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Abstract—Checkpointing is an effective fault tolerant tech-
nique to improve the reliability of large scale parallel comput-
ing systems. However, checkpointing causes a large number of
computation nodes to store a huge amount of data into file
system simultaneously. It does not only require a huge storage
space to store system state, but also brings a tremendous
pressure on the communication network and I/O subsystem
because a massive demand of accesses are concentrated in a
short period of time. Data compression can reduce the size of
checkpoint data to be saved in the file system and to go through
the communication network. However, compression induces a
huge time overhead especially in large scale parallel systems,
which is the main technical barrier of its practical usability. In
this paper, we propose a parallel compression checkpointing
technique to reduce the time overhead in socket-level het-
erogeneous architectures. It integrates a number of parallel
processing techniques, including transmitting checkpoint data
between CPU, GPU and file system in double buffered pipelines,
aggregating file write operations, SIMD parallel compression
algorithm running on GPU, etc. The paper also reports an
implementation of the technique on the Tianhe-1 supercom-
puter system and the evaluation experiments with the system.
The experiment data show that the technique is efficient and
practically usable.

Keywords-Socket-level heterogeneous architecture; Check-
point and restart; Data compression; Pipeline; SIMD paral-
lelism, GPU.

[. INTRODUCTION

With the ever increasing demand on high performance
computing, the past years have seen a rapid growth in
the number of computational nodes in large scale parallel
computing systems. This imposes a great challenge to main-
tain system reliability because system failure rate inevitably
grows with the increase in the number of nodes if the
reliability of each node remains at the same level. Conse-
quently, failure is unavoidable in the operation of large scale
parallel systems as the mean time between failures is usually
much less than the expected execution time for scientific
applications [1]. A practical solution to this problem is to
roll back based on checkpoint.

A. Checkpointing

Generally speaking, in the checkpoint/restart fault toler-
ance mechanism, snapshots of the system’s states during
an execution are conserved by checkpointing. Once a sys-
tem failure occurs, the last preserved system state can be
recovered and the execution restarts from the checkpoint.
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However, in large scale parallel computing systems, check-
pointing causes a huge number of computation nodes to
store data into the file system simultaneously. It does not
only require a huge file storage space to store system state,
but also brings a tremendous pressure on the communication
network and I/O subsystem because of massive concentrated
accesses to the file system. In the past years, a variety of
techniques have been proposed to reduce the demand on
file access in checkpointing [2]. Among the most well-
known are incremental checkpointing [3], checkpoint data
compression [4], [5], diskless checkpointing [6] and multi-
level checkpointing [7], and their combinations [8].

The idea of compression checkpointing is simple and
appealing, i.e. to compress the checkpoint data before
they are stored in the file system. Theoretically speaking,
compression can reduce the demand on file system and
communication network by shrinking the size of data to
be stored in the file system and transmitted through the
communication network. However, compressing data also
incurs extra time overhead. Thus, it may impair system
performance [4], [5], although the overhead only occurs once
for each checkpointing. A crucial problem for the practical
uses of compression checkpointing is to reduce the time
overhead to the level that is less than the time saved due
to the reduction of data size.

This paper presents a technique that significantly reduces
the time overhead of compression checkpointing for socket-
level heterogeneous systems to a level that is practically
usable. It has been implemented and deployed on the Tianhe-
1 petaflop supercomputer.

B. Socket-Level Heterogeneous Architecture

Due to its prominent advantages in providing high com-
putation density, high energy efficiency and high cost /
performance ratio, socket-level heterogeneous architectures,
exampled in Fig. 1, has become an important trend of
high performance computing systems. There are four such
systems in the top 10 of the recent Top500 list [9], among
which Tianhe-1A is ranked as No.2.

As depicted in Fig. 1, the socket-level heterogeneous ar-
chitecture consists of two subsystems: computation subsys-
tem, and storage subsystem connected by a communication
network. The computation subsystem consists of a large
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number of computational nodes, each contains a number of
CPUs and a number of GPUs.
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Figure 1. Socket-Level Heterogeneous Architectures
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The coprocessors with high computational capability in
such systems provide a new opportunity to reduce the time
overhead of compression checkpointing. In particular, we
employ the parallel processing power of GPU and pipelined
parallelism between CPU, GPU and storage system to speed
up data compression and reduce the time overhead of
compression checkpointing.

