∪N ;

Table 2 Example: Induced Functions of Directed Graphs
Function Type
nodes Graph → P(Node)
edges Graph → P(Edge)
name Node → String
weight Node → Real
from Edge → Node
to Edge → Node
weight Edge → Real

• Γ(B) = Γ(C), if B = C@Z.f ;
• Γ(B) = P(Γ(C)), if B = C∗ or B = C+. �

Example 2 (Induced Functions)

The functions induced from the GEBNF syntax defini-
tion of directed graphs are given in Table 2. �

We also assume that for each terminal symbol s ∈ T ,
there is a set Ops of operator symbols and a set Rs of
relational symbols defined on s. These operation and
relation symbols can be used in the predicates on models.

Given a well-defined GEBNF syntax G = 〈R,N, T, S〉
of a modelling language L, we write Fun(G) to denote
the set of function symbols derived from the syntax rules.
From Fun(G), a FPL can be defined as usual (C.f. [19])
using variables, relations and operators on sets, relations
and operators on basic data types denoted by terminal
symbols, equality and logic connectives or ∨, and ∧, not
¬, implication → and equivalent ≡, and quantifiers for
all ∀ and exists ∃ .

Definition 4 (Inducted Predicate Logic)
Let G be any given well-formed GEBNF syntax defi-

nition. The FPL induced from G, denoted by FPLG is
defined inductively as follows.

Let V =
⋃

τ∈Type(G) Vτ be a collection of disjoint sets
of variables, where each x ∈ Vτ is a variable of type τ ,
and V is disjoint to Fun(G).
1. Each literal constant c of type s ∈ T is an expression

of type s.
2. Each element v in Vτ , i.e. variable of type τ , is an

expression of type τ ∈ Type(G).
3. e.f is an expression of type τ ′, if f is a function

symbol of type τ → τ ′, e is an expression of type τ .
4. {e(x)|Pred(x)} is an expression of type P(τe), if x

is a variable of type τx, e(x) is an expression of type
τe and Pred(x) is a predicate on type τx.
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5. e1 ∪ e2, e1 ∩ e2, and e1 − e2 are expressions of type
P(τ), if e1 and e2 are expressions of type P(τ).

6. e ∈ E is a predicate on type τ , if e is an expression
of type τ and E is an expression of type P(τ).

7. e1 = e2 and e1 �= e2 are predicates on type τ , if e1
and e2 are expressions of type τ .

8. R(e1, · · · en) is a predicate on type τ , if e1, · · · en are
expressions of type τ , and R is any n-ary relation
symbol on type τ .

9. e1 ⊂ e2 and e1 ⊆ e2 are predicates on type P(τ), if
e1 and e2 are expressions of type P(τ).

10. p ∧ q, p ∨ q, p ≡ q, p ⇒ q and ¬p are predicates on
type τ , if p and q are predicates on type τ .

11. ∀x ∈ D · (p(x)) and ∃x ∈ D · (p(x)) are predicates on
type P(τ), if D is a type τ , x is a variable of type
τ , and p(x) is a predicate on type τ . �

For the sake of convenience, given an expression S of
type P(τ), we will also write ∀x ∈ S · (p(x)) as abbre-
viation of the expression ∀x ∈ τ · (x ∈ S ⇒ p(x)) and
∃x ∈ S · (p(x)) as abbreviation of ∃x ∈ τ · (x ∈ S ∧ p(x)).

In a FPLG, functions and relations can be defined as
usual. For the sake of readability, we will use a mixture of
infix and prefix forms for defined functions and relations.
Thus, we may also write the application of function f
to argument x in the more conventional prefix notation
f(x).

Example 3 (Definition of a Function)

For example, the set of nodes in a graph g that have no
weight associated with can be formally defined as follows
using the functions induced from the syntax definition.

UnweightedNodes(g : Graph) �
{n|n ∈ g.nodes ∧ n.weight = ⊥}

where ⊥ means undefined. �

2.4 Meta-Modelling

Given the abstract syntax of a modelling language de-
fined in GEBNF, meta-modelling within the framework
of the modelling language can be performed by defining
a predicate p such that the required subset of models are
those that satisfy the predicate. In the sequel, we define
a meta-model to be an ordered pair (G, p), where G is a
GEBNF syntax and p is a predicate in FPLG.

Example 4 (Meta-modelling)

Consider DG in Example 1. The set of strongly con-
nected graphs can be defined as the set of models that
satisfy the following condition.

StronglyConnected(g : Graph) �
∀x, y ∈ g.nodes · (x = y ∨
((x reaches y) ∧ (y reaches x)),

where the predicate (x reaches y) : Node×Node → Bool
is defined as follows.

(x reaches y) �
∃e ∈ g.edges · (x = e.from ∧ y = e.to) ∨
∃z ∈ g.nodes · ((x reaches z) ∧ (z reaches y))

The set of acyclic graphs can be defined as the set of
models that satisfy the following predicate.

Acyclic(g : Graph) �
∀x, y ∈ g.nodes · ((x reaches y) ⇒ x �= y).

The set of connected graphs can be defined as follows.

Connected(g : Graph) �
∀x, y ∈ g.nodes · (x �= y ⇒
(x reaches y) ∨ (y reaches x)).

Finally, a tree can be defined as satisfying the following
condition.

