Modelling and Specifying Scenarios and Agent Behaviour"

Lijun Shan
Department of Computer Science
National University of Defence Technology
Changsha, China
Email: lijunshancn@yahoo.com

Abstract

Based on our previous work on the formal
specification language SLABS as well as a methodology
and modelling language for modelling and specifying
multi-agent systems, we further investigate how
diagrammatic models of multi-agent systems can be used
to derive formal specifications in SLABS. The modelling
language is further developed by introducing behaviour
diagrams and scenario diagrams for modelling agents’
behaviour in various scenarios of their environment. It
supports derivation of the specifications of agents’
behaviour through scenario analysis. The language and
its usage are illustrated by an example of the evolutionary
multi-agent ecosystem Amalthaea developed at MIT
Media Lab.

1. Introduction

The necessity of a rigorous and formal methodology
for developing multi-agent systems has been widely
recognized due to the difficulties in analysis,
specification, design, implementation and testing
autonomous and intelligent behaviours of such systems;
c.f. [1, 2]. Much work has been done in the area of formal
modelling of agents’ rational behaviour by logic systems
and game theories; c.f. [3~7]. On the other hand, research
has also been reported in the literature about the
development processes and methods for engineering
agent-based systems by utilizing diagrammatic notations,
e.g. [8~12]. Unfortunately, there is a big gap between
these two approaches.

In this paper, we investigate how models of multi-
agent systems described in a diagrammatic notation can
be used to derive formal specifications. In our previous
work [13~15], a language called SLABS has been
designed for the formal specification of agent-based
systems. In [16] a diagrammatic notation and a
methodology for modelling multi-agent system’s

Hong Zhu
Department of Computing
Oxford Brookes University
Oxford OX33 1HX, England
Email: hzhu@brookes.ac.uk

architecture were proposed so that the formal
specifications in SLABS can be derived from semi-formal
models of multi-agent systems. The analysis of agents’
behaviour is one of the key tasks in our methodology.
Based on our previous work, this paper further develops
the diagrammatic modelling language to support scenario
analysis and derivation of behaviour rules for formal
specifications of agents.

This paper is organized as follows. Section 2 briefly
reviews the formal specification language SLABS and the
underlying model of agent-based systems. Section 3
presents a diagrammatic notation for modelling agent-
based systems. The notation consists of the collaboration
diagrams introduced in [16] and the behaviour diagrams
and scenario diagrams proposed in this paper. Section 4 is
a case study of a non-trivial evolutionary multi-agent
system Amalthaea. Section 5 summarizes the results of
the paper and discusses further research directions.

2. The language SLABS and its meta-model

In [13], we proposed the language SLABS, which
stands for Specification Language for Agent-Based
Systems. It was further developed in [14] by defining its
formal semantics and in [15, 16] by investigating its
pragmatic issues and case studies. The language is based
on a meta-model of multi-agent systems, which can be
characterized by a set of pseudo-equations [14]. In
particular, pseudo-equation (1) below states that agents
are defined as real time active computational entities that
encapsulate data, operations and behaviour rules and they
situate in their designated environments. Here, data
represent an agent’s state. Operations are the actions that
an agent can take. Behaviour rules determines how an
agent changes its state and takes actions in the context of
its environment. By encapsulation, we mean that an
agent’s state can only be changed by the agent itself, and
each agent has its own rules that govern its behaviour to

B Work reported in this paper is partly supported by China National High Technology Research Programme (863 Programme) under grant

2002AA116070.

decide ‘when to go’ and ‘whether to say no’.

Agent = <Data, Operations, Behaviour> gpironmens (1)

As an extension to the notion of class in object-
orientation, a caste is a set of agents that have the same
structural and behavioural characteristics as stated in
pseudo-equation (2). An agent is an instance of a caste. It
can also join in and retreat from a caste at run-time.
Therefore, which agents are in a caste depends on time,
hence the subscript ¢ in pseudo-question (2). A caste can
inherit from a number of other castes. As argued in [15],
castes play a significant role in the construction of multi-
agent systems. Fig. 1 shows the structure of caste
description in SLABS.