C. Data Compression Algorithms

There are two general types of data compression algo-
rithms, lossy and lossless ones. To ensure correct rollback,
lossless compression algorithms can be applied to compres-
sion checkpointing. Deflate [10] is one of the most efficient
general-purpose lossless data compression algorithms. It
combines the LZ77 algorithm [11] with Huffman coding
[12]. That is, data are first compressed by applying LZ77
algorithm and then encoded using Huffman coding to further
minimize redundancy.

LZ77 is a sliding window compression algorithm. It
eliminates duplicate series of bytes in the data block of
the window through string match, where the window holds
a consecutive segment of the data and moves from the
beginning to the end. Given a block of data in the window,
if two strings of data in the block are identical, the second
occurrence of the string can be represented by a pair
(of fset,length) of numbers, called a length-distance pair,
where of fset and length are the distance between these
two strings and their length, respectively. Thus, the space
for the storage of the data can be reduced.

It can be seen that string matching is the most time
consuming task in Deflate algorithm. Employing a chained
hash table is an effective method to improve the efficiency
[13], [14]. However, even if a hash table is employed, the
time cost of string matching still accounts for more than 50%
of overall compression time as we found in our experiments
with Deflate algorithm to compress checkpoint data of the
NPB benchmarks [10]. As shown in Fig. 2, for example, in
the experiment with the IS subset of NPB, the time spent
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on string matching accounts for about 74% of the total

compression time.
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Figure 2. Compression Time Distribution

Fortunately, the tasks of string matching on different
offsets are independent. Thus, they can be parallelized with
SIMD parallelism. Our experiments also found that the
average offsets for effective string matching is much less
than the size of its window size; as shown in Fig. 3. This
implies that SIMD parallelism can be efficiently realized
by utilizing the GPUs in the socket-level heterogeneous
architectures.
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Figure 3. Average Offsets in the Compression of Checkpoint Data

D. Overview of the Proposed Approach

Our proposed approach to parallel compression check-
point/restart (PCCR) consists of the following key tech-
niques.

1) Pipelined parallelism of the compression checkpoint-
ing process: To take the full advantages of parallelism in
socket-level heterogeneous architectures, we split compres-
sion checkpointing into three stages: profiling, compressing
and storing. These three stages are parallelized in two
pipelines by employing two buffer queues.

2) SIMD parallelization of data compression: To utilize
the powerful SIMD parallelism of GPU, we allocate string
matching tasks in the LZ77 algorithm to GPUs, which is the
main time cost of Deflate compression algorithm. In partic-
ular, matching on different string offsets are parallelized by
different threads running on the GPU.

3) Pipelined parallelism of GPU operations: The pro-
cessing on each GPU is further split into three steps:
input, execute and output. These three steps are pipelined



by employing two input buffers. The transmission delay
between host and GPU is reduced by this pipelining.

4) Scheduling multiple CPU cores for time sharing of
GPU: There are multiple cores in one CPU socket and
each core can run one process independently. But one GPU
chipset can process only one instruction at any time. So,
GPU must be time-shared among multiple CPU cores. We
devised a two-level schedule algorithm to allocate GPU
among CPU processes. The efficiency of GPU pipeline is
improved by this scheduler.

E. Organization of the Paper

The remainder of this paper is organized as follows. Sec-
tion 2 presents the theoretical model of the performance of
PCCR to demonstrate the validity of the proposed approach
in general. Section 3 outlines the technical details in the
implementation PCCR on Tianhe-1. Section 4 reports the
evaluation of PCCR on Tianhe-1. Section 5 concludes the
paper with a discussion the related works and a summary of
the main contributions of the paper.

II. PERFORMANCE MODEL OF PCCR

In this section, we develop the theoretical models of the
performances of various parallel checkpointing protocols in
socket-level heterogeneous architectures.

A. Checkpointing without Compression

According to the concurrent control mechanisms used
in checkpointing algorithms, parallel checkpointing can be
classifies into coordinated and uncoordinated two types.
The former is widely used in high performance computing
systems due to its simplicity in rollback protocol and high
reliability in comparison with the latter. A common feature
of both types of parallel checkpointing mechanisms is that,
when a checkpoint is to be created, all the processes are
first synchronized, then each process creates its own local
checkpoint by saving its local computation state. After
that, the processes are synchronized again to continue their
executions. Therefore, a checkpointing induces intensive file
access and produces a high pressure on the communication
network and storage system.

