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Abstract—The rapid growth of large scale computing systems
imposes a grave challenge to their power management, where
power provision and capping is essential. In this paper, we
propose a new architecture of power provision and capping
to control the power consumption of large scale clusters.
In this architecture, performance sensitive computation units
are distinguished from those having less impact on system
performance. A subset of units is monitored and their operation
states are controlled in order to maintain whole system’s total
power consumption under budget. Two policies are designed
and implemented to select the target subset of nodes for power
regulation. One policy is state-based, which chooses nodes
running the most power consuming job for power regulation.
The other is change-based, which chooses those nodes that runs
a job whose power consumption increases most rapidly among
all jobs. Experiments have been conducted on the Tianhe-1A
supercomputer system to evaluate the effectiveness of these
power capping solutions. The experiments demonstrated that
the new architecture can ensure power usage safety with only
a negligible decline of performance, which is only about 2%.

Keywords-Large-scale system; Power capping; Power control
architecture; Metrics.

I. INTRODUCTION

With the steadily rising of the demands on computing
performance from scientific applications, both the number
of compute units in high performance computing systems
and the system integration density grow rapidly. Conse-
quently, in the past years, the so-called Moore’s law of
power consumption has been observed; that is, the power
consumption of computer nodes doubles every 18 months’
[1]. Power management has become a grave challenge to
the development and operation of large scale computing
systems.

A. Motivation

Large scale computing systems consume a tremendous
amount of energy. According to the recent TOP500 list
of high performance systems [2], the average power con-
sumption of Topl0O systems is 4.55 MW. The peak power
consumption of the fastest supercomputer, i.e. the K com-
puter, reaches 12.659 MW, which equals the power usage
of a middle scale city. In 2006, US servers and data centers
consumed around 61 billion kilowatt hours (kWh) at a cost
of about 4.5 billion U.S. Dollars. This is about 1.5% of

the total U.S. electricity consumption or the output of about
15 typical power plants [3]. Many data center projects have
been cancelled or delayed because of being unable to meet
such enormous power requirements.

High density power consumption causes overheating,
which leads to problems of the reliability and availability of
the system. Based on empirical data from leading vendors,
Feng found that the failure rate of a computing node
doubles with every 10°C' increase in the temperature [1].
Consequently, energy has also had be spent on cooling.
For example, 0.7W energy is spent on cooling in order
to dissipate every 1.0W of power consumed by the high
performance computer system at the Lawrence Livermore
National Laboratory [4]. Due to the positive feed-back loop
between temperature and power, a computer chipset with
higher temperatures consumes more power while running
identical computations at the same performance state [5].

Huge construction costs of large scale computer systems
are also incurred in order to accommodate the huge amount
of energy demand. Statistical data from the American Power
Conversion show that 63% of the infrastructure cost is used
for power supply and cooling [6]. To save the cost in
both construction and operating, computer centers hope to
reduce the power provision capability and power budget to
such systems. Fortunately, the probability of synchronized
power spikes on all components of all nodes in a large
scale cluster is zero because of its low resource utilization
[7]. There is a clear gap between the maximum power
actually used by a large group of nodes and their aggregate
theoretical peak usage. It is reasonable to limit the power
budget to a level that is lower than the theoretical peak
power demand. However, an effective power management
solution is required to maintain the safety of system power
usage. This observation has led to a major area of concern
for researchers and leading vendors of high performance
computing systems [8].

In summary, power management is essential for large
scale computing systems. It is not only concerned with
saving energy, but also determines the economic viability
of their construction and operation. Moreover, it is closely
related to the reliability and safety of the system. It is what
this paper is concerned with. In particular, we will propose



an architecture for power capping according to the limit of
power provision capability.

B. Related Works

Power capping is to control the maximal power consump-
tion during the operation of a system, which means keeping
the power usage of the system below a certain threshold
at any execution time. In general, given a total power con-
sumption budget, power capping techniques consist of power
sensing followed by power throttling. Sensing detects the
power consumption state of the system. Throttling changes
the operation states of the nodes in the system, thus keeps
the system running at a safe level of power consumption [9].
The goal of power capping is to distribute the total budget
of power consumption to the nodes in the system to achieve
the highest possible system performance.

Typically, power budget is allocated in a two-level struc-
ture such as in Femal et al.’s system [10]. The cluster-level
power manager dynamically collects the power consumption
information of all nodes and assigns a power budget to each
node to ensure that the total power is within the budget. The
node-level power manager then allocates its power budget
to each device in the node, making sure that its power
expenditure is beneath its local threshold.