Tree(g : Graph) �
Connected(g) ∧ Acyclic(g) ∧
∃x ∈ g.nodes · (∀y ∈ g.nodes · (x reaches y)) ∧
∀e, e′ ∈ g.edges · (e.to = e′.to ⇒ e = e′)

�

In the same way, design patterns have been speci-
fied by first defining the abstract syntax of UML class
diagrams and sequence diagrams in GEBNF, and then
specifying the conditions that their instances must sat-
isfy [8, 11].

3 Axiomatization of Syntax Constraints

In this section, we discuss how to use the induced FPL
to characterize the syntax restrictions that GEBNF im-
poses on models.

3.1 Optional Elements

Assume that a non-terminal symbol A is defined in the
following form.

A ::= · · · , f : [B], · · · .
The function f has the type A → B, which is the same
as the function g in the following syntax rule, where B
is not optional.

A ::= · · · , g : B, · · · .
The difference is that f is a partial function while g is a
total function. Therefore, for each non-optional function
symbol g, we require it satisfying the following condition.

∀x ∈ A · (x.g �= ⊥), (3)

where ⊥ means undefined.
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Example 5 (Partial and Total Functions)

In Example 1, according to the second syntax rule, a
node n may be associated with no weight. Thus, the
function weight of type Node → Real is a partial func-
tion. When a node n has no weight, n.weight is un-
defined and we write n.weight = ⊥. The type of a
function does not distinguish total functions from par-
tial functions. Instead, we assume that all function
symbols are partial unless explicitly stated by an ax-
iom about the function. An example of total function is
name : Node → String. It, therefore, must satisfy the
following condition.

∀x ∈ Node · (x.name �= ⊥).

�

3.2 Non-Empty Repetitions

Assume that a non-terminal symbol A is defined in one
of the following forms.

A ::= · · · , f : B∗, · · · (4)
A ::= · · · , g : B+, · · · (5)

The functions f and g induced from the above syntax
rules are of the same type, i.e. A → P(B). However, in
case of (4), an element of type A may contain an empty
set of elements of type B; while in case of (5), it can
only contain a non-empty set of elements of type B. In
other words, the image of the former can be an empty
set while that of the latter cannot. Thus, for each of the
non-empty repetition structure, we require the function
g satisfying the following condition.

∀x ∈ A · (x.g �= ∅).
Example 6 (Non-Empty Repetition)

In Example 1, the set of nodes in a directed graph is
defined as a non-empty repetition while the set of edges
is defined as repetition that allows empty occurrence.
Therefore, the function nodes must satisfy the following
axiom, but the function edges does not.

∀g ∈ Graph · (g.nodes �= ∅).
�

3.3 Referential and Creative Elements

Assume that a non-terminal symbol A is defined in the
following form.

A ::= · · · , f : B@C.g, · · ·
Informally, the field f of an element of type A will contain
a reference to an element of type B in the field g of

an element of type C. Thus, it is called a referential
occurrence. The function f has the same type A → B
as the function f ′ in the following syntax rule, where the
element of type B is a creative occurrence.

A ::= · · · , f ′ : B, · · ·
However, the function f has different properties from
f ′. Thus, its semantics in terms of the structure of the
models is different. For example, if the syntax definition
of Edge in Example 1 is replaced by the following rule
(i.e. when the reference modifier on Node is removed
from the original rule),

Edge ::= from : Node, to : Node, weight : Real,

each edge will introduce two new nodes, i.e. for all edges
e �= e′ ∈ Edges, we have that e.from �= e′.from and
e.to �= e′.to. Moreover, for all edges e, we have that the
node e.from must be different from the node e.to, i.e.
e.from �= e.to. In contrast, the original definition re-
quires that for all e ∈ Edges, we have e.from ∈ g.nodes
and e.to ∈ g.nodes for g ∈ Graph. There is no any
further restriction on e ∈ Edge. In other words, it al-
lows e.from = e.to, e.from = e′.from, e.to = e′.to and
e.from = e′.to to be true for some edges e and e′.

In general, the function symbols induced from creative
occurrences of the same non-terminal symbol must have
disjoint images. Formally, let f and g be two functions
induced from two creative occurrences of non-terminal
symbol X in two syntax rules in the following form,

Y ::= · · · , f : E(X), · · ·
Z ::= · · · , g : E′(X), · · ·

When both E(X) and E′(X) are in the form of X and
[X ] for X ∈ N , we require functions f and g satisfying
the condition

∀a ∈ Y · ∀b ∈ Z · ((a.f �= ⊥ ∧ b.g �= ⊥) ⇒ a.f �= b.g).

When both E(X) and E′(X) are in the form of X∗ and
X+ for X ∈ N , we require functions f and g satisfying
the condition

∀a ∈ Y · ∀b ∈ Z · (b.g ∩ a.f = ∅).
Similarly, when E(X) is in the form of X and [X ], but
E′(X) is in the form of X∗ and X+, we require functions
f and g satisfying the following property.

∀a ∈ Y · ∀b ∈ Z · (a.f /∈ b.g)

The semantics of referential occurrences can also be
formally defined as constraints on models.

Suppose that two syntax rules are as follows:

Y ::= · · · , g : E(X), · · · ,
Z ::= · · · , f : X@Y.g, · · · .



Front. Comput. Sci.
7

When E(X) is in one of the forms X and [X ], we
require functions f and g satisfying the condition

∀a ∈ Z · ∀b ∈ Y · (a.f = b.g).

When E(X) is in one of the forms X∗ and X+, we
require functions f and g satisfying the condition

∀a ∈ Z · ∀b ∈ Y · (a.f ∈ b.g ∧ (b.g = ∅ ⇒ a.f = ⊥)).