In a socket-level heterogeneous architecture, the processes
running on computation nodes usually have the same I/O
throughput, denoted by b. Assume that the communication
network’s bandwidth for accessing the file system is By,
and let k = By /b. When the number p of processes is small,
p < k, access to the file system is not a bottleneck. However,
when the number p of processes reaches k, the simultaneous
requests of concurrent file accesses saturate the file access
bandwidth. Thus, delay occurs when p > k. In the sequel,
the value of k is called the saturation point of the system
and an application with a process number p less than or
equal to k is called within the suitable scale.

Let S be the size of the local checkpoint data, and T.(S)
and T5(.S) denote the times required to collect local check-
point data and store the data in the file system, respectively.
The time required to complete a parallel checkpointing for
p processes without compression, denoted by T, (p), has the
following formula.

To(S) + 5,
= 1) + -k < £

p < k;
p> k.

B. Checkpointing with Sequential Compression

If checkpoint data are compressed before stored in the
file system, the time T (p) required to complete the system
checkpointing for p processes has the following formula,
where T;,(S) is the time spent on compressing the local
checkpoint data of size S, and ¢ is the compression rate.
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As shown in Fig. 4, compressing checkpoint data can
expand the suitable scale of parallel checkpointing by shift-
ing the saturating point from k to k' = k/4. It can also
reduce the ratio of time cost over system scale by a factor
of 4. Our experiments with NBP benchmarks shows that the

compression rate can be from 0.5 to 0.8; see Fig. 5. Thus,
the potential benefit of data compression is quite significant.
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Figure 4. Theoretical Model of the Time Costs of Parallel Checkpointing
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Figure 5. Compression Rates for Various Block Sizes



However, as shown in the model given in the formulas
T (p) and T (p), if compressing and storing checkpoint data
are performed sequentially, the benefit of compression can
only be realized when the number p of processes reaches
certain scale, i.e. the point py in Fig. 4. The value of pq
is called the beneficial point in the sequel because, when
the application scale is greater than this point, compression
starts to benefit.

Unfortunately, for a high performance computing system,
the value of pg is usually very large because of the large
bandwidth of its communication network and file system.
Consequently, for many applications, the benefit of compres-
sion cannot be realized, but worsen due to the time overhead
of compression.

C. Checkpointing with Pipelined Compression

The main contribution of this paper is to solve this
problem by utilization of pipelined parallelism between
compressing and storing checkpoint data. The basic idea is
as follows.

Each local checkpoint data of size S is divided into a
number N of blocks of size D, where N = S/D. Then, the
time spent on collecting, compressing and storing the i-th
block d; of a local checkpoint data are T.(d;), Tzip(d;i)
and Ts(d;), respectively. Because in a high performance
computer system, the size of local checkpoint data is usually
very large, for appropriately chosen block size, the number
N of blocks is a large number. Therefore, by pipelining
the operations of collecting, compressing and storing, we
have the following formula T’»(p) for the time cost of each
pipelined local checkpointing.

Tp(S) m Max{T/(S), Tz, (S), T{(S)},

where
N
i=1
N
Télp(s) = ZTZZP(db)a
i=1
N
i=1
Let k" = 221, where T = max{T/(S),T},,(S)}.

When the number p of processes is no more than k”,
(ie. p < k'), file access is not a bottleneck, and the
checkpointing time overhead is 7', i.e. the maximum of
the times spent on collecting and compressing checkpoint
data. When the number p of processes is greater than k”,
file access becomes the bottleneck and checkpointing time
overhead is the time spent on saving the data into files.
Thus, we have the following formula for pipelined parallel
checkpointing.
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T,
T+ (p—Fk") x

p <K'

OxS p>k”.

Tp(p) = {
By’

Usually, in high performance systems, we have that
S/T > b. Therefore, pipelined compression checkpointing
can further extend the suitable application scale to &k, where
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More importantly, for systems that contain a much smaller
number of processes, the benefit of compression can be
realized. As shown in Fig. 4, the beneficial point p{ of
pipelined compression checkpointing is much smaller than

Po-

III. IMPLEMENTATION OF PCCR

In this section, we present the technical details of the
implementation of PCCR on the petaflop socket-level het-
erogeneous architecture Tianhe-1.

