
Modelling and Specifying Scenarios and Agent Behaviour∗  
 
 

 Lijun Shan   Hong Zhu 
 Department of Computer Science  Department of Computing 
 National University of Defence Technology  Oxford Brookes University 
 Changsha, China  Oxford OX33 1HX, England 
 Email: lijunshancn@yahoo.com  Email: hzhu@brookes.ac.uk  

 
 

                                                 
∗  Work reported in this paper is partly supported by China National High Technology Research Programme (863 Programme) under grant 

2002AA116070.  

Abstract 
Based on our previous work on the formal 

specification language SLABS as well as a methodology 
and modelling language for modelling and specifying 
multi-agent systems, we further investigate how 
diagrammatic models of multi-agent systems can be used 
to derive formal specifications in SLABS. The modelling 
language is further developed by introducing behaviour 
diagrams and scenario diagrams for modelling agents’ 
behaviour in various scenarios of their environment. It 
supports derivation of the specifications of agents’ 
behaviour through scenario analysis. The language and 
its usage are illustrated by an example of the evolutionary 
multi-agent ecosystem Amalthaea developed at MIT 
Media Lab. 

1. Introduction 

The necessity of a rigorous and formal methodology 
for developing multi-agent systems has been widely 
recognized due to the difficulties in analysis, 
specification, design, implementation and testing 
autonomous and intelligent behaviours of such systems; 
c.f. [1, 2]. Much work has been done in the area of formal 
modelling of agents’ rational behaviour by logic systems 
and game theories; c.f. [3~7]. On the other hand, research 
has also been reported in the literature about the 
development processes and methods for engineering 
agent-based systems by utilizing diagrammatic notations, 
e.g. [8~12]. Unfortunately, there is a big gap between 
these two approaches. 

In this paper, we investigate how models of multi-
agent systems described in a diagrammatic notation can 
be used to derive formal specifications. In our previous 
work [13~15], a language called SLABS has been 
designed for the formal specification of agent-based 
systems. In [16] a diagrammatic notation and a 
methodology for modelling multi-agent system’s 

architecture were proposed so that the formal 
specifications in SLABS can be derived from semi-formal 
models of multi-agent systems. The analysis of agents’ 
behaviour is one of the key tasks in our methodology. 
Based on our previous work, this paper further develops 
the diagrammatic modelling language to support scenario 
analysis and derivation of behaviour rules for formal 
specifications of agents.  

This paper is organized as follows. Section 2 briefly 
reviews the formal specification language SLABS and the 
underlying model of agent-based systems. Section 3 
presents a diagrammatic notation for modelling agent-
based systems. The notation consists of the collaboration 
diagrams introduced in [16] and the behaviour diagrams 
and scenario diagrams proposed in this paper. Section 4 is 
a case study of a non-trivial evolutionary multi-agent 
system Amalthaea. Section 5 summarizes the results of 
the paper and discusses further research directions. 

2. The language SLABS and its meta-model  

In [13], we proposed the language SLABS, which 
stands for Specification Language for Agent-Based 
Systems. It was further developed in [14] by defining its 
formal semantics and in [15, 16] by investigating its 
pragmatic issues and case studies. The language is based 
on a meta-model of multi-agent systems, which can be 
characterized by a set of pseudo-equations [14]. In 
particular, pseudo-equation (1) below states that agents 
are defined as real time active computational entities that 
encapsulate data, operations and behaviour rules and they 
situate in their designated environments. Here, data 
represent an agent’s state. Operations are the actions that 
an agent can take. Behaviour rules determines how an 
agent changes its state and takes actions in the context of 
its environment. By encapsulation, we mean that an 
agent’s state can only be changed by the agent itself, and 
each agent has its own rules that govern its behaviour to 



decide ‘when to go’ and ‘whether to say no’. 
Agent = <Data, Operations, Behaviour>Environment   (1) 
As an extension to the notion of class in object-

orientation, a caste is a set of agents that have the same 
structural and behavioural characteristics as stated in 
pseudo-equation (2). An agent is an instance of a caste. It 
can also join in and retreat from a caste at run-time. 
Therefore, which agents are in a caste depends on time, 
hence the subscript t in pseudo-question (2). A caste can 
inherit from a number of other castes. As argued in [15], 
castes play a significant role in the construction of multi-
agent systems. Fig. 1 shows the structure of caste 
description in SLABS.  