Suppose that two syntax rules are in the form of

Y ::= · · · , g : E(X), · · · ,
Z ::= · · · , f : E′(X@Y.g), · · · ,

where E(X) and E′(X) are in any of the forms X∗ and
X+. Then, we require functions f and g satisfying the
following condition.

∀a ∈ Z · ∀b ∈ Y · (a.f ⊆ b.g)

It is worth noting that the above constraints are in the
predicate logic language induced from syntax definitions.

Example 7 (Referential Occurrences)

In Example 1, there are two referential occurrences of
non-terminal symbols. Thus, the functions to and from
must satisfy the following conditions.

∀g ∈ Graph · ∀e ∈ Edge · (e.from ∈ g.nodes)

∀g ∈ Graph · ∀e ∈ Edge · (e.to ∈ g.nodes)

�

Note that, the above conditions on edges may look
ridiculous since one may read it as requiring the nodes
associated to an edge to be in the set of nodes ’for all
graphs g’. However, it is correct, because Graph is the
root non-terminal symbol, which we only allow the exis-
tence of one element of the type to represent a model in
the language. Therefore, ’∀g ∈ Graph’ should be read as
’for the graph g’.

Let G be any well-formed GEBNF syntax definition.
In the sequel, we write Axiom(G) to denote the set of
constraints derived from G according to the above rules.

Example 8 (Syntax Constraints)

Consider the GEBNF syntax definition DG given in Ex-
ample 1. The set Axiom(DG) contains the following
predicates.

∀g ∈ Graph · ∀e ∈ Edge · (e.from ∈ g.nodes)

∀g ∈ Graph · ∀e ∈ Edge · (e.to ∈ g.nodes)

∀g ∈ Graph · (g.nodes �= ∅)
∀n ∈ Node · (n.name �= ⊥)

∀e ∈ Edge · (e.from �= ⊥)

∀e ∈ Edge · (e.to �= ⊥)

∀e ∈ Edge · (e.weight �= ⊥)

∀g ∈ Graph · (g.nodes �= ⊥)

∀g ∈ Graph · (g.edges �= ⊥)

4 Algebraic Semantics

This section formally defines the semantics of GEBNF
by regarding models as mathematical structures that sat-
isfy the conditions imposed by the abstract syntax.

4.1 Models as Mathematical Structures

Let G = 〈R,N, T, S〉 be a GEBNF syntax definition and
ΣG = (N ∪ T, FG), where

FG = Fun(G) ∪
⋃
s∈T

(Ops ∪Rs).

ΣG is called the signature induced from G.

Definition 5 (ΣG-Algebras)
A ΣG-algebra A is a mathematical structure that con-

sists of a family {Ax|x ∈ N ∪ T } of sets and a set of
functions {fϕ|ϕ ∈ FG}, where if ϕ is of type X → Y ,
then fϕ is a function from set [[X ]]T to the set [[Y ]]T ,
where for each type τ , [[τ ]]T is the semantics of the type
τ defined as follows.

[[τ ]]T =

⎧⎨
⎩

Aτ , if τ ∈ N ∪ T ;
P([[τ ′]]T ), if τ = P(τ ′);
([[τ1]]

T → [[τ2]]
T ), if τ = (τ1 → τ2).

where P(X) is the power set of X, (X → Y ) is the set
of partial or total functions from X to Y . �

In particular, for each terminal symbol s ∈ T , for
example, String, and the set Ops of operator symbols
and set Rs of relational symbols defined on s, there is a
mathematical structure

〈As, {Opϕ|ϕ ∈ Ops} ∪ {rρ|ρ ∈ Rs}〉

such that

1. there is a non-empty set As of elements, which are
elements of type s;

2. for each operator symbol ϕ in the set Ops, there is
a corresponding operation opϕ defined on As;

3. for each n-ary relational symbol ρ, there is a corre-
sponding n-ary relation rρ defined on As.

We assume that the mathematical structure
〈As, Ops ∪Rs〉 is fixed for all GEBNF syntax defi-
nitions. But, its detail is not important, thus omitted in
this paper.

Obviously, not all ΣG-algebras are syntactically valid
models. Thus, we have the following notion of ’no junk’.

Definition 6 (Algebra without Junk)
We say that a ΣG-algebra A contains no junk, if
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1. |AR| = 1, and
2. for all s ∈ N and all e ∈ As, we can define a

function f : R → P(s) in FPL such that for some
m ∈ AR we have e ∈ f(m). �

Informally, we consider a ΣG-algebra A as a model in
the modeling language. Condition (1) means that there
is only one root element. This is similar to the condition
that a parsing tree of a program must have one and only
one root. Condition (2) means that every element in a
model must be accessible from the root. This is similar
to the condition that every element in a program must be
on the parsing tree of the program and thus is accessible
from the root of the tree.

In the sequel, we will only consider ΣG-algebras that
contain no junk.

Example 9 (A Model as an Algebra)

Consider the directed graph shown in Fig. 1. It is a
model of Example 1. It can be represented as a ΣG-
algebra as follows.

