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Abstract—Checkpointing is an effective fault tolerant tech-
nique to improve the reliability of large scale parallel comput-
ing systems. However, checkpointing causes a large number of
computation nodes to store a huge amount of data into file
system simultaneously. It does not only require a huge storage
space to store system state, but also brings a tremendous
pressure on the communication network and I/O subsystem
because a massive demand of accesses are concentrated in a
short period of time. Data compression can reduce the size of
checkpoint data to be saved in the file system and to go through
the communication network. However, compression induces a
huge time overhead especially in large scale parallel systems,
which is the main technical barrier of its practical usability. In
this paper, we propose a parallel compression checkpointing
technique to reduce the time overhead in socket-level het-
erogeneous architectures. It integrates a number of parallel
processing techniques, including transmitting checkpoint data
between CPU, GPU and file system in double buffered pipelines,
aggregating file write operations, SIMD parallel compression
algorithm running on GPU, etc. The paper also reports an
implementation of the technique on the Tianhe-1 supercom-
puter system and the evaluation experiments with the system.
The experiment data show that the technique is efficient and
practically usable.

Keywords-Socket-level heterogeneous architecture; Check-
point and restart; Data compression; Pipeline; SIMD paral-
lelism, GPU.

I. INTRODUCTION

With the ever increasing demand on high performance

computing, the past years have seen a rapid growth in

the number of computational nodes in large scale parallel

computing systems. This imposes a great challenge to main-

tain system reliability because system failure rate inevitably

grows with the increase in the number of nodes if the

reliability of each node remains at the same level. Conse-

quently, failure is unavoidable in the operation of large scale

parallel systems as the mean time between failures is usually

much less than the expected execution time for scientific

applications [1]. A practical solution to this problem is to

roll back based on checkpoint.

A. Checkpointing

Generally speaking, in the checkpoint/restart fault toler-

ance mechanism, snapshots of the system’s states during

an execution are conserved by checkpointing. Once a sys-

tem failure occurs, the last preserved system state can be

recovered and the execution restarts from the checkpoint.

However, in large scale parallel computing systems, check-

pointing causes a huge number of computation nodes to

store data into the file system simultaneously. It does not

only require a huge file storage space to store system state,

but also brings a tremendous pressure on the communication

network and I/O subsystem because of massive concentrated

accesses to the file system. In the past years, a variety of

techniques have been proposed to reduce the demand on

file access in checkpointing [2]. Among the most well-

known are incremental checkpointing [3], checkpoint data

compression [4], [5], diskless checkpointing [6] and multi-

level checkpointing [7], and their combinations [8].

The idea of compression checkpointing is simple and

appealing, i.e. to compress the checkpoint data before

they are stored in the file system. Theoretically speaking,

compression can reduce the demand on file system and

communication network by shrinking the size of data to

be stored in the file system and transmitted through the

communication network. However, compressing data also

incurs extra time overhead. Thus, it may impair system

performance [4], [5], although the overhead only occurs once

for each checkpointing. A crucial problem for the practical

uses of compression checkpointing is to reduce the time

overhead to the level that is less than the time saved due

to the reduction of data size.

This paper presents a technique that significantly reduces

the time overhead of compression checkpointing for socket-

level heterogeneous systems to a level that is practically

usable. It has been implemented and deployed on the Tianhe-

1 petaflop supercomputer.

B. Socket-Level Heterogeneous Architecture

Due to its prominent advantages in providing high com-

putation density, high energy efficiency and high cost /

performance ratio, socket-level heterogeneous architectures,

exampled in Fig. 1, has become an important trend of

high performance computing systems. There are four such

systems in the top 10 of the recent Top500 list [9], among

which Tianhe-1A is ranked as No.2.

As depicted in Fig. 1, the socket-level heterogeneous ar-

chitecture consists of two subsystems: computation subsys-

tem, and storage subsystem connected by a communication

network. The computation subsystem consists of a large
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number of computational nodes, each contains a number of

CPUs and a number of GPUs.
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Figure 1. Socket-Level Heterogeneous Architectures

The coprocessors with high computational capability in

such systems provide a new opportunity to reduce the time

overhead of compression checkpointing. In particular, we

employ the parallel processing power of GPU and pipelined

parallelism between CPU, GPU and storage system to speed

up data compression and reduce the time overhead of

compression checkpointing.