In clusters, multiple nodes may couple together to run
an application and therefore their power states should be
managed coordinatedly. Noticed this phenomena, Wang et
al. [11] proposed a multi-input-multi-output (MIMO) algo-
rithm to control the power consumption of multiple servers
simultaneously. In each control cycle, the controller collects
the power state and CPU utilization of each server, computes
a new CPU frequency for each processor, and directs each
processor to change frequency in a coordinated way.

Power capping inevitably affects system’s performance.
How to control system’s power consumption with minimal
effect on performance is the key issue of power capping.
This is addressed by Ranganathan er al. [7] by taking
into consideration of service level agreement (SLA). They
deployed a management agent on each server to monitor the
local power consumption. A global controller periodically
collects local readings from all agents and estimates the total
power consumption of the cluster. If the total consumption
exceeds the predefined power budget, the controller deter-
mines which server to throttle based on SLA.

It is worth noting that in the existing approaches to
power capping for large scale computing systems, all nodes
in the cluster are considered as of the same importance
indiscriminately. In such a power capping architecture, all
nodes are under the same rules of power control. However,
in most uses of large scale systems, some nodes are more
important to the system’s performance while the others have
less impact. Therefore, sensing and throttling the states
of such nodes is a waste of computation resources. In
this paper, we propose an architecture that distinguishes

performance important nodes from others and demonstrate
that regulating a subset of nodes’ power states is sufficient to
maintain the total power consumption below safe threshold.
By doing so, we can achieve minimal effect on system
performance.

Metrics are essential to quantitatively measure and thereby
evaluate the efficiency of energy consumption and the effec-
tiveness of power management techniques. There are many
metrics of power consumption proposed by researchers
for various purposes [8]. For example, the metric E X
D™ [12] combines energy consumption with performance.
FLOPS/W is employed by Green500 [13] as a measure-
ment of energy efficiency w.r.t. computation capability. Total
Cost of Ownership (TCO) [1] reflects the total cost of the
system, including construction, operation and maintenance.
Power Usage Efficiency (PUE) [14] estimates the energy
efficiency of data centers in operation, and so on. These
metrics focus on the energy efficiency of computing systems,
but neglect the effect of power overload on system. Thus,
they provide little guidance to the selection of the nodes for
power capping. In this paper, we define a new metric that
measures the damage of overspending power budget over a
period of time.

C. Organization of the Paper

The paper is organized as follows. Section II presents our
architecture of power management. Section III gives the key
algorithms of our power management system. Section IV
discusses the various policies to select the target set of nodes
for power regulation. Section V reports the implementation
of the power management system, the experiments with the
system, and the evaluation results. Section VI concludes the
paper with a brief discussion of future work.

II. THE PROPOSED ARCHITECTURE

In this section, we outline the proposed architecture,
which is depicted in Figure 1.
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Figure 1.

Proposed power capping architecture

A. Classification of Computation Nodes

The architecture is proposed for power management of
large scale computing systems. As mentioned in Section I,
not all nodes in a large scale computing system should be



considered as the target of power regulation. For instance,
some nodes may have no dynamic power management
facilities [8]. Some nodes may be running tasks that are
urgent, or of high priority in real-time systems, or critical to
the system’s performance and the response time to service
requests. Thus, their degradation will have a significant
impact on system’s performance, even cause violation of
SLA. They should not be degraded. There is no point to
monitor their power consumptions, and to waste computation
resources to collect their execution states and calculate
their power usages. Such nodes (or devices) are regarded
as privileged nodes, and regard as uncontrollable in our
architecture.

Moreover, in a large scale system, there are a huge number
of nodes. Monitoring all nodes for power management could
be too costly to be practically usable.

Therefore, in our architecture, we recognize the following
sets of computational nodes.

o Total set (Aiorqr): It contains all nodes in the system
that consume power budget. It is the complete set of
nodes recognized by the power management system.

o Privileged Set: (Auncontroliabic): It is the set of nodes
that are uncontrollable, either because they have no
facility to realize power management, or must not be
degraded for its vital impact to system’s performance.

e Candidate Set (Acandidate): It contains the nodes that
are subject to power throttling when need to. It is the
set of nodes that equals A;otq; — Auncontrolable- The set
Acandidate may vary during the execution of the system
since the tasks running on a node may change. The
power management system samples the power states
and other execution characteristics of the nodes in this
set, and selects a subset of the node to change execution
states in order to control the power consumption of the
whole system.

o Target Set (Aiqrger): It is a subset of the candidate
set and contains the nodes whose power states will be
throttled in a power control loop. It may vary from
time to time and determined by the power manager
according to the state of the system and a target
selection policy.