Carrier sets:
Graph = {g}, Node = {a, b, c, d}, Edge = {ab, ac, ad, bd}
Functions:
nodes : Graph → Node : g.nodes = {a, b, c, d}
edges : Graph → Edge : g.edges = {ab, ac, ad, bd}
name : Node → String :
a.name =′ a′, b.name =′ b′,
c.name =′ c′, d.name =′ d′

weight : Node → Real :
a.weight = 4.5, b.weight = ⊥,
c.weight = 2.6, d.weight = ⊥.

from : Edge → Node :
ab.from = a, ac.from = a,
ad.from = a, bd.from = b

to : Edge → Node :
ab.to = b, ac.to = c, ad.to = d, bd.to = d

weight : Edge → Real :
ab.weight = 0.1, ac.weight = 0.5,
ad.weight = 0.3, bd.weight = 1.2

Note that, the above mathematical structure has no
junk. In particular, we have that |Graph| = 1; thus,
condition (1) of no junk holds. And, we also have that
Node = g.nodes and Edge = g.edges; thus, condition
(2) holds.

If we modify the structure slightly by adding one
more element e to the carrier set Node (i.e. Node =
{a, b, c, d, e}), it contains a junk element e, which cannot
be reached from g. �

Note that, R is the root non-terminal symbol.

a, 4.5

b, -- c, 2.6

d,--

0.1

0.5

1.2

0.3

Fig. 1 An Example of Directed Graph

4.2 Satisfaction of Constraints

For a ΣG-algebra to be a syntactically valid model, it
must also satisfy the axioms derived from the GEBNF
syntax. The following defines what is meant by an al-
gebra satisfies a condition represented in the form of a
predicate or statement in the FPL.

An assignment α to a set V of variables in an Σ-
algebra A is a mapping from the set V to the elements
of the algebra such that for each variable v of type τ , we
have that α(v) ∈ [[τ ]]T .

Definition 7 (Evaluation of Expressions)
The evaluation of an expression e or predicate p under

an assignment α, written [[e]]α, is defined as follows.

• [[c]] = c, if c is a constant of basic type τ ∈ T ;
• [[v]]α = α(v) ∈ [[τ ]]T , if v is a variable of type τ ;
• [[e.f ]]α = fA([[e]]α);
• [[{e(x)|Pred(x)}]]α = {[[e(x)]]α|[[Pred(x)]]α};
• [[e1 ∪ e2]]α = [[e1]]α ∪ [[e2]]α;
• [[e1 ∩ e2]]α = [[e1]]α ∩ [[e2]]α;
• [[e1 − e2]]α = [[e1]]α − [[e2]]α;
• [[e ∈ E]]α = [[e]]α ∈ [[E]]α;
• [[e1 = e2]]α = ([[e1]]α = [[e2]]α)
• [[e1 �= e2]]α = ([[e1]]α �= [[e2]]α);
• [[R(e1, · · · en)]]α = RA([[e1]]α, · · · , [[en]]α);
• [[e1 ⊂ e2]]α = [[e1]]α ⊂ [[e2]]α;
• [[e1 ⊆ e2]]α = [[e1]]α ⊆ [[e2]]α;
• [[p ∧ q]]α = [[p]]α ∧ [[q]]α;
• [[p ∨ q]]α = [[p]]α ∨ [[q]]α;
• [[p ≡ q]]α = ([[p]]α ≡ [[q]]α);
• [[p ⇒ q]]α = ([[p]]α ⇒ [[q]]α);
• [[¬p]]α = ¬[[p]]α;
• [[∀x ∈ D ·(p)]]α = True, if for all e in [[D]]T , [[p]]α[x/e]

is true;
• [[∃x ∈ D · (p)]]α = True, if there exists e in [[D]]T

such that [[p]]α[x/e] is true.

where α[x/e] is an assignment such that α[x/e](x) = e
and for all x′ �= x ∈ V , α[x/e](x′) = α(x′). �

Let α be an assignment in ΣG-algebra A and p be a
predicate in FPLG.
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Definition 8 (Satisfaction Relation)
We say that p is true in A under assignment α and

write A |=α p, if [[p]]α = true. We say that p is true in A
and write A |= p, if for all assignments α in A we have
that A |=α p. �

We can now define what is a syntactically valid model
and the semantics of meta-models.

Definition 9 (Syntactically Valid Models)
A ΣG-algebra A (with no junk) is a syntactically valid

model of G, if for all p ∈ Axiom(G), we have that A |=
p.

Let MM = (G, p) be a meta-model that consists of
a GEBNG syntax definition G and a statement p in
FPLG. The semantics of the meta-model MM is a
subset of syntactically valid models of G that satisfy the
statement p. �

Note that, the definition of satisfaction relation is a
standard treatment of predicate logics in the model the-
ory of mathematical logics [19]. When a model is finite,
the truth of a statement about the model is decidable.

4.3 Logic Inference about Models

The truth of a statement about models can also be for-
mally deducted by logic inferences, for example, by ap-
plying natural deduction. Let Γ be a set of predicates
in FPLG. In the sequel, we will write Γ � p to denote
that p can be deduced from Γ in a given formal predicate
logic inference system.

Definition 10 (Truth of Sentences)
Let G be any given well-formed GEBNF syntax defi-

nition. A predicate p in FPLG is true, written |=G p,
if for all syntactically valid model A of G, we have that
A |= p. �

The completeness and soundness of the formal infer-
ence system can be defined as follows.

Definition 11 (Completeness and Soundness)
The inference system is complete if we have that |=G p

if and only if Axiom(G) � p. It is sound if we have that
for all syntactically valid model A, Axiom(G) � p ⇒ q
and A |= p imply that A |= q. �

In the sequel, we will not be so specific about the in-
ference system, but generally assume that the inference
is sound. This assumption is reasonable because the defi-
nition of the semantics of FPLG is a standard treatment
in the model theory of mathematical logics. In partic-
ular, natural deduction is sound for FPLG. However,
we will not assume the inference system being complete,
because it depends on the mathematical property of the

A model is finite if As is a finite set for all s ∈ N .

semantics of the terminal symbols and also because the
quantified variables in a predicate can be of a higher or-
der type. The theory to be developed in the remainder
of the paper can be established without the completeness
property of the inference system.