A. Overview

The Tianhe-1 supercomputer, an earlier version of Tianhe-
1A, is a petaflop computer system. In Nov. 2009, it was
ranked as the No. 5 in the 34th Top500 list of high
performance computers in world. It is also a socket-level
heterogeneous system. On Tianhe-1, each computation node
has two quad-core Intel Xeon processors, with 32GB shared
memory, and an ATI Radeon HD4870*2 GPU accelerator
plugged on the PCI-E 2.0 slot. This GPU card consists of
two independent RV770 chips, each with 1GB local memory
and 640 computing threads. One CPU processor and one
GPU chip in the same node constitutes one heterogeneous
computation node. They are connected with an I/O sub-
system by QDR Infiniband communication network. The I/O
subsystem comprises 2 MDSs and 64 OSTs and brings into
the Lustre global file system.

The implementation of PCCR described in this section
is deployed on Tianhe-1. PCCR profiles target processes
in Linux kernel based on BLCR-0.8.2 [15]. Coordinated
parallel checkpointing protocol and MPI environment from
MVAPICH2-1.5 [16] are used. The parallelized compression
algorithm is implemented with ATI Stream OpenCL SDK
2.1 [17].

We have implemented a data profiling module of PCCR
that collects states of target process in OS kernel and buffers
these states into compression queue. To reduce the overhead
caused by frequent interaction between CPU, GPU and file
system and to improve the efficiency of file accesses, PCCR
adopts write aggregation in buffer writing. In other words,
multiple outputs of profiling or compression with smaller
size of data are coalesced into a buffer that wholly acts as
an input to the next stage processing.

The parallel checkpointing protocol and data compression
with GPU are implemented at user-lib level. PCCR also



supports customization of several checkpointing arguments,
such as buffer size, queue length, compression window width
and maximal match length.

PCCR adopts coordinated protocol to achieve the global
consistency of parallel checkpoint. All processes of parallel
application are first suspended and communications among
them are drained. Then, local checkpoints of individual
process are dumped. Finally, connections among the pro-
cesses are re-established and the target parallel application
continues its execution.

Before local checkpointing, PCCR derives two user-level
processes for each target process. These two child processes,
called compression process and file process, implement
checkpoint data compression and file storage of compressed
data, respectively.

Development environments provided by GPU vendors
do not support freezing and thawing of GPU states [17].
It means that system-level checkpointing is not able to
conserve the state of GPU. Thus, the transactions on GPU
must be drained before checkpointing. Consequently, GPU
is idle while checkpointing and is ready to accelerate the
compression.

B. Double Ring Buffer Queues for Pipelined Parallelism

To parallelize three stages of compression checkpointing,
i.e. state profiling, data compression and file operations, we
create two double ring buffer queues for each target process,
i.e. compression buffer queue and file buffer queue, as shown
in Fig. 6. These two buffer queues are created and initialized
before the launch of local checkpointing.

The buffers in the compression buffer queue are allocated
in host memory with same size. The head of the queue,
labelled as head, points to the current output buffer of kernel
profiling module. The tail of the queue, labelled as tail,
points to the first buffer which is ready to serve as the input
to compression. Each buffer in the queue can be in one of
three states: Empty (initial state, no valid data in the buffer),
Busy (acting as the output of profiling) and Ready (data in
the buffer is ready as the input to compression).
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Figure 6. The Structure of Double Ring Buffer Queues

When creating a checkpoint, the profiling module pro-
duces output data as follows. First, the remaining size of
the head buffer is checked. If it is greater than the size of
data to write, the data will be written into the head buffer
and the head is tagged as Busy. Otherwise, the head buffer is
regarded as already full and it is tagged changed to Ready.
And then, head is forward to the next buffer and the data is
written to the new head buffer. Once data was completely
written into compression buffer queue, the write operation of
profiling module finishes successfully and the kernel module
continues to profile other processes’ states.

Whenever the compression process detects that the tail
buffer becomes Ready, the data in the tail buffer will be
compressed. After compression, tail buffer is tagged as
Empty and the tail pointer forwards to the next buffer.

The structure and operation of the file buffer queue are
the same as those of the compression buffer queue. The
difference is that the file buffer queue serves as the output
of compression and the input to file storing. The file process
reads the data in the file buffer queue and stores them into
the file system.