C. Data Compression Algorithms

There are two general types of data compression algo-

rithms, lossy and lossless ones. To ensure correct rollback,

lossless compression algorithms can be applied to compres-

sion checkpointing. Deflate [10] is one of the most efficient

general-purpose lossless data compression algorithms. It

combines the LZ77 algorithm [11] with Huffman coding

[12]. That is, data are first compressed by applying LZ77

algorithm and then encoded using Huffman coding to further

minimize redundancy.

LZ77 is a sliding window compression algorithm. It

eliminates duplicate series of bytes in the data block of

the window through string match, where the window holds

a consecutive segment of the data and moves from the

beginning to the end. Given a block of data in the window,

if two strings of data in the block are identical, the second

occurrence of the string can be represented by a pair

〈offset, length〉 of numbers, called a length-distance pair,

where offset and length are the distance between these

two strings and their length, respectively. Thus, the space

for the storage of the data can be reduced.

It can be seen that string matching is the most time

consuming task in Deflate algorithm. Employing a chained

hash table is an effective method to improve the efficiency

[13], [14]. However, even if a hash table is employed, the

time cost of string matching still accounts for more than 50%

of overall compression time as we found in our experiments

with Deflate algorithm to compress checkpoint data of the

NPB benchmarks [10]. As shown in Fig. 2, for example, in

the experiment with the IS subset of NPB, the time spent

on string matching accounts for about 74% of the total

compression time.
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Figure 2. Compression Time Distribution

Fortunately, the tasks of string matching on different

offsets are independent. Thus, they can be parallelized with

SIMD parallelism. Our experiments also found that the

average offsets for effective string matching is much less

than the size of its window size; as shown in Fig. 3. This

implies that SIMD parallelism can be efficiently realized

by utilizing the GPUs in the socket-level heterogeneous

architectures.
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Figure 3. Average Offsets in the Compression of Checkpoint Data

D. Overview of the Proposed Approach

Our proposed approach to parallel compression check-

point/restart (PCCR) consists of the following key tech-

niques.

1) Pipelined parallelism of the compression checkpoint-
ing process: To take the full advantages of parallelism in

socket-level heterogeneous architectures, we split compres-

sion checkpointing into three stages: profiling, compressing

and storing. These three stages are parallelized in two

pipelines by employing two buffer queues.

2) SIMD parallelization of data compression: To utilize

the powerful SIMD parallelism of GPU, we allocate string

matching tasks in the LZ77 algorithm to GPUs, which is the

main time cost of Deflate compression algorithm. In partic-

ular, matching on different string offsets are parallelized by

different threads running on the GPU.

3) Pipelined parallelism of GPU operations: The pro-

cessing on each GPU is further split into three steps:

input, execute and output. These three steps are pipelined
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by employing two input buffers. The transmission delay

between host and GPU is reduced by this pipelining.

4) Scheduling multiple CPU cores for time sharing of
GPU: There are multiple cores in one CPU socket and

each core can run one process independently. But one GPU

chipset can process only one instruction at any time. So,

GPU must be time-shared among multiple CPU cores. We

devised a two-level schedule algorithm to allocate GPU

among CPU processes. The efficiency of GPU pipeline is

improved by this scheduler.

E. Organization of the Paper

The remainder of this paper is organized as follows. Sec-

tion 2 presents the theoretical model of the performance of

PCCR to demonstrate the validity of the proposed approach

in general. Section 3 outlines the technical details in the

implementation PCCR on Tianhe-1. Section 4 reports the

evaluation of PCCR on Tianhe-1. Section 5 concludes the

paper with a discussion the related works and a summary of

the main contributions of the paper.

II. PERFORMANCE MODEL OF PCCR

In this section, we develop the theoretical models of the

performances of various parallel checkpointing protocols in

socket-level heterogeneous architectures.

A. Checkpointing without Compression

According to the concurrent control mechanisms used

in checkpointing algorithms, parallel checkpointing can be

classifies into coordinated and uncoordinated two types.

The former is widely used in high performance computing

systems due to its simplicity in rollback protocol and high

reliability in comparison with the latter. A common feature

of both types of parallel checkpointing mechanisms is that,

when a checkpoint is to be created, all the processes are

first synchronized, then each process creates its own local

checkpoint by saving its local computation state. After

that, the processes are synchronized again to continue their

executions. Therefore, a checkpointing induces intensive file

access and produces a high pressure on the communication

network and storage system.