B. Power Consumption States

Our architecture of power capping for large scale systems
employs two thresholds of system’s total power consump-
tion: Py and Py, where Pr, < Py

According to these two threshold values, system’s power
consumption states can be classified into the following three.

e Green State (safe): The system’s power consumption

is below the threshold Pj. Thus, it is perceived to be
safe and there is no need to reduce system’s power
consumption.

e Yellow State (warning): The system’s power consump-

tion level is between P;, and Pp. It is still within the

power provision, but regarded as too close to the upper
limit. Thus, actions must be taken to reduce the power
consumption to ensure the system’s safety.

e Red State (critical): The system’s power consumption
is above Ppg. It is considered as critically far too high
and it is vital to enforce maximal strength of throt-
tling on the system immediately to prevent permanent
physical damage to the system due to overspending the
power budget. Without a definite action immediately,
the system will run a big risk of physical damage.

By employing two thresholds, we can balance between
performance requirements and safety requirements by main-
taining the system below (but close to) the threshold Py, yet
giving sufficient space to remain in safe without go to the
red area from yellow area. Therefore, it is very important
to set the right values to these two thresholds. This issue is
addressed in subsection IIL.A.

C. Power Profile Model

The total system power consumption is the key factor
to decide whether to throttle system power and the corre-
sponding throttling strength. Thus, we need a high precision
system power sampling. This can be achieved by using an
appropriate power meter of the whole system. It can be used
to directly monitor the real time system power usage.

However, it is sometimes infeasible to fit one power meter
for each node in a large scale system because the system
may have hundreds and thousands of nodes. Consequently,
a power profiling model is needed to indirectly estimate the
power usage of each node based on the node’s operation
mode. We deploy a profiling agent to each node in the
candidate set A qndidate, to profile its local operation state.

In general, the power consumption of a node is composed
of two parts, i.e. static power and dynamic power [8]. For
a node with multiple power states, its static power varies
according to its power state. Its dynamic power depends on
its resource usage. The total power consumption P(l) of a
node at power state ! can be calculated from its operation
mode approximately according to the following formula.

P(l) = Paie(l) + Uticpy x Y Pu(l) (1)
reCPU
Memysed Datanrc
T X Paem(l)+ ————— x P l
Memyotar 8 0+ T x BWnic x Pyic(l)

where, for each power level [,

e Pig(1) is the node’s power usage when it is idle, i.e.,
its static power at level [;

e P, (1) is the maximal dynamic power consumption of
a CPU unit at the corresponding power state, which is
the gap between its maximal power and idle power of
the CPU unit;

e Prem(l) and Pyye(l) are the maximal dynamic power
consumption of the total memory devices and the
communication device, respectively;



e Uticpy is the CPU utilization; the sum on all CPU units
is used to obtain the power usage of all CPUs in a node;

o Memyseq is the size of memory that is used by the
software running on the node;

o Memyotqr 1s total size of memory devices in the node;

o 7 is the sampling interval;

e Datapnyc is the size of total data transmitted through
the communication device within the sampling interval;

e BWyic is the bandwidth of the communication de-
vice; thus, 7 x BW o gives the maximal data size of
the communication device during a sampling interval.

This power profiling model estimates the power con-
sumption of a computing node based on the operation
states of its three key types of devices: CPU, memory and
communication device.

D. Underlying Assumptions

Given a large scale system, we assume that the above
architecture of power management is applicable and the
system is well configured. This assumption is articulated by
the following properties.

Controllability: The set Acqndidate consists of a large
enough number of computation units whose power con-
sumption can be controlled (i.e. the number of power
consumption levels [ is greater than 1) such that when
all the nodes in Acqndidate are set to their lowest power
consumption levels, the system’s power consumption will
certainly be lower than the power provision capability.