Castes ,= {agent | structure characteristics

& behaviour characteristics} 2)

__ NewCasteName <= Caste Names (Instantiation)

Visible actions and state variables

Invisible actions and state variables

Environment
description

Behaviour specifications

Fig. 1 Structure of caste description in SLABS

Equation (3) states that a multi-agent system consists
of a set of agents. Notice that, our definition of agent
implies that object is a special case of agent in the sense
that it has a specific rule of behaviour. Therefore,
everything in a multi-agent system is an agent. The
environment of an agent is a subset of the agents in the
system, where some agents in the system may not be
visible from the agent’s point of view. The environment
description of an agent or a caste defines which agents in
the system are visible. Hence, we have pseudo-equation
(4) below.

MAS = {agentn}n Elnteger (3)

Environment , (Agent, MAS) [JMAS — {Agent} @)

The SLABS language and the underlying meta-model
of MAS do not define any specific communication
language or protocol. The mechanism of communication
is that an agent’s actions and states are divided into two
parts: the visible ones and invisible ones. Agents
communicate with each other by taking visible actions
and changing visible state variables, and by observing
other agent’s visible actions and state variables. This is
expressed in pseudo-equation (5).

Communication from agent A to agent B =

A. Action + B. Observation 5)

In SLABS, an agent’s behaviour is defined by a set of
rules that describe its responses to environment scenarios.
A behaviour rule has the following structure.
Behaviour-rule ::= [<rule-name>] pattern | [prob]

— event, [if Scenario]|[where pre-cond]; 6)

In a behaviour rule, the pattern on the left-hand-side of
the — symbol describes the pattern of the agent’s
previous behaviour. The scenario describes the situation
in the environment, comprising behaviour histories of the
agents in the environment. The where-clause is the pre-
condition of the action. The event of the right-hand-side
of — symbol is the action to be taken when the scenario
happens and the pre-condition is satisfied. An agent may
have a non-deterministic behaviour. The expression prob
in a behaviour rule is an expression that defines the
probability for the agent to take the specified action on the
scenario. If the probability expression is omitted, it means
that the probability is not 0. Table 1 and 2 give the
formats and the meanings of patterns and scenarios,
respectively.

Table 1 Meanings of patterns

Pattern Meaning

$ The silence event

Action variable It matches an action

Pk A sequence of k events that match
pattern P

! Predicate The state of the agent satisfies the

predicate

An action Act that takes place with
parameters match (ay, ay, ...ay)

Act (ab a, .. -ak)

The previous sequence of events match
the pattern py, ... p,

[P15 - Pal

Table 2 Semantics of scenario descriptions

Scenario Meaning

A:P The situation when agent A’s behaviour
matches pattern P

oxoc: p The situation when the behaviour of all agents
in caste C match pattern P

Qm]XOC: P The situation when there exists at least m
agents in caste C whose behaviour
matches pattern P where the default value of
the optional expression m is 1

puxX0oc: p The number of agents in caste C whose
behaviour matches pattern P

S &S, The situation when both scenario S; and
scenario S, are true

S8, The situation when either scenario S; or
scenario S, or both are true

=S The situation when scenario S is not true

For example, the following is the behaviour rule of a
search engine. It states that if there is an agent 4 in the
environment that takes the action of calling the search
engine with a set of keywords, it will return a set of urls
that matches the keywords.