Castes t = {agent | structure characteristics        
 &  behaviour characteristics}  (2) 

 

 
Fig. 1 Structure of caste description in SLABS 

Equation (3) states that a multi-agent system consists 
of a set of agents. Notice that, our definition of agent 
implies that object is a special case of agent in the sense 
that it has a specific rule of behaviour. Therefore, 
everything in a multi-agent system is an agent. The 
environment of an agent is a subset of the agents in the 
system, where some agents in the system may not be 
visible from the agent’s point of view. The environment 
description of an agent or a caste defines which agents in 
the system are visible. Hence, we have pseudo-equation 
(4) below.  

MAS = {agent n}n∈Integer     (3) 
Environment t (Agent, MAS) ⊆  MAS – {Agent}  (4) 
The SLABS language and the underlying meta-model 

of MAS do not define any specific communication 
language or protocol. The mechanism of communication 
is that an agent’s actions and states are divided into two 
parts: the visible ones and invisible ones. Agents 
communicate with each other by taking visible actions 
and changing visible state variables, and by observing 
other agent’s visible actions and state variables. This is 
expressed in pseudo-equation (5).  

Communication from agent A to agent B = 
  A. Action + B. Observation (5)  

In SLABS, an agent’s behaviour is defined by a set of 
rules that describe its responses to environment scenarios. 
A behaviour rule has the following structure.  
Behaviour-rule ::= [<rule-name>] pattern | [prob]  

→ event, [if Scenario][where pre-cond];   (6) 

In a behaviour rule, the pattern on the left-hand-side of 
the → symbol describes the pattern of the agent’s 
previous behaviour. The scenario describes the situation 
in the environment, comprising behaviour histories of the 
agents in the environment. The where-clause is the pre-
condition of the action. The event of the right-hand-side 
of → symbol is the action to be taken when the scenario 
happens and the pre-condition is satisfied. An agent may 
have a non-deterministic behaviour. The expression prob 
in a behaviour rule is an expression that defines the 
probability for the agent to take the specified action on the 
scenario. If the probability expression is omitted, it means 
that the probability is not 0. Table 1 and 2 give the 
formats and the meanings of patterns and scenarios, 
respectively. 

Table 1  Meanings of patterns 

Pattern Meaning 
$ The silence event 
Action variable It matches an action 
P^k A sequence of k events that match 

pattern P 
! Predicate The state of the agent satisfies the 

predicate 
Act (a1, a2, …ak) An action Act that takes place with 

parameters match (a1, a2, …ak) 
[p1, … pn] The previous sequence of events match 

the pattern p1, … pn 

Table 2 Semantics of scenario descriptions 

Scenario Meaning 
A: P The situation when agent A’s behaviour 

matches pattern P 
∀ X∈ C: P The situation when the behaviour of all agents 

in caste C match pattern P 
∃ [m]X∈ C: P The situation when there exists at least m 

agents in caste C whose behaviour 
matches pattern P where the default value of 
the optional expression m is 1 

µX∈ C: P The number of agents in caste C whose 
behaviour matches pattern P 

S1&S2 The situation when both scenario S1 and 
scenario S2 are true 

S1∨ S2 The situation when either scenario S1 or 
scenario S2 or both are true 

¬S The situation when scenario S is not true 
 
For example, the following is the behaviour rule of a 

search engine. It states that if there is an agent A in the 
environment that takes the action of calling the search 
engine with a set of keywords, it will return a set of urls 
that matches the keywords. 

 



[$] |→ SearchResult (keywords, urls);  
                                  if ∃ A: [Search (keywords)]       

3. The modelling language 

We model an agent-based system at two levels. On 
macro-level, the relationships between the agents are 
described. On micro-level, the behaviour of each agent is 
described. The methodology can be summarized as a 
process that consists of the following activities. (1) 
Architectural analysis identifies agents in the system, 
groups the agents into castes, analyses inheritance and 
aggregation relationships between the castes, and 
documents them into a caste diagram. (2) Interaction 
analysis identifies the agents’ visible actions and states as 
well as the interactions between the agents, and 
documents them into collaboration diagrams. (3) Scenario 
analysis identifies the typical scenarios that each agent 
will deal with and its designed behaviour in the scenarios. 
This results in a set of behaviour rules. (4) When an 
agent’s behaviour is too complicated to be analysed by 
scenario analysis, decomposition and refinement are 
applied to the agent/caste by iterating the steps of 
interaction analysis and architectural analysis. (5) 
Derivation of formal specification produces a formal 
specification of the multi-agent system in SLABS from 
the models represented in the form of diagrams.  