5 Institution of Meta-models

As discussed in Section 1, meta-modelling often in-
volves multiple meta-models. Each meta-model defines
a FPL. Translation between such logics plays a funda-
mental role in model transformation and reasoning about
models. The syntax and semantics of such translations
are captured by the theory of institutions [18] and entail-
ment systems. In this section, we apply these theories to
GEBNF.

5.1 The Category of GEBNF Syntax Definitions

Let’s first introduce a few mathematical notions and no-
tations.

A category C consists of a class Cobj of objects and
a class Cm of morphisms (also called arrows) between
objects together with the following three operations:

• dom : Cm → Cobj ;
• codom : Cm → Cobj ;
• id : Cobj → Cm,

where for all morphisms f , dom(f) = A is called the
domain of the morphism f ; codom(f) = B the codomain,
and we say that the morphism f is from object A =
dom(f) to object B = codom(f), written f : A → B.
For each object A, id(A) is the identity morphism that
its domain and codomain are A. id(A) is also written as
idA.

Moreover, there is a partial operation ◦ of composition
of morphisms. The composition of morphisms f and g,
written f ◦ g, is defined if dom(f) = codom(g). The
result of composition f ◦g is a morphism from dom(g) to
codom(f). The composition operation has the following
properties. For all morphisms f, g, h,

(f ◦ g) ◦ h = f ◦ (g ◦ h)
idA ◦ f = f, if codom(f) = A
g ◦ idA = g, if dom(g) = A.

Given a category C, we will also write |C| and ||C|| to
denote Cobj and Cm, respectively, in the sequel.

We now define the morphisms between GEBNF syn-
tax definitions and prove that they form a category.

Let G = 〈RG, NG, TG, SG〉, H = 〈RH , NH , TH , SH〉
be two GEBNF syntax definitions, Fun(G) and Fun(H)
be the function symbols induced from G and H, respec-
tively.

Definition 12 (Syntax Morphisms)
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A syntax morphism μ from G to H, written μ : G →
H, is a pair (m, f) of mappings m : NG → NH and
f : Fun(G) → Fun(H) that satisfy the following two
conditions:

1. Root preservation: m(RG) = RH ;
2. Type preservation: for all op ∈ Fun(G),

(op : A → B) ⇒ (f(op) : m(A) → m(B)),
where we naturally extend the mapping m to type
expressions. �

Example 10 (Syntax Morphism)

The following is a GEBNF syntax definition AR of the
models of flight routes for an airline.

Map ::= cities : City+, routes : Route∗

City ::= name, country :: String,

population : Real

Route ::= depart, arrive : City,

distance : Real, f lights : T imeDay∗

We define a syntax morphism from DG to AD by two
mappings m and f as follows.

m = (Graph → Map,Node → City, Edge → Route),

f = (nodes → cities, edges→ routes,

name → name,weight → population,

to → arrive, from → depart, weight → distance)

It is easy to prove that these mappings preserve the root
(i.e. m(Graph) = Map) and the types. Therefore, they
form a syntax morphism from the GEBNF syntax defi-
nition DG given in Example 1 to AR. �

The composition of two syntax morphisms is the com-
position of the mappings correspondingly. Formally, we
have the following definition.

Definition 13 (Composition of Syntax Morphisms)
Assume that μ = (m, f) : G → H and ν = (n, g) :

H → J be syntax morphisms. The composition of μ to
ν, written μ ◦ ν, is defined as (m ◦ n, f ◦ g). �

We can prove that the above definition is sound.

Lemma 1 (Soundness of Syntax Morphism Composi-
tions)

For all syntax morphisms μ : G → H, ν : H → J, and
ω : J → K, we have that:

1. μ ◦ ν is a syntax morphism from G to J;
2. (μ ◦ ν) ◦ ω = μ ◦ (ν ◦ ω).

Proof.

1. The statement can be proved by showing that the
composition satisfies the root and type preservation
conditions. Details are omitted for the sake of space.

2. The statement follows the associative property of the
composition of mappings. �

We now define the identity syntax morphism IdG on
G. Let idX be the identity mapping on set X .

Definition 14 (Identity Syntax Morphisms)
For all G = 〈R,N, T, S〉, the identity syntax mor-

phism of G, denoted by IdG, is defined as the pair of
mappings (idN , idFun(G)). �

The following lemma proves that the definition of IdG
is sound, i.e., they are indeed syntax morphisms and have
the identity property. Its proof is omitted for the sake of
space.

Lemma 2 (Soundness of Identity Syntax Morphisms)
For all GEBNG syntax definitions G and H, we have

that
1. IdG is a syntax morphism.
2. For all syntax morphism μ : G → H, we have that

IdG ◦ μ = μ and μ ◦ IdH = μ. �

From Lemma 1 and 2, we can easily prove that the set
of GEBNF syntax definitions and the syntax morphisms
defined above form a category.