[$]]- SearchResult (keywords, urls);
if OA: [Search (keywords)]

3. The modelling language

We model an agent-based system at two levels. On
macro-level, the relationships between the agents are
described. On micro-level, the behaviour of each agent is
described. The methodology can be summarized as a
process that consists of the following activities. (1)
Architectural analysis identifies agents in the system,
groups the agents into castes, analyses inheritance and
aggregation relationships between the castes, and
documents them into a caste diagram. (2) Interaction
analysis identifies the agents’ visible actions and states as
well as the interactions between the agents, and
documents them into collaboration diagrams. (3) Scenario
analysis identifies the typical scenarios that each agent
will deal with and its designed behaviour in the scenarios.
This results in a set of behaviour rules. (4) When an
agent’s behaviour is too complicated to be analysed by
scenario analysis, decomposition and refinement are
applied to the agent/caste by iterating the steps of
interaction analysis and architectural analysis. (5)
Derivation of formal specification produces a formal
specification of the multi-agent system in SLABS from
the models represented in the form of diagrams.

In [16], we addressed the structural issues in the
modelling of multi-agent systems and devised a
diagrammatical notation. The notation of collaboration
diagrams consists of two types of nodes: agent nodes and
caste nodes. An agent node represents a specific agent in
the system. A caste node represents all agents in the caste.
Arrows between nodes represent communications
between the agents. The collaboration diagram in Fig. 2
represents the Ecosystem of the evolutionary multi-agent
system Almalthea [17].

— E
Action Search(E: Engine, K: Keywords); Submit(url: URL, confidence: Real);
Store(url:URL, wkv: WEV); Extrat(F: HTML._file);
Query(url, URL, wkyv: WKV),

Action Credit(A: Agent, ¢ integer);

Pass-Rate(url, r CIedil(Agent,f) XPKY(C) Credit
() Pay(e) (Agent, c)
Submit(url, confid = s
agents
k .
Interest(keywords) Available
(url, wkv

tore(url, wkv)

[Semch § earch(engine, Leywords) anon'naﬁon || Query(url, wkv) tab:]
1 |———
R — Database
Engines Search_Result agents

Y Stored(url, wkv)
(keywords, urls) Query_Result(url,
Extract(file) Extracted kv, ans)
(file, wkv)
hd
[WKV Generator |

Fig. 2 Example of collaboration diagram

In this paper, we propose a notation for modelling at
the micro-level, i.e. the behaviour of individual agents. A
behaviour model is represented by behaviour diagrams,
which may include or refer to some scenario diagrams.
For each agent, a behaviour diagram visually represents
the agent’s behaviour rules, while scenario diagrams
represents the agent’s view of the state of the multi-agent
system.

3.1 Scenario diagram

A scenario is a description of an agent’s view of the
state of a multi-agent system. It plays an important role in
our methodology. A scenario is composed of behaviour
patterns of a set of agents in the environment. The
behaviour patterns are combined together through logic
connectives. Accordingly, a scenario diagram as a facility
to describe a scenario is horizontally divided into three
parts: the scenario’s identifier, behaviour descriptions and
a logical connection network, as shown in Fig. 3. The
behaviour descriptions are vertically divided into several
parts called the swim lanes. Each swim lane contains a
quantifier, which describes ‘who is swimming’ by giving
the name of the agent or a quantifier applied to a caste,
and a sequence of events of the swimmer in temporal
order. Temporal relations between events of different
swimmers are indicated using arrows across the
swimming lanes, when synchronization is important;
otherwise, swimmers are assumed to execute in parallel
and their events are concurrent.

% Quantifier !
I

[]

I
I

! !
i Predicate 1 ™!
| |
I I
I I
i !

Scenario Name

Swim Lane 1 Swim Lane N

Logic connection network

/

Fig. 3 Structure of scenario diagrams

There are two types of event nodes: action nodes and
predicate nodes. An action node represents a visible
action of the swimmer. A predicate node represents that
the value of a visible state of the swimmer satisfies the
certain condition given in the node. These nodes are
linked by two types of arrows for their temporal order, as
shown in Fig. 4. A solid line arrow from node A to node
B indicates that the swimmer takes the action of B or is in
the state that satisfies the predicate in node B immediately
after action or state of A. A dashed line arrow from node
A to B means that the swimmer takes the action or in the
state of B after action/state A, while the swimmer may
engage in other actions and/or in other states in the time

gap between A and B. Fig. 4 gives the notation of
scenario diagrams.