All large scale computing systems today consists of a
large number of computation units. Each unit may contain
a number of different components or devices that can be
executed in several different operational modes/states, where
operating in different states have different levels of power
consumption. Thus, under this assumption, power capping
can be implemented by controlling the power consumption
at different component levels, such as at device and node
levels, which eventually effect on the whole system’s power
consumption. This assumption is valid as most commod-
ity computing devices provide facilities for power control.
Therefore, it is always possible to select a subset of such
nodes that satisfies the requirement of controllability.

Observability: The system’s total power consumption
can be measured directly, and for each node in the
set Acandidate, its power consumption can be measured
directly or estimated to a sufficient accuracy in real-time
during system’s operation.

This assumption is valid because a power meter for the
whole system is easy to implement. And, a computing node’s
power consumption can be estimated from its execution
states accurate enough for power management.

Necessity: Power provision capability Py, is less than
the theoretical maximal power consumption Py, .

Here, power provision capability Py, is the designed
capability of power supply subsystem, i.e. the maximal
power consumption that the system can afford. In theory,
if the number of nodes in the system is /N and the maximal
power consumption of each node ¢ is P;, the maximal power
consumption of the system Py, is

N-1
Pipy = E P,
i=0

which is known as the theoretical maximal power consump-
tion. The assumption states that P,,, < Pjpy. Therefore, it
is necessary to manage the system’s power consumption for
the safety of the power supply subsystem.

This assumption is valid, because it is widely recognized
that the probability that all nodes run at their maximal power
at the same time is very small. To reduce the construction
cost and the operation cost, power supply subsystem is often
less capable than the theoretical maximal power consump-
tion.

Operability: The power provision capability is high
enough so that the system can function normally without
go over the power provision. It is well designed so that it
is only occasionally required to throttle system’s power
to deal with the power spikes.

Here, we assume that, although the power provision capa-
bility Py, is often lower than the theoretical maximum, the
capability is not too low so that the system is still operable
within the power provision. In other words, the power
provision is not ridiculously low. In a real environment, the
applied power budget should be able to satisfy the power
provision in most cases; the throttling of system power is
used to deal with the occasional power spikes. Therefore,
we believe that this assumption is reasonable and should be
valid for most systems.

III. POWER MANAGEMENT ALGORITHMS

In our architecture, the power management system invokes
three key algorithms to maintain system’s power consump-
tion in a stable and safe state. These algorithms are presented
in this section.

A. Overall Power Management Cycles

The key algorithms in our system are: (a) threshold setting
and adjustment algorithm, (b) power capping algorithm, and
(c) candidate set selection algorithm.

The system uses two thresholds P; and Py of power
consumption level in the power capping algorithm. These
thresholds are configurable. They can be set manually by
the system administrator based on his empirical knowledge.
However, to ensure the effectiveness of power management,



here we propose a simple learning algorithm to set and adjust
these parameters. In particular, the system is first run for
a relatively long period (say for 24 hours) as the training
period with Pr, and Ppg set according to the following
formulas, where the initial value of P, is set to be the
value of P,,4z.

PH:(1_7%)XPpeak:93%XPpeak
PL = (1 — 16%) X Ppeak = 84% X Ppeak

During a training period, the maximal power of the system
is recorded and used as the Pp,cqx to adjust the next value of
Pr, and Pp also using the above formulas. After the training
period, the observation of the peak power consumption
continues through the whole execution period of the system,
and the adjustment takes place periodically for every t,
control cycles, where ¢, is relatively large so that adjusting
the thresholds Pr, and Pg is much less frequent than the
invocations of the power capping algorithm.

The particular parameters used in the above formula are
based on Fan et al’s work [9], which reported that there is
a clear gap of 7% - 16% between achieved and theoretical
aggregate system power in large scale systems even in the
executions of well-balanced applications.

The set of candidate nodes is also a configurable parame-
ter of the power management system. The parameter can be
set manually and also be adjusted during the execution of the
system according to the impact of the nodes’ performance
on system’s performance as well as the existence of power
management facility on the hardware. Details are omitted
for the sake of space.

The power capping algorithm employs a target set selec-
tion policy to determine the set A¢qrq4c¢. And, for each node
in Atgrget, it assigns a new power state level [ to the node.
Therefore, the output of the power capping algorithm is a
set of ordered pairs (4,(), where 4 is a node in A;qyge, and
l is its target power state level.

The target selection algorithm is periodically invoked by
the power management system. If A;,,4.+ returned by the
algorithm is not the empty set @), the power manager will
send commands to all nodes in the A¢qyqet, and tell them to
regulate their power state to the corresponding target level.