Theorem 1 (Category of GEBNG Syntax)
Let Obj be the set of well-formed GEBNF syntax def-

initions, Mor be the set of syntax morphisms on Obj.
(Obj,Mor) is a category. It is denoted by SYN in the
sequel.
Proof. The theorem directly follows Lemma 1 and 2. �

5.2 Translation of Sentences

Given a syntax morphism from one GEBNF definition to
another, we can define a translation between the FPLs
induced from them. Such a translation can be formalized
as a functor between categories. The notion of functor
is defined as follows.

Let C,D be two categories. A functor F from C to
D consists of two mappings: an object mapping Fobj :
Cobj → Dobj , and a morphism mapping Fm : Cm → Dm

that have the following properties.
First, for all morphisms f : A → B of category C, we

have that Fm(f) : Fobj(A) → Fobj(B) in category D.
Second, for all morphisms f and g in C, we have that

Fm(f ◦ g) = Fm(f) ◦ Fm(g).

Finally, for all objects A in category C, we have that
Fm(idA) = idFobj(A).

The following defines a functor from the category SYN

of GEBNF syntax definitions to the category SEN of the
sets of predicates in the FPL induced from GEBNF syn-
tax definitions with morphisms being mappings between
sets.
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Definition 15 (Category SEN)
Let Sen(G) = {p|p is a predicate in FPLG}, and

Senobj = {Sen(G)|G is a GEBNF syntax definition}.
Given a syntax morphism μ = (m, f) from G to H, we
define a mapping Senm(μ) from Sen(G) to Sen(H) as
follows. For each predicate p in Sen(G),
1. Each variable v of type τ in predicate p is replaced

by a variable v′ of type m(τ).
2. Each op ∈ Fun(G) in predicate p is replaced by the

function symbol f(op).

The predicate p′ obtained is the image of p under
Senm(μ). We now define

Senm = {Senm(μ)|μ is a syntax morphism}.
�

It is easy to prove that SenObj as objects and Senm

as morphisms form a category, which is referred to by
SEN.

Lemma 3 SEN = 〈SenObj , Senm〉 is a category. �

Example 11 (Translation of Sentence)

Consider the syntax morphism defined in Example 10.
The reaches predicate defined in Example 4 can be
translated into the following sentence in FPLAR.

(x reaches y) �
∃e ∈ g.routes · (x = e.depart ∧ y = e.arrive) ∨
∃z ∈ g.cities · ((x reaches z) ∧ (z reaches y))

�

Note that Sen is a mapping from objects in the cat-
egory SYN to objects of SEN. And, Senm is a mapping
from morphisms of SYN to morphisms of category SEN.
Does the pair form a functor? The following theorem
proves that (Sen, Senm) is a functor indeed.

Theorem 2 (Soundness of the Definition of Functor
Sen)

The pair (Sen, Senm) is a functor from category SYN

of GEBNF syntax definitions to the category SEN. In
the sequel, we use SEN to denote this functor.
Proof.

For the sake of space, here we only give a skeleton of
the proof. Details are omitted.

First, we prove that for all predicate p in Sen(G),
Senm(μ)(p) is a predicate in Senobj(H). Thus, Senm(μ)
is a mapping from Senobj(G) to Senobj(H). This can be
proved by induction on the structure of the predicate p.

Second, we prove that Senm(μ ◦ ν) = Senm(μ) ◦
Senm(ν). This follows directly the definition of syntax
morphisms.

Finally, we prove that for all GEBNF syntax definition
G, Senm(IdG) is also the identity mapping on Sen(G).
This directly follows the definition of IdG. �

5.3 Constraint Preserving Syntax Morphisms

Let μ be a syntax morphism from G to H. We require
the syntax morphism to preserve the conditions such as
an element is a referential occurrence and non-optional
occurrence, etc. Thus, we define the notion of constraint
preserving syntax morphisms as follows.

Definition 16 (Constraint Preserving Morphisms)
A syntax morphism μ from G to H is constraint pre-

serving if for all constraint c ∈ Axiom(G) we have that
Axiom(H) � Senμ(c). �

Example 12

Consider the syntax morphism given in Example 10. It
is constraint preserving because for each constraint c in
Axiom(DG), which is given in Example 8, we can prove
that Axiom(AR) � c′, where c′ is the translation of c into
PLAR according to the syntax morphism. For instance,
the following constraint c on directed graph

c � ∀g ∈ Graph · (g.nodes �= ∅)

is translated into

c′ � ∀g ∈ Map · (g.cities �= ∅).

according to the syntax morphism. It is easy to see that
Axiom(AR) � c′ because c′ ∈ Axiom(AR). �

Informally, constraint preserving means that the syn-
tax constraints that GEBNF syntax definition G imposes
on models are all satisfied by the modelling language de-
fined by H when the notations in G is translated into
notations in H. The following theorem states that such
constraint preserving syntax morphisms form a full sub-
category of SYN.

Theorem 3 (Constraint Preservation Sub-Category)
The set of well-formed GEBNF syntax definitions as

objects and the set of constraint preserving syntax mor-
phisms between them as morphisms form a category and
this category is a full sub-category of SYN, because the
following statements are true.

1. For all well-formed GEBNF syntax definition G,
IdG is constraint preserving.

2. If μ and ν are constraint preserving syntax mor-
phisms, so is μ◦ν provided that they are composable.

Proof. Statements 1) and 2) follow the logic properties
of �. Thus, the theorem is true. �

In the sequel, we will use GEBNF to denote the con-
straint preserving sub-category of GEBNF syntax defi-
nitions.
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5.4 Translation of Models

The translation of the models in one modelling language
to another can also be defined as a functor.

We first observe that the models in any given mod-
elling language defined by a GEBNF syntax definition
is a category, where the morphisms are the homomor-
phisms between the models (i.e. the algebras).