Action node: the agent takes an action
Act(py,...p,) at time t, where p,,...p, are
parameters of the action.

ACt(pl 90 pn)

-
I t:
[

Rr-Exp REpeEtitive action node: the agent takes
an action repetitively at time t, where
R-Exp defines the number of
repetition of the action.

. State node: the agent’s state satisfies
| t: C Predicate . .
the predicate at time t.

Continuous state node: the agent’s
state satisfies the predicate for a
continuous period of time at time t,
where the period satisfies the C-Exp.

o
I't:

t: | Act(py,...Pn
A (P15---Pn)

=y
|
|.
I I

C-Exp
I't: C Predicate
L

-|
|
"

Logical connective nodes of AND,
OR, and NOT, respectively: to
combine behaviour patterns or
scenarios.

Temporal order arrow: event B is
immediately after event A. -Exp is the
time constraints on the time interval
between the events.

Discrete temporal order arrow: event
B is after event A, while there may be
other events between them. T-Exp is
the time constraints on the time
interval between the events.

o
35

| T-Exp

H¢

Fig. 4 Notation of scenario diagrams

Scenarios can be defined within a behaviour diagram
where it is used. However, when a scenario is either too
complex to be depicted in a behaviour diagram or
repeatedly used in several behaviour rules, it can be
defined in a scenario diagram and assigned a name. Thus,
the scenario as a whole can be treated as a reusable
module and referred to in certain behaviour diagrams.

3.2 Behaviour diagram

The notation of behaviour diagrams includes the
notation of scenario diagrams plus two types of arrows
and three types of nodes, as shown in Fig. 5. In a
behaviour diagram, the event to be taken is linked to
previous events through an action arrow. Each action
arrow can be associated with a scenario node and a
precondition node. A precondition node is represented as

a box with dashed line border and a precondition inside.
A scenario node is represented as a round-corner
rectangle, which may contain either simply a scenario
name referring to a special scenario diagram, or a detailed
scenario description. Several scenarios can be logically
linked to form combined scenarios using logic connective
nodes.

- Scenario node: contain a scenario name
Scenario
or a detailed scenario description.

[Pr_ecgngitgn-l Precondition node: give the precondition
of an event.

Action arrow: a link from behaviour rule’s
previous events to the event to be taken.

Logical arrow: a link from scenario node
to action arrow.

Fig. 5 Additional notations of behaviour diagrams

Behaviour rules in one behaviour diagram can be
depicted independently or jointly. For example, the
following diagram in Fig. 6 represents two related
behaviour rules of one agent.

Scenariol Scenario2 ¢

Scenario3 [M] ‘

o]

Fig. 6 Two behaviour rules jointly described in one
behaviour diagram

The elements in behaviour model defined above
correspond to the contents in formal behaviour rule
defined by (6). Therefore, the equivalent formal
specifications in SLABS can be easily derived from
diagrammatic models in the following way. With nodes
and links in a scenario diagram transformed into
equivalent formal expressions in SLABS, a swimming
lane containing a sequence of event nodes linked by
temporal arrows can be transformed into a pattern in
scenario, and in turn a well-formed scenario diagram into
a formal scenario description. Concerning a behaviour
diagram, the sequence of event nodes before and after the
action arrow can respectively be transformed into the
pattern and event part of a formal behaviour rule, and the
scenario nodes and precondition node respectively into
the formal scenario and precondition expression.
Consequently, for each agent in a multi-agent system, the

formal specification with behaviour rules as the core part
can be derived from the system’s diagrammatic model that
comprises the behaviour model proposed in this paper.
Automation of the derivation is within our future work.