B. Power Capping Algorithm

The power capping algorithm is given in Figure 2. It has
the following properties.

1) It is applicable to both heterogeneous and homoge-
neous systems as far as the power states of a node are
discrete, and there are only a finite number of different
power levels for each node.

2) It regulates the power states of all nodes in the system
synchronously.

3) A timer (timeg) is used to record how long the system
is in the green state continuously. If the system is in

the green state continuously longer than a predefined
value T, we regard the system as in a steady green
state. Therefore, the power consumption budget of
some degraded nodes can be increased.

4) If the system power is greater than Pr, and less than
Py, the system power consumption enters the yellow
warning state. A subset of the candidate nodes is
selected to decrease the power budget by one level.
This mild policy can avoid the heavy effect on system
performance by over adjusting. Note that a node in its
lowest power state cannot be degraded any further. A
valid target set selection policy shall not select an idle
node as a target.

5) If the system power consumption enters the red critical
state, power management system regards the safety
of system power usage as of the highest priority. It
pulls the system power consumption down to the safe
threshold as quick as possible. All candidate nodes are
thus degraded into their lowest power states. Under the
assumptions of controllability, this will certainly bring
the system back to the safe state. After the system
stays in the safe green state for a period of T}, the
system will gradually increase the power budget of
the candidate nodes to improve its performance. This
allows the system to cool down after overheating due
to overspending power budget.

It is worth noting that the effectiveness of the algorithm
depends on the target set selection policy. The following
section describes two different types of such policies and
discusses the rationale behind them.

IV. TARGET SET SELECTION POLICIES

We have identified two types of target set selection
policies: state-based policies and change-based policies. The
former selects a subset of candidate nodes according to
the current state of power consumptions. The latter selects
the target set according to the rate of increases in power
consumption.

A. State-Based Selection Policies

In a large scale system, especially in a parallel computing
environment, multiple nodes are usually coupled to run an
application. For a well-balanced application, performance
degradation of one node may make this node the bottleneck
of the whole system’s performance on this application. In
other words, the degradation of other related nodes will not
cause further loss of system’s performance. Throttling all
nodes within one application has the same effect on system
performance as throttling a single node. However, the former
have more effect on system’s power consumption than the
latter. Therefore, it is reasonable to select the set of nodes
on which a job is running as the target set Asqrget.



Algorithm 1. (Power Capping)
Variables:

e P: Current system power consumption level.

o Aiarget = {(i,1;)}i: The target set of nodes with target
power states.

o Agegradea: The subset of Acqndidate that have been
degraded. Its initial value is () when the system starts.

e Timey: A timer recording the length of the period in
which the system is continuously in green state. Its initial
value is 0.

Begin

Atarget = @;

if (P < PL) {i.e, in the green state} then
Timeg++;
if (Timey > Ty) and (Agegradgea # 0)) {steady green}
then

Ata'rget = Adegruded;

for all (¢,1;) € Atarget do
Replace (i,1;) in Atarger with (¢,1; + 1);
if [; + 1 is the highest level for node ¢ then

Remove node i from Agegraded;

end if

end for

end if

else if (P > PL) and (P < PH)) {ie., in the yellow

state} then
Timegy = 0;

Select Atarget C Acandidate according to the Target Set
Selection Policy;
for all (’L, lL) in At(”-get do
Replace (i,1;) in Atarger with (i,1; — 1);
Add 7 into Adegraded;
end for

else if (P > PH) {i.e, in the red state} then
Timey == 0;
for all 7 in Acandidate do

Add (i,1;) into At¢arget, Where ; is the lowest power
state of node ¢;
Adegraded = Acandidate;
end for
end if

End

Figure 2. Power Capping Algorithm

The question is: which job should the selection policy
target at? There is a variety of choices to answer this
question, such as:

o the most power consuming job (or jobs);

« the least power consuming job (or jobs);

« the best fit job (or jobs), whose power consumption is
closest to the right amount of power budget cut.

Let J be a job running in the system at the time of
target selection. Let Nodes(J) be the subset of non-idle
candidate nodes on which the job is running on. The power
consumption of a job J, denoted by Power(J), is calculated
as follows.

Power(J) =

> Pa)

i€Node(J)

where P(i) is calculated according to formula (1).