In a socket-level heterogeneous architecture, the processes

running on computation nodes usually have the same I/O

throughput, denoted by b. Assume that the communication

network’s bandwidth for accessing the file system is Bf ,

and let k = Bf/b. When the number p of processes is small,

p ≤ k, access to the file system is not a bottleneck. However,

when the number p of processes reaches k, the simultaneous

requests of concurrent file accesses saturate the file access

bandwidth. Thus, delay occurs when p > k. In the sequel,

the value of k is called the saturation point of the system

and an application with a process number p less than or

equal to k is called within the suitable scale.

Let S be the size of the local checkpoint data, and Tc(S)
and Ts(S) denote the times required to collect local check-

point data and store the data in the file system, respectively.

The time required to complete a parallel checkpointing for

p processes without compression, denoted by Tu(p), has the

following formula.

Tu(p) =

{
Tc(S) +

S
Bf

, p ≤ k;

Tc(S) + (p− k)× S
Bf

, p > k.

B. Checkpointing with Sequential Compression

If checkpoint data are compressed before stored in the

file system, the time Tz(p) required to complete the system

checkpointing for p processes has the following formula,

where Tzip(S) is the time spent on compressing the local

checkpoint data of size S, and δ is the compression rate.

Tz(p) =

{
Tc(S) + TZip(S) +

δ×S
Bf

, p ≤ k
δ ;

Tc(S) + TZip(S) + (p− k/δ)× δ×S
Bf

, p > k
δ .

As shown in Fig. 4, compressing checkpoint data can

expand the suitable scale of parallel checkpointing by shift-

ing the saturating point from k to k′ = k/δ. It can also

reduce the ratio of time cost over system scale by a factor

of δ. Our experiments with NBP benchmarks shows that the

compression rate can be from 0.5 to 0.8; see Fig. 5. Thus,

the potential benefit of data compression is quite significant.
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Figure 4. Theoretical Model of the Time Costs of Parallel Checkpointing
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However, as shown in the model given in the formulas

Tu(p) and Tz(p), if compressing and storing checkpoint data

are performed sequentially, the benefit of compression can

only be realized when the number p of processes reaches

certain scale, i.e. the point p0 in Fig. 4. The value of p0
is called the beneficial point in the sequel because, when

the application scale is greater than this point, compression

starts to benefit.

Unfortunately, for a high performance computing system,

the value of p0 is usually very large because of the large

bandwidth of its communication network and file system.

Consequently, for many applications, the benefit of compres-

sion cannot be realized, but worsen due to the time overhead

of compression.

C. Checkpointing with Pipelined Compression

The main contribution of this paper is to solve this

problem by utilization of pipelined parallelism between

compressing and storing checkpoint data. The basic idea is

as follows.

Each local checkpoint data of size S is divided into a

number N of blocks of size D, where N = S/D. Then, the

time spent on collecting, compressing and storing the i-th

block di of a local checkpoint data are Tc(di), TZip(di)
and Ts(di), respectively. Because in a high performance

computer system, the size of local checkpoint data is usually

very large, for appropriately chosen block size, the number

N of blocks is a large number. Therefore, by pipelining

the operations of collecting, compressing and storing, we

have the following formula TP (p) for the time cost of each

pipelined local checkpointing.

TP (S) ≈Max{T ′
c(S), T

′
Zip(S), T

′
s(S)},

where

T ′
c(S) =

N∑
i=1

Tc(di),

T ′
Zip(S) =

N∑
i=1

TZip(di),

T ′
s(S) =

N∑
i=1

Ts(di).

Let k′′ =
T×Bf

δ×S , where T = max{T ′
c(S), T

′
Zip(S)}.

When the number p of processes is no more than k′′,
(i.e. p ≤ k′′), file access is not a bottleneck, and the

checkpointing time overhead is T , i.e. the maximum of

the times spent on collecting and compressing checkpoint

data. When the number p of processes is greater than k′′,
file access becomes the bottleneck and checkpointing time

overhead is the time spent on saving the data into files.

Thus, we have the following formula for pipelined parallel

checkpointing.

TP (p) =

{
T, p ≤ k′′;

T + (p− k′′)× δ×S
Bf

, p > k′′.

Usually, in high performance systems, we have that

S/T > b. Therefore, pipelined compression checkpointing

can further extend the suitable application scale to k′′, where

k′ =
Bf

δ × b
<

T ×Bf

δ × S
= k′′.