Let G be any given GEBNF syntax definition. We de-
note the set of syntactical valid models of G by Mod(G).
The following defines the homomorphisms between mod-
els.

Definition 17 (Homomorphisms between Models)
Let A and B be syntactical valid models of G, a ho-

momorphism ϕ from A to B is a mapping ϕ : A → B
such that, for all s ∈ N ∪ T ,

∀x ∈ As · (ϕ(x) ∈ Bs)),

and, for all f ∈ FG, we have that

∀x ∈ Aτ · (fB(ϕ(x)) = ϕ(fA(x)))),

where functions f(x) are naturally extended to functions
on sets such that f(X) = {f(x)|x ∈ X}. �

Lemma 4 (Category of Models)
For any given well-formed GEBNF syntax definition

G, the set of syntactically valid models of G as the set
of objects and homomorphisms between models as the set
of morphisms form a category, where for each model A,
IdA is the identity mapping on A. The category is de-
noted by MODG in the sequel.
Proof. The statement can be proved by showing the con-
ditions of a category are satisfied. In particular, the as-
sociativity of morphism composition follows the associa-
tivity of the composition of homomorphisms. The unit
property of IdA follows the unit property of homomor-
phisms. �

Now, we define a category whose objects are the cat-
egories MODG for G varying over the set of GEBNF
syntax definitions, and the morphisms are functors Uμ

between these categories of models, where μ varies over
the syntax morphisms between GEBNF syntax defini-
tions.

For each syntax morphism μ = (m, f) from G to
H, the mapping Uμ from category MODH to category
MODG is defined as follows.

Let B ∈ |MODH |. We define an ΣG-algebra A as
follows:

1. For each s ∈ NG, As = Bm(s);
2. For each function symbol op ∈ Fun(G), the function

ϕop ∈ A is the function ϕf(op) in B.

We can prove that A defined as such is a ΣG-algebra
and contains no junk, thus it is in |MODG|. More-
over, through Uμ, the homomorphisms between mod-
els in ||MODH || are also naturally induced into the ho-
momorphisms between such defined models in MODG.
Therefore, we have the following lemma.

Lemma 5 (Functor between Categories of Models)
For each syntax morphism μ = (m, f) from G to H,

the mapping Uμ from objects of category MODH to the
objects of category MODG and its naturally induced map-
ping on homomorphisms is a functor from MODH to
MODG. �

Example 13 (Translation of model)

Consider the model of AR shown in Figure 2(a). It can
be translated into the model of directed graph shown in
(b) when the syntax morphism defined in Example 10 is
applied. �

Beijing: China
13,000,000

Hong Kong: China
7,000,000

London: UK
7,700,000

Paris: France
2,170,000

8,500 KM
10:30am, Monday
4:00pm, Thursday

340 KM
11:20am Tuesday

5:10, Friday

2163 MK
9:30am, Sunday 

8600 KM
10:00am, Tuesday

3:30pm, Friday

Beijing, 
13,000,000

London, 
7,700,000

Paris, 
2,170,000

Hong Kong, 
7,000,000

8,500

340

8,600

2163

(a) Model of AirRoute (b) Model of Directed Graph

Fig. 2 Example of Translation of Models

Furthermore, we have the following theorem.

Theorem 4 (Category of Modelling Languages)
Let Obj = {MODG|G ∈ |GEBNF|} and Mor =

{Uμ|μ ∈ ||GEBNF||}. (Obj,Mor) is a category. In the
sequel, it is denoted by CAT.
Proof. It is easy to prove that the definition satisfies the
conditions of a category. Details are omitted for the sake
of space. �

Now, we define the model translation as a functor.

Definition 18 (Model Translation)
We define mappings MODobj : |GEBNF| → |CATop|

and MODm : ||GEBNF|| → ||CATop|| as follows.

MODobj(G) = Mod(G);

MODm(u) = Uop
μ

where for an arrow μ : a → b, μop is the inverse arrow
of μ. �

Then, we have the following theorem. Here, again for
the sake of space, we omit the proof.

Theorem 5 (Functor of Model Translation)
MOD is a functor from GEBNF to CAT

op. �



Front. Comput. Sci.
13

5.5 Institution of GEBNF

We are now ready to prove that GEBNF and its induced
predicate logics form an institution. First let’s review
the notion of institution [18].

An institution is a tuple (Sig,Mod, Sen, |=), where
1. Sig is a category whose objects are called signatures.
2. Sen : Sig → Set is a functor that for each signature

it gives a set of sentences over that signature.
3. Mod : Sig → Catop is a functor that for each sig-

nature Σ it gives a category Mod(Σ) whose objects
are called Σ-models and whose arrows are called Σ-
homomorphisms.

4. |= is a signature indexed family of relations (|=Σ)
called Σ-satisfaction, where for each Σ ∈ |Sig|, |=Σ⊆
|Mod(Σ)| × Sen(Σ). It must satisfy the condition
that for any (φ : Σ → Σ′) ∈ ||Sig||, any M ′ ∈
|Mod(Σ′)| and any e ∈ Sen(Σ),

M ′ |=Σ′ Sen(φ)(e) ⇔ Mod(φ)(M ′) |=Σ e.

Note that, condition (4) means that the truth of a
sentence is invariant under the translation of sentence
and the models.