4. Case study

In this section, we illustrate the usage of the modelling
language by an example. We will analyse the Amalthaea
system, which is an evolutionary multi-agent ecosystem
developed at MIT Media Laboratory [17] aiming to assist
its users in finding interesting information on the web.
There are two species of agents in the system: filtering
agents that model and monitor the interests of the user and
discovery agents that model the information sources.
These agents evolve, compete and collaborate in a
market-like ecosystem. Agents that are useful to the user
or other agents reproduce while low-performing agents
are destroyed. The evolution of the system enables it to
keep track of the changing interests of the user.

In [16], we have discussed how to develop its formal
specification in SLABS following our proposed process.
Amalthaea is composed of the User Interface, the
Ecosystem, the WWW search engines, WKV (Weighted
Keyword Vector) Generator and Database of the retrieved
document. The Ecosystem, containing two types of agent:
the information filtering agents and the information
discovery agents, has complicated behaviour. Here we
graphically describe its behaviour rules through behaviour
and scenario analysis. The agents that constitute the
Ecosystem operate under a penalty/reward scheme
supported by the notion of credit. Each agent has fitness
level expressed in the form of the accumulated amount of
credit that it has received according to its performance.
And each agent has to pay “rent” following a linear decay
credit function. Credit, thus, serves as the fitness function
of the agents. The higher the fitness of an agent, the more
chances it gets to survive and produce offspring. In
analysis of the Ecosystem’s behaviour, the following
scenarios are identified.

e Scenario 1: when the user’s rating on a presented
digest is passed to the Ecosystem through the
interface.

e Scenario 2: when it is the time for the agents to pay.

In scenario 1, when credit is assigned by the user
through feedback on the relevance of an item in the
digest, the system relates this feedback to the filtering
agents that proposed the item and discovery agent that
retrieved it and assigns the credit to the agents. We
assume the function CreditIFA: Rate X Confidence —N
calculates the amount of the credit to be given to the
information filtering agent and CreditIDA: Rate X

Confidence — N for information discovery agents. Then,
the behaviour of the Ecosystem in the scenario when
receiving a rating on a digest can be described as Fig. 7.

(EcosystemCredit

Interface Ja: IFA dB: DA

4)
PassRating Submit{ur], Available
{url, 1) confidence) {rul, whv)
l \ v

! Y =

lc1=CreditlFA{r,confidence); |

|c2=L‘redilIl);\ (r. confidence) I

Credit (A, cl);
Credit (B, ¢2)

Fig. 7 Behaviour diagram for Ecosystem’s behaviour
in scenario 1

From this diagram the following rule can be derived.
Rule 1: [$] |- (Credit(A, cl), Credit(B, c2));
If Interface: [PassRating (url, r)] &
OAOIFA: [$, Submit(url,confidence), $"k]
& [BOIDA: [Available(url, wkv), $°k’],
where c1=CreditIFA(r, confidence) &
c2=CreditIDA(r, confidence)

The evolution of the Ecosystem is triggered by
scenario 2. After all agents have paid their rents, decisions
are made on who will be purged and who will produce
offspring. It depends on two factors: the fitness of
individual agent and the fitness of the whole system. The
overall fitness is measured according to the percentage of
positive feedbacks from the user in the past N ratings.
Only a variable number of the best performing agents in
the whole population are allowed to produce offspring,
while a number of worst performing agents are to be
purged. Assume that the function NumberofPurges
(N_rating) and NumberofOffspring(N_rating) respectively
calculates the number of agents to be purged and that to
be generated from the most recent N ratings. The
behaviour rules of “purge” and “generate” share the same
scenario of “RentPaid”, which is represented in the
scenario diagram in Fig. 8. The rules of purge and
generate are described in Fig. 9 and Fig. 10, respectively.