More importantly, for systems that contain a much smaller

number of processes, the benefit of compression can be

realized. As shown in Fig. 4, the beneficial point p′0 of

pipelined compression checkpointing is much smaller than

p0.

III. IMPLEMENTATION OF PCCR

In this section, we present the technical details of the

implementation of PCCR on the petaflop socket-level het-

erogeneous architecture Tianhe-1.

A. Overview

The Tianhe-1 supercomputer, an earlier version of Tianhe-

1A, is a petaflop computer system. In Nov. 2009, it was

ranked as the No. 5 in the 34th Top500 list of high

performance computers in world. It is also a socket-level

heterogeneous system. On Tianhe-1, each computation node

has two quad-core Intel Xeon processors, with 32GB shared

memory, and an ATI Radeon HD4870*2 GPU accelerator

plugged on the PCI-E 2.0 slot. This GPU card consists of

two independent RV770 chips, each with 1GB local memory

and 640 computing threads. One CPU processor and one

GPU chip in the same node constitutes one heterogeneous

computation node. They are connected with an I/O sub-

system by QDR Infiniband communication network. The I/O

subsystem comprises 2 MDSs and 64 OSTs and brings into

the Lustre global file system.

The implementation of PCCR described in this section

is deployed on Tianhe-1. PCCR profiles target processes

in Linux kernel based on BLCR-0.8.2 [15]. Coordinated

parallel checkpointing protocol and MPI environment from

MVAPICH2-1.5 [16] are used. The parallelized compression

algorithm is implemented with ATI Stream OpenCL SDK

2.1 [17].

We have implemented a data profiling module of PCCR

that collects states of target process in OS kernel and buffers

these states into compression queue. To reduce the overhead

caused by frequent interaction between CPU, GPU and file

system and to improve the efficiency of file accesses, PCCR

adopts write aggregation in buffer writing. In other words,

multiple outputs of profiling or compression with smaller

size of data are coalesced into a buffer that wholly acts as

an input to the next stage processing.

The parallel checkpointing protocol and data compression

with GPU are implemented at user-lib level. PCCR also
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supports customization of several checkpointing arguments,

such as buffer size, queue length, compression window width

and maximal match length.

PCCR adopts coordinated protocol to achieve the global

consistency of parallel checkpoint. All processes of parallel

application are first suspended and communications among

them are drained. Then, local checkpoints of individual

process are dumped. Finally, connections among the pro-

cesses are re-established and the target parallel application

continues its execution.

Before local checkpointing, PCCR derives two user-level

processes for each target process. These two child processes,

called compression process and file process, implement

checkpoint data compression and file storage of compressed

data, respectively.

Development environments provided by GPU vendors

do not support freezing and thawing of GPU states [17].

It means that system-level checkpointing is not able to

conserve the state of GPU. Thus, the transactions on GPU

must be drained before checkpointing. Consequently, GPU

is idle while checkpointing and is ready to accelerate the

compression.

B. Double Ring Buffer Queues for Pipelined Parallelism

To parallelize three stages of compression checkpointing,

i.e. state profiling, data compression and file operations, we

create two double ring buffer queues for each target process,

i.e. compression buffer queue and file buffer queue, as shown

in Fig. 6. These two buffer queues are created and initialized

before the launch of local checkpointing.

The buffers in the compression buffer queue are allocated

in host memory with same size. The head of the queue,

labelled as head, points to the current output buffer of kernel

profiling module. The tail of the queue, labelled as tail,
points to the first buffer which is ready to serve as the input

to compression. Each buffer in the queue can be in one of

three states: Empty (initial state, no valid data in the buffer),

Busy (acting as the output of profiling) and Ready (data in

the buffer is ready as the input to compression).

Figure 6. The Structure of Double Ring Buffer Queues

When creating a checkpoint, the profiling module pro-

duces output data as follows. First, the remaining size of

the head buffer is checked. If it is greater than the size of

data to write, the data will be written into the head buffer

and the head is tagged as Busy. Otherwise, the head buffer is

regarded as already full and it is tagged changed to Ready.