Theorem 6 (GEBNF Institution)
The tuple (GEBNF,MOD,Sen, |=) is an institution,

where
1. GEBNF is the category of well-formed GEBNF syn-

tax definitions as proved in Theorem 3;
2. MOD is defined in Definition 18;
3. Sen is defined in Definition 2; and
4. |= is the satisfaction relation defined in Definition

8.

Proof.
The condition 1) of institution is true by Theorem 3.
Condition 2) is true by Theorem 2.
Condition 3) is true by Theorem 5.
Condition 4) can be proved by induction on the struc-

ture of the sentence e. It is tedious but straightforward.
Details are thus omitted for the sake of space. �

Example 14 (Truth Invariance under Translation)

Let predicates (x reachesDG y) and (x reachesAR y) be
the predicates defined in Example 4 and 13, respectively.
Note that former is translated into the later by apply-
ing the sentence translation functor Sen with the syntax
morphism μ defined in Example 10. Let A be the model
given in Figure 2(a) and B be the model obtained by
translation of A using syntax morphism μ. In fact, ac-
cording to Example 13, B is given in Figure 2(b). It is
easy to see that both statements

B |= (Beijing reachesDG Paris)

and
A |= (Beijing reachesAR Paris)

are true. And, both statements

B |= (Hong Kong reachesDG Paris)

and
A |= (Hong Kong reachesAR Paris)

are false. These are instances of the condition 4) of in-
stitution. �

6 Conclusion

6.1 Summary

In this paper, we have advanced the GEBNF approach
to meta-modelling by laying its theoretical foundation on
the basis of mathematical logic and the theory of insti-
tutions. The main contributions are:

• We have formally defined the semantics of GEBNF
syntax definitions as algebras without junk and sat-
isfying a set of constraints written in the induced
FPL. These constraints are derived from the syntax
rules in GEBNF. We have proved that these algebras
and homomorphisms between them form a category.

• We have formally proved that GEBNF syntax defini-
tions and syntax morphisms form a category, where
a syntax morphism represents translations between
modelling languages. Thus, this lays a solid founda-
tion for model transformations and extension mech-
anisms of meta-modelling.

• We have also proved that the category of GEBNF
syntax definitions, the categories of models in any
given modelling language defined by GEBNF and
the satisfaction relation form an institution. There-
fore, GEBNF syntax definitions and the induced
FPL form a valid specification language for meta-
modelling.

6.2 Related work

In the past few years, many research efforts on meta-
modelling have been reported in the literature. Existing
meta-modelling languages can be classified into two cat-
egories: the general purpose and special purpose meta-
modelling languages.

UML class diagrams has been used as a general pur-
pose meta-modelling language in MOF’s four-layer ar-
chitecture of UML language definition. In such a meta-
model, the basic concepts of a modelling language is rep-
resented as the meta-classes. The relationships between
the concepts are represented as meta-relations between
the meta-classes. Restrictions on the syntax and usage of
models are specified using multiplicities and other prop-
erties associated to meta-classes and meta-relations, such
as derived property, default values, etc.
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There are two long lasting issues concerning the UML
meta-modelling approach. First, the semantics of meta-
models is informally defined. There is few research ef-
forts to formalize the semantics of UML meta-models
[20–22]. In [20], Shan and Zhu separated the descrip-
tive semantics and functional semantics of UML models
and formally defined the notion of ’instance-of’ relation
between meta-models and models. Poernomo [21] for-
malised the semantics of meta-models by applying con-
structive type theory. The semantics of MOF was defined
as a higher order lambda-calculus expression. Boronat
and Meseguer [22] used the Maude language that directly
supports membership equational logic to specify the se-
mantics of MOF as an executable specification so that
whether a model is an instance of a meta-model can
be determined. While these works help to clarify the
key notion of ’instance-of’ relation between meta-model
and models, further research is required to address many
other issues related to meta-modelling discussed in Sec-
tion 1. The second is the weakness of graphic notation
in its expressiveness and accuracy. This can be partially
overcome by defining and employing the Object Con-
straint Language (OCL) associated to elements in the
meta-models. OCL is in fact also a first order predicate
logic language induced from meta-model, but it is repre-
sented in a syntax closer to object oriented programming
languages. Attempts to formalize the semantics of OCL
have been reported in [23–28], etc. However, it is still un-
satisfactory in the formal definition of OCL’s semantics
and understanding of its logic properties [29, 30]. More-
over, how to connect OCL to the formal semantics of
MOF as defined in [20–22] is still unclear.

Many special purpose meta-modelling languages have
been proposed, mostly for defining design patterns. Typ-
ical examples are LePUS [31, 32], RBML [6], DPML
[33, 34], and PDL [35]. They all use graphic nota-
tion to represent meta-models. In general, graphic
meta-modelling approach suffers from several drawbacks.
First, graphic meta-models are difficult to understand.
This is partly solved in RBML, DPML and PDL by in-
troducing new graphic notations for meta-models, but
at the price of complexity in their semantics, which have
not been formally defined. Second, graphic meta-models
are ambiguous as in all graphic modeling languages such
as UML. LePUS is the only exception that it has a formal
specification of its semantics in first order logic. Third,
graphical meta-models are not expressive enough. In
particular, they are unable to state what is not allowed
to be in a model while they can specify what must be in
a model.

6.3 Future work

For future work, we are considering developing software
tools to support meta-modelling in GEBNF. Further ap-
plication of the theory to facilitate a meta-model exten-

sion mechanism is worthy investigating. It is also inter-
esting to found out if the approach taken by this paper
is applicable to meta-models in UML class diagrams and
OCL.
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