The most power consuming job policy (MPC) is to select
Nodes(J) as the target set Ayqpger for the job J such that
Power(J) is the largest among all jobs.

It is worth noting that by reducing the power budgets
by one level for the set of nodes in Nodes(J) may not
be enough to bring the system into the safe green state.
However, through several cycles of power management, the
system’s state will be brought back to the safe green state
gradually.

The power consumption state can be brought back to
green faster than targeting a single job, if a number of
highest power consumption jobs are targeted at. Figure
3 gives the algorithm for the most power consuming job
collection policy (MPC-C).

Algorithm 2.(Select target set according to MPC-C)

Begin
Saved := 0;
Atarget = 0’
A =0
Order the jobs Ji, Ja2,- -+, Ji in the system such that for all

1=1,--- ,k — 1, Power(J;) > Power(Ji+1);
for all i€ {1,---,k} do
Saved = Saved + ZIGNOdES(JI_)iA [P(x) — P'(x)];
A := AU Nodes(J;);
if (Saved > P — Pr) then
Exit the for-loop
end if
end for;
for all i € A do
Add (,1;) into Atarget, where I; is the current power state
of node i;
end for;
OUtPUt(Atarget);

End

Figure 3. MPC-C Target Selection Policy

In Algorithm 2, P’(z) is the estimation of power con-
sumption of node = when the power budget is decreased by
one level. It is calculated using Formula (1).

Similar to the MPC and MPC-C policies, we can apply the
least power consuming job (LPC) / job collection (LPC- C)
policies, which selects the target nodes on which the job/job
collection runs and they consume the least power. These
policies have the slowest effect on power consumption, but
least likely to cause swings of power consumption states
between green and yellow.

Another alternative is the best fit job policy (BFJ), i.e.
to select the target set to be the set Nodes(J) such that
the power consumption saved by reducing the power budget
by one level for each node in Nodes(J) is just above the



difference between P and Pp. This policy can be regard as
a compromise between the MPC and the LPC policies.

The above policies have a common feature, that is, they
all target at the job(s) according to the current power
consumption states of the nodes on which the jobs are
running. These state-based policies degrades a set of nodes
that are associated to certain job(s) when the system enters
the yellow warning state without considering which job or
jobs actually caused the increase in power consumption. This
type of policies is not fair when the targeted job does not
cause the problem. This is especially true when the MPC or
MPC-C policies are used. In these cases, a large number of
nodes could be affected. An alternative is to target directly
at the jobs that cause the increases in power consumption,
thus the following change-based selection policy.

B. Change-based Selection Policies

The basic idea of change-based policies is to target the
job(s) with the highest rate of increase in power consump-
tion. Let AP?(z) denote the rate of increase in power
consumption of node z at time moment ¢. That is,

‘ P'(z) — P ()
AP (I) - Pt_l(.’E) )
where both P!(x) and P*~!(z) are calculated using formula
(1) with the parameters as node z’s state at time moment ¢
and ¢ — 1, respectively.

The rate of increase in power consumption due to job J at

time moment ¢, denoted by AP!(.J), is defined as follows.

_ P =P
- Pt=1(J) )

AP(J)

where Nodest(J) is the set of nodes on which job J is
executing at time moment ¢, and

Py= Y

x€Nodest(J)

P'(x).

Similar to the MPC policy, we can define the highest rate
of increase in power consumption policy (HRI) by targeting
at the job whose value of AP!(J) is the largest among all
jobs. It selects the set Nodes(J) as the target set such that
the AP!(J) is the largest among all job.

Using HRI policy, the job directly targeted at for degra-
dation is probably the cause of moving power consumption
level above the green line Pr,. It is fairer because it punishes
the job that cause problem and balances the effect among all
nodes of the system. However, the number of target nodes
may be less than that of MPC policy. Therefore, using this
policy, the power reduction in each control loop usually is
less than that of MPC policy. It may be slower to pull the
system back to the safe state.

Similarly, as a counterpart of the policy of the most power
consuming collection of job, we can also define the policy
that selects the collection of jobs that are of highest rates

of increases in power consumptions. However, it does not
make sense to define the counterparts of the other state-based
policies.

V. IMPLEMENTATION AND EVALUATION

The proposed power management system has been im-
plemented and deployed to an experimental supercomputer
environment. It is a variant of the supercomputer Tianhe-1A,
which is currently ranked as No. 2 in Top500 list and was
ranked as No.1 in the previous Top500 list. Experiments are
been carried out in this environment. This section reports
the implementation and experiments with the system.