And then, head is forward to the next buffer and the data is

written to the new head buffer. Once data was completely

written into compression buffer queue, the write operation of

profiling module finishes successfully and the kernel module

continues to profile other processes’ states.
Whenever the compression process detects that the tail

buffer becomes Ready, the data in the tail buffer will be

compressed. After compression, tail buffer is tagged as

Empty and the tail pointer forwards to the next buffer.
The structure and operation of the file buffer queue are

the same as those of the compression buffer queue. The

difference is that the file buffer queue serves as the output

of compression and the input to file storing. The file process
reads the data in the file buffer queue and stores them into

the file system.
As shown in Fig. 7, through these two queues of buffers,

compression checkpointing process are parallelized in a

pipeline. Moreover, the buffer queue data structure also

enables the application of write aggregation technique to

further optimization of the profiling, compression and stor-

ing checkpoint data. From the perspective of a file system,

writing one large chunk of data is more efficient than

multiple writings of many smaller data blocks [18]. From

the perspective of a compression algorithm, larger data

chunk generally means greater compression rate. However,

according to [18], more than 60% of checkpoint data come

in sizes less than 4KB. It is inefficient for file operation and

compression.

 

Figure 7. Pipelining of Compression Checkpointing

In the implementation of PCCR, we applied write aggre-

gation technique twice to overcome this inefficiency. First,

the buffers in each queue is configured with appropriate

sizes. When the kernel profiling process writes checkpoint

data into the compression buffer queue, small blocks of

data are aggregated into larger blocks that are more suit-

able for compression. And, the compression process writes

compressed data into the file buffer queue and aggregates

the data into blocks suitable for file access.
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C. Parallelization of Compression

At the high level of abstraction, the parallel implementa-

tion of compression consists of three parts. First, checkpoint

data are copied from the compression buffer into the local

memory of GPU. The string matching is then executed in

parallel on GPU processors such that each processor has a

different offset value. The results are then copied into the

host memory. We used the following techniques to improve

the performance of this compression process.
1) Reducing transmission delay: Due to the SIMD ar-

chitecture of GPU, only one kernel can be loaded on GPU

at a time [17]. It prohibits simultaneous executions of string

matching on different blocks of data on the same GPU. This

means there are delays to transmit data between CPU and

GPU. To reduce the effect of delay due to transmission of

data from the host CPU to the GPU, two input buffers are

allocated in GPU memory, called the current input buffer
and the lookforward input buffer, to store a block of data

for the current compression operation and a block of data

for the next compression operation, respectively. Each of

these two input buffers maintains its own states, which are

either Empty, Busy or Ready. When the GPU is processing

the data in one buffer, its state is Busy. When it completes

the processing of the data in the buffer, it is set to be Empty.

Then, data are transmitted from CPU to the buffer while the

GPU is switched to process the data in the other buffer.

Once the data are transmitted to a buffer, its state is set

to be Ready. Thus, a pipeline shown in Fig. 8 is formed

to parallelize the string matching and data transmission

operations.

 

Figure 8. Pipeline of GPU-Accelerated String Matching

One execution of string matching only outputs 3 bytes of

data (2 bytes for offset and 1 byte for length). The delay

due to outputting three bytes is transitory enough to be

ignored. Therefore, we only take the advantage of pipelined

parallelism between processing a whole block of data and

transmitting the next whole block of data.
2) Scheduling multiple cores of CPU for time-sharing

GPU: In systems with multiple cores like Tianhe-1, each

CPU core can run one process in parallel. On the other

hand, only one kernel is allowed on each GPU chipset. The

number of CPU cores is usually greater than the number

of GPU chipsets in current systems. As a result, GPU must

be time-shared by multiple CPU cores to utilise the parallel

processing power of multiple cores.

To enable time sharing of GPU, CPU processes are

grouped according to the GPU chipset. Each group has one

scheduler, which manages the current and lookforward input

buffers and the time-sharing of GPU in the group, as shown

in Fig. 9. For fairness and balance among the processes, the

Spin-Round policy is employed.

Figure 9. Scheduling CPU Processes for Time Sharing

IV. EVALUATION

In this section, we report the evaluation of our imple-

mented PCCR on Tianhe-1.

A. The Benchmark and Experiment Configuration

We choose NPB 3.3 [19] as our benchmark suite for its

wide acceptance for evaluating the performances of parallel

computing systems. We take 32 computation nodes as a

unit. The performance of various compression checkpointing

algorithms were tested by executing the benchmarks on

variable number of units and in every experiment the check-

points were created simultaneously on all the units. In order

to measure accurately the time overhead of checkpointing

in various system scales, in each experiment, the processes

have the same size of checkpoint data. NRPOCS parameter

of NPB is therefore set as 256, because each unit contains

32 computation nodes and each node contains 8 processor

cores. Each CPU core runs one process of NPB. The CLASS

of NPB is set as D.