In [16], we addressed the structural issues in the 
modelling of multi-agent systems and devised a 
diagrammatical notation. The notation of collaboration 
diagrams consists of two types of nodes: agent nodes and 
caste nodes. An agent node represents a specific agent in 
the system. A caste node represents all agents in the caste. 
Arrows between nodes represent communications 
between the agents. The collaboration diagram in Fig. 2 
represents the Ecosystem of the evolutionary multi-agent 
system Almalthea [17].  

 

 
Fig. 2 Example of collaboration diagram  

In this paper, we propose a notation for modelling at 
the micro-level, i.e. the behaviour of individual agents. A 
behaviour model is represented by behaviour diagrams, 
which may include or refer to some scenario diagrams. 
For each agent, a behaviour diagram visually represents 
the agent’s behaviour rules, while scenario diagrams 
represents the agent’s view of the state of the multi-agent 
system.  

3.1 Scenario diagram 

A scenario is a description of an agent’s view of the 
state of a multi-agent system. It plays an important role in 
our methodology. A scenario is composed of behaviour 
patterns of a set of agents in the environment. The 
behaviour patterns are combined together through logic 
connectives. Accordingly, a scenario diagram as a facility 
to describe a scenario is horizontally divided into three 
parts: the scenario’s identifier, behaviour descriptions and 
a logical connection network, as shown in Fig. 3. The 
behaviour descriptions are vertically divided into several 
parts called the swim lanes. Each swim lane contains a 
quantifier, which describes ‘who is swimming’ by giving 
the name of the agent or a quantifier applied to a caste, 
and a sequence of events of the swimmer in temporal 
order. Temporal relations between events of different 
swimmers are indicated using arrows across the 
swimming lanes, when synchronization is important; 
otherwise, swimmers are assumed to execute in parallel 
and their events are concurrent.  

 

 
Fig. 3 Structure of scenario diagrams  

There are two types of event nodes: action nodes and 
predicate nodes. An action node represents a visible 
action of the swimmer. A predicate node represents that 
the value of a visible state of the swimmer satisfies the 
certain condition given in the node. These nodes are 
linked by two types of arrows for their temporal order, as 
shown in Fig. 4. A solid line arrow from node A to node 
B indicates that the swimmer takes the action of B or is in 
the state that satisfies the predicate in node B immediately 
after action or state of A. A dashed line arrow from node 
A to B means that the swimmer takes the action or in the 
state of B after action/state A, while the swimmer may 
engage in other actions and/or in other states in the time 



gap between A and B. Fig. 4 gives the notation of 
scenario diagrams. 

    
Action node: the agent takes an action 
Act(p1,…pn) at time t, where p1,…pn are 
parameters of the action. 

 
Repetitive action node: the agent takes 
an action repetitively at time t, where 
R-Exp defines the number of 
repetition of the action. 
 
State node: the agent’s state satisfies 
the predicate at time t. 

 
Continuous state node: the agent’s 
state satisfies the predicate for a 
continuous period of time at time t, 
where the period satisfies the C-Exp. 
 
Logical connective nodes of AND, 
OR, and NOT, respectively: to 
combine behaviour patterns or 
scenarios. 

 
  Temporal order arrow: event B is 

immediately after event A. -Exp is the 
time constraints on the time interval 
between the events. 
 
Discrete temporal order arrow: event 
B is after event A, while there may be 
other events between them. T-Exp is 
the time constraints on the time 
interval between the events. 

Fig. 4 Notation of scenario diagrams 

Scenarios can be defined within a behaviour diagram 
where it is used. However, when a scenario is either too 
complex to be depicted in a behaviour diagram or 
repeatedly used in several behaviour rules, it can be 
defined in a scenario diagram and assigned a name. Thus, 
the scenario as a whole can be treated as a reusable 
module and referred to in certain behaviour diagrams. 