A. Hardware and Software Platform

In the environment, each compute node is constructed on
one Tianhe-1A main board. Each node has two Intel Xeon
X5670 processors, and each processor contains 6 cores. Each
processor is configured with 6 DDR3-133 memory devices.
The capacity of each memory device is 4GB. These two
processors are in the SMP architecture. A Tianhe-1A high
speed communication chipset is embedded in the mainboard.
There are 128 nodes in our environment that are connected
by Tianhe-1A network through this communication chipset.

The Intel Xeon X5670 processor in the experiment envi-
ronment supports Dynamical Voltage and Frequency Scale
(DVFS) mechanism. It can operate in 10 different working
frequencies from 1.6 GHZ to 2.93 GHZ. Lower frequency
means lower compute capability, and also lower power
consumption. It is the only hardware mechanism in our
experiment environment that facilitates power management.
We control the power state of a node by regulating the
working frequency of its processor cores synchronously.
The power consumption of all other devices is indirectly
managed in the experiment through decrease the power
consumption level of the processors. Each level of node
power degradation is implemented by decreasing one level
of processor frequency. If its processor core is working at
1.6 GHZ, we consider the node is in lowest power state.

The operating system running on our compute node is
Linux. The parameters in our power profiling model, i.e.
the values of Uticp,, Memysed, Memyorqr in formula (1),
are obtained by sampling the devices through invocations of
the /proc interface provided by Linux kernel. The value of
Datapnyc is obtained from the automatic log generated by
Tianhe-1A communication chipset.

B. The Evaluation Benchmark

Our experiments used five parallel applications in the MPI
benchmark suite in the NAS Parallel Benchmarks [15] as
evaluation jobs. They are EP, CG, LU, BT and SP. In the
experiments, their CLASS configuration is set as D. The
NPROCS parameter of these jobs varies from 8, 16, 32, 64,
128 to 256.



C. Execution of the experiments

In the experiment, the thresholds Py, and Py were learned
by training executions as described in Section III. The length
of training period is 24 hours. During the initial training
period, all nodes are running at highest power state without
any power management.

The parameter T}, in the power capping algorithm is set
to be 10 cycles. Two target selection policies has been im-
plemented and used in the experiments. They are MPC and
HRI policies. After the initial train period, the experiment
system is executed with one of the target selection policies
for 12 hours and the power consumption behavior of the
system is measured and recorded.

In the experiment, evaluation jobs were generated at ran-
dom by first selecting one application from the benchmark,
and than set the NPROCS parameter at random to be one
of the values 8, 16, 32, 64, 128 to 256. An evaluation job
is added to the job queue whenever the queue is empty.
They were loaded to the system as soon as the required
hardware resource is available. Therefore, at any time during
the experiment there may be multiple jobs running on the
system and each job have a number of processes.

During the experiments, power consumption and per-
formance behavior are measured and data collected. Two
measurements of system’s performance are used in order
to analyze and compare the effectiveness of our power
management architecture.

1) System performance: The performances of the system
under different power management policies are calculated
according to the following formula:

1 J

T
Per formance(cap) = = J ,
I\ = Teaps

where

e cap is a selection policy used in power capping;

e J is the number of finished jobs in the experiment;

e T} is the time to finish the job j with highest node

performance without any power capping;

e T,4p,; is the time to finish job j using a selection policy

cap.

Using this performance metric, the greater measurement
means the higher performance of the system, while the less
means larger performance loss.

2) Count of performance lossless jobs (CPLJ): This met-
ric count the finished jobs whose execution time under power
management is equal to the time to execute the job when
the system is in full power, i.e. without power management.
Therefore, the higher in this measurement means the higher
system performance when its power is managed, and the less
performance loss.

3) The maximal power (Pp,q.): It is the peak value of
the power consumption observed during the execution of the
system.

e

power

time

Figure 4. Accumulative effect of overspending

To evaluate the effectiveness of a power management
system, we also define the following metric.

4) Accumulative effect of overspending (AP x T'): This
metric is defined by the following formula.

fp>Pth (P(t) — Pu)dt

AP xT = TP ,

where

o P(t) is the system’s power consumption at time ¢,
o Py, is the power provision capability, i.e. the threshold
of power consumption required by the system.