B. Main Results

We first tested PCCR’s time cost at different compression

window sizes in the range between 1KB to 64KB. The

results show that the time overhead of compression check-

pointing varies along with buffer size forming a U curve;

see Fig. 10.
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In particular, for the IS subset of the benchmark, the

time cost was at the lowest when the buffer size was 4KB.

For other subsets of the benchmark, the time cost reached

the lowest point at 16KB buffer size. Experiments also

proved that PCCR reduces time overhead of compression

checkpointing with all reasonable buffer sizes. Therefore,

the further experiments were carried out with 16KB as the

buffer size.

Further experiments were then conducted to compare var-

ious different compression checkpointing protocols, which

include the following.

• Uncompressed checkpointing: the checkpoint data are

profiled and stored without compression;

• Serial compression checkpointing: the profiling, com-

pression and storing of checkpoint data are performed

sequentially;

• Pipelined compression checkpointing: the profiling,

compression and storing of checkpoint data are per-

formed with pipelined parallelism, but compression was

not processed on GPU with SIMD parallelism;

• GPU-accelerated compression checkpointing: the pro-

filing, compression and storing of checkpoint data are

pipelined, and the compression of checkpoint data is

performed using SIMD parallelism of GPU. This is

what PCCR has implemented.

Fig. 11 shows the results of the experiments, where the

buffer size is 16KB and number of nodes is 128.
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As shown in Fig. 11, compared with serial compression

checkpointing, PCCR still gained 67.6% improvement on

time cost in the best case (the SP subset of NPB benchmark)

and 34.5% in the worst case (the IS subset), when system

scale is relatively small. Experiment data also show that

the SIMD parallelsim on GPU has contributed signific-

santly to the improvement on time costs. For example, by

pipelined parallelism alone, the time cost of compression

checkpointing is only improved by 6.9% for BT and 1.5%

for IS. Therefore, when system scale is relatively small,

the benefit of pipelined compression is not so significant.

But, when the system scale increases, the benefits of both

pipelined and GPU accelerated parallel compression become

more obvious. Fig. 12 reveals the trend of time costs of

compression checkpointing along with system scale.
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Figure 12. Relationship between Time Costs and System Scales

Experiment data also validated our theoretical model

of compression checkpointing performances presented in

Section 2. The time cost curves in Fig. 12 for each subset

of NPB benchmark demonstrated the pattern given in Fig.

4. In particular, as shown in Fig. 12, the scalability of

serial compression checkpointing is quite poor. Its beneficial

point is well above 1024 nodes (32 computation units),

which is the scale of our experiments. In other words,

when the system scale is less than 1024 nodes, the time
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overhead of serial compression checkpointing is much larger

than uncompressed checkpointing. In such situations, the

reduced storage time gained from the reduction of data size

due to compression is not large enough to compensate the

time overhead caused by compression itself. PCCR (i.e. the

pipelined parallelism and GPU SIMD parallelism) effec-

tively improved the scalability of compression checkpointing

by greatly advancing the beneficial point, for example,

to less than 512 nodes in the BT, LU and SP subsets.

In other words, PCCR has a time cost of checkpointing

lower than that of checkpointing without compression when

the application scale is greater than 512 nodes, as in the

case of the BT, LU and SP subsets of NPB benchmark.

Moreover, PCCR reduces the increase rate of time cost by

7.2% in comparison with the increase rate of time costs of

uncompressed checkpointing.

V. CONCLUSION

A. Summary

Time overhead is a critical factor to the usability of

parallel checkpointing. In this paper, we proposed an ap-

proach to reduce the time overhead of parallel compression

checkpointing for socket-level heterogeneous architectures

by taking advantages of pipelined parallelism between CPU,

GPU and file system as well as the SIMD parallelism of

GPU. It has been implemented on the petaflop supercom-

puter Tianhe-1. Our experiments show that the performance

of the system matches very well the theoretical model

and demonstrate that the approach is practically usable.

For reasonably large scale applications, the overhead of

compression can be compensated by the benefit of reducing

the size of checkpoint data. More importantly, it makes

parallel checkpointing scalable.