3.2 Behaviour diagram 

The notation of behaviour diagrams includes the 
notation of scenario diagrams plus two types of arrows 
and three types of nodes, as shown in Fig. 5. In a 
behaviour diagram, the event to be taken is linked to 
previous events through an action arrow. Each action 
arrow can be associated with a scenario node and a 
precondition node. A precondition node is represented as 

a box with dashed line border and a precondition inside. 
A scenario node is represented as a round-corner 
rectangle, which may contain either simply a scenario 
name referring to a special scenario diagram, or a detailed 
scenario description. Several scenarios can be logically 
linked to form combined scenarios using logic connective 
nodes.  

 
 

 
 

 
 
 

 

Fig. 5 Additional notations of behaviour diagrams 

Behaviour rules in one behaviour diagram can be 
depicted independently or jointly. For example, the 
following diagram in Fig. 6 represents two related 
behaviour rules of one agent. 

Fig. 6 Two behaviour rules jointly described in one 
behaviour diagram 

The elements in behaviour model defined above 
correspond to the contents in formal behaviour rule 
defined by (6). Therefore, the equivalent formal 
specifications in SLABS can be easily derived from 
diagrammatic models in the following way. With nodes 
and links in a scenario diagram transformed into 
equivalent formal expressions in SLABS, a swimming 
lane containing a sequence of event nodes linked by 
temporal arrows can be transformed into a pattern in 
scenario, and in turn a well-formed scenario diagram into 
a formal scenario description. Concerning a behaviour 
diagram, the sequence of event nodes before and after the 
action arrow can respectively be transformed into the 
pattern and event part of a formal behaviour rule, and the 
scenario nodes and precondition node respectively into 
the formal scenario and precondition expression. 
Consequently, for each agent in a multi-agent system, the 

& or ר 

 
T-Exp 

A 

B 

R-Exp 

Act(p1,…pn) t: 

t: Act(p1,…pn) 

t: Predicate 

C-Exp 

t: Predicate 

Scenario Scenario node: contain a scenario name 
or a detailed scenario description. 

Precondition Precondition node: give the precondition 
of an event. 

Action arrow: a link from behaviour rule’s 
previous events to the event to be taken. 

Logical arrow: a link from scenario node 
to action arrow. 
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B 
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formal specification with behaviour rules as the core part 
can be derived from the system’s diagrammatic model that 
comprises the behaviour model proposed in this paper. 
Automation of the derivation is within our future work. 

4. Case study  

In this section, we illustrate the usage of the modelling 
language by an example. We will analyse the Amalthaea 
system, which is an evolutionary multi-agent ecosystem 
developed at MIT Media Laboratory [17] aiming to assist 
its users in finding interesting information on the web. 
There are two species of agents in the system: filtering 
agents that model and monitor the interests of the user and 
discovery agents that model the information sources. 
These agents evolve, compete and collaborate in a 
market-like ecosystem. Agents that are useful to the user 
or other agents reproduce while low-performing agents 
are destroyed. The evolution of the system enables it to 
keep track of the changing interests of the user.  

In [16], we have discussed how to develop its formal 
specification in SLABS following our proposed process. 
Amalthaea is composed of the User Interface, the 
Ecosystem, the WWW search engines, WKV (Weighted 
Keyword Vector) Generator and Database of the retrieved 
document. The Ecosystem, containing two types of agent: 
the information filtering agents and the information 
discovery agents, has complicated behaviour. Here we 
graphically describe its behaviour rules through behaviour 
and scenario analysis. The agents that constitute the 
Ecosystem operate under a penalty/reward scheme 
supported by the notion of credit. Each agent has fitness 
level expressed in the form of the accumulated amount of 
credit that it has received according to its performance. 
And each agent has to pay “rent” following a linear decay 
credit function. Credit, thus, serves as the fitness function 
of the agents. The higher the fitness of an agent, the more 
chances it gets to survive and produce offspring. In 
analysis of the Ecosystem’s behaviour, the following 
scenarios are identified. 
• Scenario 1: when the user’s rating on a presented 

digest is passed to the Ecosystem through the 
interface. 

• Scenario  2: when it is the time for the agents to pay. 
 