(RentPaid h

 OY: DA !
F v !
Paye)| | [Pay(@)] | [PassRating(m)

|¢ I A 4 I \ 4

7\
N &/ J
Fig. 8 Scenario diagram for the situation when all
agents have paid their rents

Interface

ASIFAUIDA y A€PurgeSet; |

|PurgeSet c{X[XEIFA or XEIDA}; I

| ¥X ePurgeSet. VY ePurgeSe. :
|

| (Xfitness=Y.fitness);

[|PurgeSet|-NumberofPurges (<1, 1) |
S

'

Fig. 9 Ecosystem’s behaviour rule for purge agents

AelFAUIDA
| =
|

A=NewAgentSet!)
NewAgentSetSpec I

Generate(A)
AcTFAUTDA

Fig. 10 Ecosystem’s behaviour rule for generating
new agents

The formal definitions of these rules of Ecosystem can
be derived from the above behaviour diagrams and the
scenario diagram.

Rule 2: [[(AOIFAUIDA)] | » Purge(A)!(AOIFA UIDA);

If 0 X: [FA:[Pay(c)] & OY:IDA:[Pay(c)]

& Interface:[PassRating(r,,)"N];

where APurgeSet &

PurgeSet O{X | XOIFA or X[IDA} &

OXOPurgeSet.JY OPurgeSet.(X.fitness< Y .fitness) &

|[PurgeSet||=NumberofPurges (<r,>n=1,...,N)
Rule 3: [I(ADIFAOIDA)]| -
Generate(A)!(AOIFAOIDA);
If O X :IFA:[Pay(c)]& OY:IDA:[Pay(c)] &
Interface:[PassRating(r,,)"N];
where Al NewAgentSet [J NewAgentSetSpec

Therefore, we have the following specification of the

Ecosystem in SLABS.

Action Search(E: Engine, K: Keywords, Submit{url: URL, confidence: Real)
Store{ur]: URL, whv: WEV); Extract WEV{F: HTML_file);
Query{url: TRL, whv:WEV)

Var TFA: Caste Information_Filtering_Agents;
IA: Caste Information_Discovery_Agents;
Action Purge{A: Agenty, Generate{ A: Agent)

[%] [=(Creditia, e1), Credit(B, ¢2)); if Interface: [PassRating {url, r}] &
Az [5, Submit{url, ¢ 1, 5°k] & B: [Avai {url, whv), $°k7],
Where el1=CreditlFA (rconfidence) and c2=CreditlDA {r, confidence)

All: Search
Engines [MASIFAL IDA)] |-+ Purge(A) A €IFA IDA)

if X IFA[Pay(e)]& VY- IDA[Pay{e)] & Interface:[PassRating(r, yN];

| Interface

| Database | where A PurgeSet and PurgeSet C{X | XEIFA or XEIDA}
I and WX =PurgeSet. VY ¢ PurgeSet. (X fiess= Yfimess)
WEV and || PurgeSet|| = NumberofPurges(<r,>.., u)
Generator

[tAag IEA U IDAY] |- Generate{A) WA e [FAUIDAY
it X IFA:[Pay(c)]& 7Y:IDA:[Pay(c)] & Interface:[PassRating(r, f'N];
where AT NewAgentSet U NewAgentSetSpec

5. Conclusion

In this paper, we further developed the diagrammatic
agent-oriented modelling language to support the
modelling and specification of multi-agent systems. We
addressed the micro-level modelling issues, which include
the analysis of system scenarios and the descriptions of
agents’ behaviour, and the derivation of behaviour rules
in formal specifications. The uses of the language are
illustrated by an example of an evolutionary multi-agent
ecosystem Amalthaea.

We are currently developing a software tool to support
the construction of agent-based system models. The tool
is designed to support automatic or semi-automatic
generation of formal specifications in SLABS from
graphic models. There are a number of important issues to
be addressed in the future. First, consistency constraints
between the diagrams must be explicitly specified and
algorithms for automatically checking the constraints
must be developed. Second, transformation rules from
diagrams and dictionaries to formal notations must be
specified and algorithms for automatic implementation of
the rules must be developed.