As shown in Fig. 7, through these two queues of buffers,
compression checkpointing process are parallelized in a
pipeline. Moreover, the buffer queue data structure also
enables the application of write aggregation technique to
further optimization of the profiling, compression and stor-
ing checkpoint data. From the perspective of a file system,
writing one large chunk of data is more efficient than
multiple writings of many smaller data blocks [18]. From
the perspective of a compression algorithm, larger data
chunk generally means greater compression rate. However,
according to [18], more than 60% of checkpoint data come
in sizes less than 4KB. It is inefficient for file operation and
compression.
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Figure 7. Pipelining of Compression Checkpointing

In the implementation of PCCR, we applied write aggre-
gation technique twice to overcome this inefficiency. First,
the buffers in each queue is configured with appropriate
sizes. When the kernel profiling process writes checkpoint
data into the compression buffer queue, small blocks of
data are aggregated into larger blocks that are more suit-
able for compression. And, the compression process writes
compressed data into the file buffer queue and aggregates
the data into blocks suitable for file access.



C. Parallelization of Compression

At the high level of abstraction, the parallel implementa-
tion of compression consists of three parts. First, checkpoint
data are copied from the compression buffer into the local
memory of GPU. The string matching is then executed in
parallel on GPU processors such that each processor has a
different offset value. The results are then copied into the
host memory. We used the following techniques to improve
the performance of this compression process.

1) Reducing transmission delay: Due to the SIMD ar-
chitecture of GPU, only one kernel can be loaded on GPU
at a time [17]. It prohibits simultaneous executions of string
matching on different blocks of data on the same GPU. This
means there are delays to transmit data between CPU and
GPU. To reduce the effect of delay due to transmission of
data from the host CPU to the GPU, two input buffers are
allocated in GPU memory, called the current input buffer
and the lookforward input buffer, to store a block of data
for the current compression operation and a block of data
for the next compression operation, respectively. Each of
these two input buffers maintains its own states, which are
either Empty, Busy or Ready. When the GPU is processing
the data in one buffer, its state is Busy. When it completes
the processing of the data in the buffer, it is set to be Empty.
Then, data are transmitted from CPU to the buffer while the
GPU is switched to process the data in the other buffer.
Once the data are transmitted to a buffer, its state is set
to be Ready. Thus, a pipeline shown in Fig. 8 is formed
to parallelize the string matching and data transmission
operations.
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Figure 8. Pipeline of GPU-Accelerated String Matching

One execution of string matching only outputs 3 bytes of
data (2 bytes for offset and 1 byte for length). The delay
due to outputting three bytes is transitory enough to be
ignored. Therefore, we only take the advantage of pipelined
parallelism between processing a whole block of data and
transmitting the next whole block of data.

2) Scheduling multiple cores of CPU for time-sharing
GPU: In systems with multiple cores like Tianhe-1, each
CPU core can run one process in parallel. On the other
hand, only one kernel is allowed on each GPU chipset. The
number of CPU cores is usually greater than the number
of GPU chipsets in current systems. As a result, GPU must
be time-shared by multiple CPU cores to utilise the parallel
processing power of multiple cores.
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To enable time sharing of GPU, CPU processes are
grouped according to the GPU chipset. Each group has one
scheduler, which manages the current and lookforward input
buffers and the time-sharing of GPU in the group, as shown
in Fig. 9. For fairness and balance among the processes, the
Spin-Round policy is employed.

P Dpere
[

Figure 9. Scheduling CPU Processes for Time Sharing

IV. EVALUATION

In this section, we report the evaluation of our imple-
mented PCCR on Tianhe-1.

A. The Benchmark and Experiment Configuration

We choose NPB 3.3 [19] as our benchmark suite for its
wide acceptance for evaluating the performances of parallel
computing systems. We take 32 computation nodes as a
unit. The performance of various compression checkpointing
algorithms were tested by executing the benchmarks on
variable number of units and in every experiment the check-
points were created simultaneously on all the units. In order
to measure accurately the time overhead of checkpointing
in various system scales, in each experiment, the processes
have the same size of checkpoint data. NRPOCS parameter
of NPB is therefore set as 256, because each unit contains
32 computation nodes and each node contains 8 processor
cores. Each CPU core runs one process of NPB. The CLASS
of NPB is set as D.