In scenario 1, when credit is assigned by the user 

through feedback on the relevance of an item in the 
digest, the system relates this feedback to the filtering 
agents that proposed the item and discovery agent that 
retrieved it and assigns the credit to the agents. We 
assume the function CreditIFA: Rate×Confidence→N 
calculates the amount of the credit to be given to the 
information filtering agent and CreditIDA: Rate ×

Confidence→N for information discovery agents. Then, 
the behaviour of the Ecosystem in the scenario when 
receiving a rating on a digest can be described as Fig. 7. 

  

 
Fig. 7 Behaviour diagram for Ecosystem’s behaviour 

in scenario 1 

From this diagram the following rule can be derived.  
Rule 1:  [$] |→(Credit(A, c1), Credit(B, c2));  
   If Interface: [PassRating (url, r)] & 
    ∃ A∈ IFA: [$, Submit(url,confidence), $^k]  
    & ∃ B∈ IDA: [Available(url, wkv), $^k’],  
   where  c1=CreditIFA(r, confidence) & 
     c2=CreditIDA(r, confidence)      

 
The evolution of the Ecosystem is triggered by 

scenario 2. After all agents have paid their rents, decisions 
are made on who will be purged and who will produce 
offspring. It depends on two factors: the fitness of 
individual agent and the fitness of the whole system. The 
overall fitness is measured according to the percentage of 
positive feedbacks from the user in the past N ratings. 
Only a variable number of the best performing agents in 
the whole population are allowed to produce offspring, 
while a number of worst performing agents are to be 
purged. Assume that the function NumberofPurges 
(N_rating) and NumberofOffspring(N_rating) respectively 
calculates the number of agents to be purged and that to 
be generated from the most recent N ratings. The 
behaviour rules of “purge” and “generate” share the same 
scenario of “RentPaid”, which is represented in the 
scenario diagram in Fig. 8. The rules of purge and 
generate are described in Fig. 9 and Fig. 10, respectively.  

 
 
 
 
 
 
 
 

Fig. 8 Scenario diagram for the situation when all 
agents have paid their rents 

RentPaid 
   

Pay(c1) Pay(c2) 

∀ X: IFA ∀ Y: IDA Interface 

PassRating(rn)
N 

& 



 

Fig. 9 Ecosystem’s behaviour rule for purge agents  

 

Fig. 10 Ecosystem’s behaviour rule for generating 
new agents 

The formal definitions of these rules of Ecosystem can 
be derived from the above behaviour diagrams and the 
scenario diagram. 
Rule 2: [!(A∈ IFA∪IDA)] |→ Purge(A)!(A∉ IFA∪IDA); 
 If ∀  X: IFA:[Pay(c)] & ∀ Y:IDA:[Pay(c)]  

   & Interface:[PassRating(rn)^N]; 
 where A∈ PurgeSet & 
 PurgeSet ⊆ {X | X∈ IFA or X∈ IDA}  & 

∀ X∈ PurgeSet.∀ Y∉ PurgeSet.(X.fitness≤Y.fitness) & 
  ||PurgeSet||=NumberofPurges (<rn>n=1,…,N) 
Rule 3: [!(A∉ IFA∪ IDA)]|→ 
    Generate(A)!(A∈ IFA∪ IDA);  
  If ∀  X :IFA:[Pay(c)]& ∀ Y:IDA:[Pay(c)] & 
    Interface:[PassRating(rn)^N];  
  where  A∈  NewAgentSet ∪  NewAgentSetSpec 

Therefore, we have the following specification of the 
Ecosystem in SLABS.  

 

5. Conclusion 

In this paper, we further developed the diagrammatic 
agent-oriented modelling language to support the 
modelling and specification of multi-agent systems. We 
addressed the micro-level modelling issues, which include 
the analysis of system scenarios and the descriptions of 
agents’ behaviour, and the derivation of behaviour rules 
in formal specifications. The uses of the language are 
illustrated by an example of an evolutionary multi-agent 
ecosystem Amalthaea.  

We are currently developing a software tool to support 
the construction of agent-based system models. The tool 
is designed to support automatic or semi-automatic 
generation of formal specifications in SLABS from 
graphic models. There are a number of important issues to 
be addressed in the future. First, consistency constraints 
between the diagrams must be explicitly specified and 
algorithms for automatically checking the constraints 
must be developed. Second, transformation rules from 
diagrams and dictionaries to formal notations must be 
specified and algorithms for automatic implementation of 
the rules must be developed.  
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