The meaning of the formula is illustrated by Figure 4,
where the curve represents the power consumption behavior
P(t); the red dashed line represents the system’s required
power consumption threshold. The dark grey area is the
effect of power overspending during the whole execution
period from time moment O to T. The total grey area
including both dark grey and light grey areas is the total
amount of heat generated by the execution of the system
due to consuming the power. The AP x T metric calculates
the ratio of the dark grey area over the total grey area. It
evaluates the effect of power over consumption on a system
during the whole execution period.

Therefore, informally, the metric calculates the relative
effect of power consumption that is above the required
threshold Pj. It reflects the accumulative thermal impact
caused by overspending power budget, i.e. the extra heat
generated by the overspent power during the whole execu-
tion period over the total heat generated. This metric cap-
tures our intuition that the effect caused by power overload
is related to the extent of power consumption above the
threshold and the length of the time overspending happened.

D. Experiment Results

To select target nodes wisely, the global power manager
need to collect information about the runtime behaviors
and the power consumptions of all nodes in the candidate
set. The cost of central power management rises with the
number of nodes to be monitored. Figure 5 shows that the
CPU utilizations of the central management node increases
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Figure 6. Power capping effect at different size of A.qpndidate

non-linearly with the sizes of A.qngidate. It indicates that
scalability may become a problem in power management for
large scale systems. It is indeed necessary to only profile
a subset A gndidate Of nodes rather than all the nodes in
cluster.

With different sizes of the candidate set, we observed
the effect of the power capping in the experiment. The
results of the experiments are shown in Figure 6, where the
values are normalized against the values when the system
is executed without any power management (i.e. when the
size of Acandidate 18 0).

From the results shown in Figure 6, we can see that the
trend curves of MPC are similar to those of HRI. Both

-
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Figure 7. Power capping results of different policies

the maximal power metric and the accumulative effect of
overspending metric show that the more nodes covered by
Acandidate, the better effect our power management solution
has. However, as discussed above, the larger Acqndidate
means more jobs can be throttled by power capping, and
thus incurs more management cost. However, it is worth
noting that the increase of effect with the size of Acqndidate
is not linear. When A g didate 1S large enough (48 nodes in
our experiment environment), the increase in effect of power
capping diminishes. In this situation, adding more monitored
nodes returns little effect but a remarkable increase in cost,
as shown in Figure 5. Therefore, a power management so-
lution should trade-off between cost and effect by choosing
a suitable size of A gndidate-

As shown in Figure 7, when all 128 nodes are included
in Acqndidate, System performance is lost by about 2% due
to power capping when use either of the target set selection
policies. However, the maximal power is reduced by about
10%. This means that the spikes of power consumption are
successfully controlled by the power management system.

Comparing the target set selection policies MPC and HRI,
the experiments shown that their effects on performance and
the maximal power are nearly the same. However, when the
power consumption behaviors are measured by the AP x T
metrics, the difference between these two policies becomes
apparent. The power behavior measured in AP x T is
improved remarkably by both policies, where MPC and HRI
reduced AP x T measures by 73% and 66%, respectively.
Moreover, using the MPC policy, the number of jobs without
performance loss is greater than (by 1.4%) the same measure
when the HRI policy is used. Therefore, MPC policy is more
favorable than HRI policy.

It is worth mentioning that in our experiments with power
capping, system power is always below Py no matter which
selection policy is used. In other words, the system power
consumption has never entered the red critical state when the
power is managed. This is another evidence of the validity
of the proposed architecture.



VI. CONCLUSION

In this paper, we proposed a new architecture for power
management of high performance computing systems. One
of its key characteristics is that for each power capping
cycle, it selects a subset of nodes from a set of candidates
to reduce their power consumption when power reduction
is needed. We have explored two types of policies to select
this power capping target set of nodes. The first type of
policies is state-based policies, which only consider the
current state of power consumption by the nodes that execute
a job or a set of jobs. The second type of policies is
change-based policies, which selects the target nodes by
considering the rate of increase in power consumption for
executing a job or a collection of jobs. A power management
system has been implemented and deployed to the Tianhe-
1A environment with two different policies, one in each
type. Experiments have been conducted to evaluate the
effectiveness of the architecture and to compare the different
policies. The results show that in both policies, the system
can successfully manage the power consumption with only
2% degradation of system’s performance.

For future work, we are implementing other selection
policies and conducting more experiments with new policies
to compare their power and performance behaviors.
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