B. Main Results

We first tested PCCR’s time cost at different compression
window sizes in the range between 1KB to 64KB. The
results show that the time overhead of compression check-
pointing varies along with buffer size forming a U curve;
see Fig. 10.
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Figure 10. Time Costs at Various Buffer Sizes



In particular, for the IS subset of the benchmark, the
time cost was at the lowest when the buffer size was 4KB.
For other subsets of the benchmark, the time cost reached
the lowest point at 16KB buffer size. Experiments also
proved that PCCR reduces time overhead of compression
checkpointing with all reasonable buffer sizes. Therefore,
the further experiments were carried out with 16KB as the
buffer size.

Further experiments were then conducted to compare var-
ious different compression checkpointing protocols, which
include the following.

o Uncompressed checkpointing: the checkpoint data are
profiled and stored without compression;

Serial compression checkpointing: the profiling, com-
pression and storing of checkpoint data are performed
sequentially;

Pipelined compression checkpointing: the profiling,
compression and storing of checkpoint data are per-
formed with pipelined parallelism, but compression was
not processed on GPU with SIMD parallelism;
GPU-accelerated compression checkpointing: the pro-
filing, compression and storing of checkpoint data are
pipelined, and the compression of checkpoint data is
performed using SIMD parallelism of GPU. This is
what PCCR has implemented.

Fig. 11 shows the results of the experiments, where the
buffer size is 16KB and number of nodes is 128.
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Figure 11. Percentage of Time Costs Spent on Compression (Buffer Size:

16KB, Nodes: 128)

As shown in Fig. 11, compared with serial compression
checkpointing, PCCR still gained 67.6% improvement on
time cost in the best case (the SP subset of NPB benchmark)
and 34.5% in the worst case (the IS subset), when system
scale is relatively small. Experiment data also show that
the SIMD parallelsim on GPU has contributed signific-
santly to the improvement on time costs. For example, by
pipelined parallelism alone, the time cost of compression
checkpointing is only improved by 6.9% for BT and 1.5%
for IS. Therefore, when system scale is relatively small,
the benefit of pipelined compression is not so significant.
But, when the system scale increases, the benefits of both
pipelined and GPU accelerated parallel compression become
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more obvious. Fig. 12 reveals the trend of time costs of
compression checkpointing along with system scale.
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Figure 12. Relationship between Time Costs and System Scales

Experiment data also validated our theoretical model
of compression checkpointing performances presented in
Section 2. The time cost curves in Fig. 12 for each subset
of NPB benchmark demonstrated the pattern given in Fig.
4. In particular, as shown in Fig. 12, the scalability of
serial compression checkpointing is quite poor. Its beneficial
point is well above 1024 nodes (32 computation units),
which is the scale of our experiments. In other words,
when the system scale is less than 1024 nodes, the time



overhead of serial compression checkpointing is much larger
than uncompressed checkpointing. In such situations, the
reduced storage time gained from the reduction of data size
due to compression is not large enough to compensate the
time overhead caused by compression itself. PCCR (i.e. the
pipelined parallelism and GPU SIMD parallelism) effec-
tively improved the scalability of compression checkpointing
by greatly advancing the beneficial point, for example,
to less than 512 nodes in the BT, LU and SP subsets.
In other words, PCCR has a time cost of checkpointing
lower than that of checkpointing without compression when
the application scale is greater than 512 nodes, as in the
case of the BT, LU and SP subsets of NPB benchmark.
Moreover, PCCR reduces the increase rate of time cost by
7.2% in comparison with the increase rate of time costs of
uncompressed checkpointing.

V. CONCLUSION
A. Summary

Time overhead is a critical factor to the usability of
parallel checkpointing. In this paper, we proposed an ap-
proach to reduce the time overhead of parallel compression
checkpointing for socket-level heterogeneous architectures
by taking advantages of pipelined parallelism between CPU,
GPU and file system as well as the SIMD parallelism of
GPU. It has been implemented on the petaflop supercom-
puter Tianhe-1. Our experiments show that the performance
of the system matches very well the theoretical model
and demonstrate that the approach is practically usable.
For reasonably large scale applications, the overhead of
compression can be compensated by the benefit of reducing
the size of checkpoint data. More importantly, it makes
parallel checkpointing scalable.