Acknowledgement

The authors are most grateful to Prof. Zhichang Qi, Dr.
Xinjun Mao and Mr. Qi Yan at National University of
Defence Technololy, China for their comments on earlier
drafts of the paper and the discussions on related subjects.

References

[1] Rash, J. L. et al (eds.), Formal Approaches to Agent-Based
Systems, First International Workshop, FAABS2000, Springer
Lecture Notes in Computer Science, Vol. 1871, 2001.

[2] Meyer, J-J., Schobbens, P-Y. (eds.), Formal Models of
Agents-ESPRIT Project ModelAge Final Workshop Selected
Papers. LNAI, Vol. 1760. Springer (1999)

[31 Rao, A.S., Georgreff, M.P., “Modeling Rational Agents
within a BDI-Architecture”. In Proc. of the International
Conference on Principles of Knowledge Representation and
Reasoning (1991) 473-484.

[4] Singh, M.P., “Semantical Considerations on Some
Primitives for Agent Specification”. In: Wooldridge, M., Muller,
J., Tambe, M. (eds.) Intelligent Agents. LNAIL, Vol 1037.
Springer (1996) 49-64

[5] Wooldridge, M., Reasoning About Rational Agents. The
MIT Press (2000)

[6] Ambroszkiewicz, S., Komar, J., “A Model of BDI-Agent in

Game-Theoretic Framework”. In: [2] (1999) 8-19

[7] Wooldridge, M. and Jennings, N.R., “Agent Theories,
Architectures, and Languages: A Survey”. In: Intelligent Agents.
LNAL Vol. 890. Springer-Verlag (1994) 1-32

[8] Kinny, D., Georgeff, M., Rao, A., “A Methodology and
Modelling Technology for Systems of BDI Agents”, In: Agents
Breaking Away, Proc. of MAAMAW’96. LNAI, Vol. 1038.
Springer-Verlag (1996)

[9] Moulin, B., Brassard, M., “A Scenario-Based Design
Method and An Environment for the Development of Multi-
Agent Systems”. In: Lukose, D. and Zhang, C. (eds.): First
Australian Workshop on Distributed Artificial Intelligence.
LNAL Vol. 1087. Springer-Verlag (1996) 216-232

[10] Wooldridge, M., Jennings, N., Kinny, D., “A Methodology
for Agent-Oriented Analysis and Design”. In: Proc. of ACM
Third International Conference on Autonomous Agents, Seattle,
WA, USA (1999) 69-76

[11] Iglesias, C.A., Garijo, M., Gonzalez, J.C., “A Survey of
Agent-Oriented Methodologies”. In: Muller, J.P., Singh, M.P.,
Rao, A., (eds.) Intelligent Agents V. LNAI Vol. 1555. Springer,
Berlin (1999) 317-330

[12] Bauer, B., Muller, J.P. and Odell, J., “Agent UML: A
Formalism for Specifying Multiagent Software Systems”. In:
Ciancarini, P. and Wooldridge, M. (eds.): Agent-Oriented
Software Engineering. LNCS, Vol. 1957. Springer (2001) 91-
103

[13] Zhu, H., “Formal Specification of Agent Behaviour through
Environment Scenarios”. In: [1]263-277.

[14] Zhu, H., “SLABS: A Formal Specification Language for
Agent-Based Systems”. Int. J. of Software Engineering and
Knowledge Engineering 11(5) (2001) 529-558

[15] Zhu, H., “The Role of Caste in Formal Specification of
MAS”. In: Proc. of PRIMA 2001. LNCS, 2132. Springer (2001)
1-15

[16] Zhu, H., “Formal Specification of Evolutionary Software
Agents”, in Formal Methods and Software Engineering, Proc. of
ICFEM’2002, George, C. and Miao, H., (eds), Springer LNCS
2495, (2002) 249-261.

[17] Moukas, A., “Amalthaea: Information Discovery and
Filtering Using a Multi-Agent Evolving Ecosystem”. Journal of
Applied Artificial Intelligence, 11(5) (1997) 437-457.