B. Related Works

Checkpoint/Restart is one of the most effective and widely

used fault tolerance mechanisms for parallel computing

systems. It has been intensively investigated by many re-

searchers in the past decades. The work reported in this

paper is concerned with the data storage aspect of check-

pointing. It involves three issues of checkpointing protocols:

(a) state preservation policy, (b) data storing policy, and (c)

data management policy. The following comparison with

related works will focus on these three issues.

State preservation policy determines how to select the

part of system state as the checkpoint data to preserve

in order to restore the application after a failure. There

are three categories of state preservation policy as follows.

Application level checkpointing selects checkpoint data by

application itself. System level checkpointing preserve the

whole states of application [15]. And, compiler-assisted or
user-defined checkpointing selects the part of states with the

help of compiler or determined by the user [20]. BLCR is a

popular system level checkpointing solution, which is em-

ployed by many MPI implementations, such as MVAPICH2,

OpenMPI and LAM/MPI. To achieve the transparency to ap-

plications, BLCR preserves all states of target process as its

checkpoint data. In real parallel environments, checkpointing

may be periodically invoked. Different to preserving inde-

pendent checkpoints periodically, incremental checkpointing

[3] makes use of the similarities between back-to-back

checkpoints, i.e. the later checkpoint only preserves variants

from the prior checkpoint to eliminate the redundancy of

periodic checkpoints and reduce the size of checkpoint data.

The approach proposed in this paper is independent of state

preservation policies. It can be applied to all categories

of state preservation policies. Our implementation of the

checkpointing facility in Tianhe-1 supports all levels of

checkpointing. It can also be combined with incremental

checkpointing techniques.

Data storing policy determines when to write checkpoint

data into storage media. To achieve the reliability of storing,

profiled checkpoint data may be saved into non-volatile stor-

age medium whenever the data is ready. Diskless checkpoint
[6] stores data in memory to improve the efficiency of data

writing. Multi-levels checkpoints [7] make use of multi-level

storage architecture to hold data in different media, similar

to the idea of cache, and maintain the data consistency

between different levels. The writing buffer technique keeps

the data in memory temporarily and flushes them to file

system under the control of specific write-back policies.

Ouyong et al. [18], [21] employ write aggregation and

write buffer to improve the performance of checkpointing.

They used data buffer between CPU and the file system.

Checkpoint data of all processes are written into file system

by one special process. This technique is employed in our

approach, too. But, we advanced it by developing two

pipelined buffers among CPU, GPU and file system. We

are also conducting research on multi-level checkpointing

techniques for socket-level heterogeneous architectures. The

results will be reported separately.

Data management policy is concerned with how to repre-

sent checkpoint data in particular format and/or data struc-

ture to enable writing and reading checkpoint data efficiently.

Compression checkpointing stores data after compression to

reduce the size of checkpoint [4], [5]. For example, Plank et

al [8] combined incremental checkpointing and compression

checkpointing to further reduce checkpoint size. For large

scale parallel systems, compression has been perceived as a

promising technique to economize file system space and to

relieve the pressures on communication and storage subsys-

tem caused by checkpointing. However, the time overhead

caused by compression has hampered the applications of

compression checkpointing in real environments [4], [5],

[8]. In this paper, we demonstrated that by utilization of

pipelined parallelism and GPU SIMD parallelism, time over-

head can be significantly reduced and parallel compression
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checkpointing is practical.

To ensure the restoration of checkpoint data, lossless

compression is the choice of checkpointing. Lossless com-

pression techniques include the techniques for elimination

of duplicate strings and bit reduction by optimized coding.

LZ77 [11] and Huffman coding [12] are typical examples

of these two different types of techniques, respectively.

Deflate [14] is a combination of LZ77 and Huffman coding,

which is employed by zlib [13], gzip, zip, PNG and so

on. This paper employs Deflate to compress checkpoint

data. Different from using special hardware to implement or

optimize compression algorithm [14], we make use of the

parallel computation power of idle GPU in heterogeneous

systems to accelerate compression. Most existing works

on using GPU to speed up data compression are about

lossy compression of graphic or multimedia data [22]. Wu

et al [23] employed GPU to parallelize LZ77 algorithm.

However, they only split data into blocks and each block

is compressed by one GPU thread. Communication delay

between GPU and host is not dealt with, thus it can be the

bottleneck of performance. Different to their approach of

parallelization, this paper parallelizes string matching using

the SIMD parallel processing power of GPU and deals with

communication delay by pipelining.
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