B. Related Works

Checkpoint/Restart is one of the most effective and widely
used fault tolerance mechanisms for parallel computing
systems. It has been intensively investigated by many re-
searchers in the past decades. The work reported in this
paper is concerned with the data storage aspect of check-
pointing. It involves three issues of checkpointing protocols:
(a) state preservation policy, (b) data storing policy, and (c)
data management policy. The following comparison with
related works will focus on these three issues.

State preservation policy determines how to select the
part of system state as the checkpoint data to preserve
in order to restore the application after a failure. There
are three categories of state preservation policy as follows.
Application level checkpointing selects checkpoint data by
application itself. System level checkpointing preserve the
whole states of application [15]. And, compiler-assisted or
user-defined checkpointing selects the part of states with the
help of compiler or determined by the user [20]. BLCR is a
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popular system level checkpointing solution, which is em-
ployed by many MPI implementations, such as MVAPICH2,
OpenMPI and LAM/MPI. To achieve the transparency to ap-
plications, BLCR preserves all states of target process as its
checkpoint data. In real parallel environments, checkpointing
may be periodically invoked. Different to preserving inde-
pendent checkpoints periodically, incremental checkpointing
[3] makes use of the similarities between back-to-back
checkpoints, i.e. the later checkpoint only preserves variants
from the prior checkpoint to eliminate the redundancy of
periodic checkpoints and reduce the size of checkpoint data.
The approach proposed in this paper is independent of state
preservation policies. It can be applied to all categories
of state preservation policies. Our implementation of the
checkpointing facility in Tianhe-1 supports all levels of
checkpointing. It can also be combined with incremental
checkpointing techniques.

Data storing policy determines when to write checkpoint
data into storage media. To achieve the reliability of storing,
profiled checkpoint data may be saved into non-volatile stor-
age medium whenever the data is ready. Diskless checkpoint
[6] stores data in memory to improve the efficiency of data
writing. Multi-levels checkpoints [7] make use of multi-level
storage architecture to hold data in different media, similar
to the idea of cache, and maintain the data consistency
between different levels. The writing buffer technique keeps
the data in memory temporarily and flushes them to file
system under the control of specific write-back policies.
Ouyong et al. [18], [21] employ write aggregation and
write buffer to improve the performance of checkpointing.
They used data buffer between CPU and the file system.
Checkpoint data of all processes are written into file system
by one special process. This technique is employed in our
approach, too. But, we advanced it by developing two
pipelined buffers among CPU, GPU and file system. We
are also conducting research on multi-level checkpointing
techniques for socket-level heterogeneous architectures. The
results will be reported separately.

Data management policy is concerned with how to repre-
sent checkpoint data in particular format and/or data struc-
ture to enable writing and reading checkpoint data efficiently.
Compression checkpointing stores data after compression to
reduce the size of checkpoint [4], [5]. For example, Plank et
al [8] combined incremental checkpointing and compression
checkpointing to further reduce checkpoint size. For large
scale parallel systems, compression has been perceived as a
promising technique to economize file system space and to
relieve the pressures on communication and storage subsys-
tem caused by checkpointing. However, the time overhead
caused by compression has hampered the applications of
compression checkpointing in real environments [4], [5],
[8]. In this paper, we demonstrated that by utilization of
pipelined parallelism and GPU SIMD parallelism, time over-
head can be significantly reduced and parallel compression



checkpointing is practical.

To ensure the restoration of checkpoint data, lossless
compression is the choice of checkpointing. Lossless com-
pression techniques include the techniques for elimination
of duplicate strings and bit reduction by optimized coding.
LZ77 [11] and Huffman coding [12] are typical examples
of these two different types of techniques, respectively.
Deflate [14] is a combination of LZ77 and Huffman coding,
which is employed by zlib [13], gzip, zip, PNG and so
on. This paper employs Deflate to compress checkpoint
data. Different from using special hardware to implement or
optimize compression algorithm [14], we make use of the
parallel computation power of idle GPU in heterogeneous
systems to accelerate compression. Most existing works
on using GPU to speed up data compression are about
lossy compression of graphic or multimedia data [22]. Wu
et al [23] employed GPU to parallelize LZ77 algorithm.
However, they only split data into blocks and each block
is compressed by one GPU thread. Communication delay
between GPU and host is not dealt with, thus it can be the
bottleneck of performance. Different to their approach of
parallelization, this paper parallelizes string matching using
the SIMD parallel processing power of GPU and deals with
communication delay by pipelining.
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