

Formal Specification of Evolutionary Software Agents

Hong Zhu

Dept of Computing, Oxford Brookes Univ., Wheatley Campus, Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk

Abstract. How to specify agent’s intelligent behaviour is a challenging
open problem in the development of agent-based systems. This paper
presents a case study of developing the formal specification of the evo-
lutionary multi-agent ecosystem Amalthaea developed at MIT Media
Lab. A diagrammatic notation is used for the development of agent
models and to derive a formal specification of the system in SLABS,
which is a formal specification language for agent-based systems.

1 Introduction

Agent technology is widely perceived to be a viable solution for large-scale industrial
and commercial applications in the Internet environment [1~4]. However, it has been
recognised that the lack of rigour is one of the major factors hampering the wide-scale
adoption of agent technology [5]. How to specify, test and verify the intelligent
behaviours of agent-based systems remains an open problem.

Much work has been done on formal modelling of agents' rational behaviour by
logic systems and game theories, c.f. [6~11]. On the other hand, research work has
also been reported in the literature about the development processes and methods for
engineering agent-based systems by utilising diagrammatic notations, e.g. [12~16].
Unfortunately, there is a big gap between these two approaches. In this paper, we
investigate how descriptions of multi-agent systems in a simple diagrammatic
notation can be used to derive formal specifications of multi-agent systems.

The paper is organised as follows. Section 2 gives the background of the paper by a
brief review of the formal specification language SLABS [17~19] and a methodology
and a diagrammatic notation [20] for agent-oriented software system analysis, design
and modelling. Section 3 presents the case study of an evolutionary multi-agent
ecosystem called Amalthaea, which is developed in MIT's Media Lab [21]. Section 4
concludes the paper with discussions of related works and further work.

2 Review of the Language and Methodology

SLABS is a model-based formal specification language designed for engineering
multi-agent systems [17, 18]. This section briefly reviews the main features of the
language and a methodology of developing formal specifications in SLABS.

2.1 The Underlying Model

In our model, agents are defined as encapsulations of data, operations and behaviours
that situate in their designated environments. Here, data represents an agent's state.
Operations are the actions that an agent can take. Behaviour is a collection of
sequences of state changes and operations performed by the agent in the context of its
environment. By encapsulation, we mean that an agent's state can only be changed by
the agent itself. Moreover, an agent has its own rules that govern its behaviour in its
designated environment. Constructively, agents are active computational entities with
a structure comprising the following elements.
1. Name, which is the agent’s identity.
2. Environment description, which indicates what the agent interacts with.
3. State, which consists of a set of variables and is divided into two parts: the visible

state and internal state.
4. Actions, which are the atomic actions that the agent can take. Each action has a

name and may have parameters.
5. Behaviour rules, which determine the behaviour of the agent.

Agents constructively defined above have a number of features. First, they are
autonomous in the sense of [22]. Second, they are communicative and social, yet it is
independent of any particular agent communication language or protocol. Third,
agents are situated in their designated environments. It requires an explicit and clear
specification of the boundary and interface between an agent and its environment as
well as the effects of the environment on the agent's behaviour. Fourth, as argued in
[18], our definition implies that objects are special cases of agents in a degenerate
form, while agents may be not objects. Finally, various agent models can be naturally
defined in our model. Using the SLABS language, we have formally specified
examples of personal assistants [17], ants, learning agents [18], communication
protocols [19], etc. In this paper, we will also demonstrate how an evolutionary multi-
agent ecosystem can be formally specified in SLABS. A formal definition of the
model can be found in [18].

The notion of caste plays an important role in our model. It is a natural evolution of
the key notion of class in object-oriented paradigm. Here, a caste is a template of
agents as class is a template of objects. Similarly, agents are instances of castes just as
objects are instances of classes. The agents of a caste, thus, have common structural
and behavioural characteristics. Castes also have inheritance relations between them.
However, there are a number of significant differences between classes and castes;
hence, they deserve a new name. Readers are referred to [19] for more details about
the notion of caste and its role in the development of multi-agent systems.

2.2 The SLABS Language

The specification of a multi-agent system in SLABS consists of a set of specifications
of agents and castes. The main body of an agent/caste specification in SLABS
contains a description of the structure of its states and actions, a description of its
behaviour, and a description of its environment. The following gives the graphic form
of specifications of castes and agents. Their syntax in EBNF can be found in [18].

The SLABS language enables software engineers to explicitly specify the

environment of an agent as a subset of the agents in the system that may influence its
behaviour. Environment description can be in three forms: (a) an agent-name, which
indicates an agent is in its environment, (a) All: caste-name, which means all agents
of the caste are in the environment, (3) variable: caste-name, which is a parameter of
the caste. When it is instantiated, it represents an agent in the environment.

Agents behave in real-time concurrently and autonomously. An agent's behaviour
is an events sequence indexed by the time. The state space of an agent is described by
a set of variables with keyword VAR. The set of actions is described by a set of
identifiers with keyword ACTION, which may have some parameters. The global
state of a multi-agent system at any time consists of the states and actions of all agents
in the system. However, each agent can only view the externally visible states and
actions of the agents in its environment explicitly specified in its description. Because
an agent's view is only a part of the global state, two different global states may
become equivalent from its view. Although an agent may not be able to distinguish
two global states, the histories of the runs leading to states may be different. The
SLABS language provides language facilities to express an agent's view of the current
state as well as the history of the run of the system so that intelligent behaviours such
as learning and evolution can be easily specified. A pattern describes the behaviour of
an agent in the environment by a sequence of observable state changes and actions.
Scenarios describe global situations of the whole system. Table 1 and 2 below give
the formats and the meanings of patterns and scenarios, respectively.

An agent's behaviour is defined by a set of rules that describe its responses in
various scenarios. A rule has the following structure.

Behaviour-rule ::= [<rule-name>] pattern|[prob]−>event, [if Scenario] [where pre-cond] ;

Table 1. Meanings of the patterns

Pattern Meaning

$ The wild card, which matches with all actions

∼ The silence event

Action variable It matches an action

P^k A sequence of k events that match pattern P

! Predicate The state of the agent satisfies the predicate

Act (a1, a2, ...ak) An action Act that takes place with parameters match (a1, a2, ...ak)

[p1,..., pn] The previous sequence of events match the patterns p1, ..., pn

Visible state-variables and actions
Invisible state-variables and actions

Behaviour-specification

Name <= castes (instantiation)

Environment
description

Visible state-variables and actions

Invisible state-variables and actions

Behaviour-specification

Name: castes (Instantiation)

Environment
description

Table 2. Semantics of scenario descriptions

Scenario Meaning

A: P The situation when agent A's behaviour matches pattern P

∀ X∈ C: P The situation when the behaviours of all agents in caste C match pattern P

∃ [m]X∈ C:P The situation when there exists at least m agents in caste C whose behaviour
matches pattern P where the default value of the optional expression m is 1

µ X∈ C: P The number of agents in caste C whose behaviour matches pattern P

S1 & S2 The situation when both scenario S1 and scenario S2 are true

S1 ∨ S2 The situation when either scenario S1 or scenario S2 or both are true

¬ S The situation when scenario S is not true

In a behaviour rule, the pattern on the left-hand-side of the −> symbol describes the
pattern of the agent's previous behaviour. The scenario describes the situation in the
environment, which are the behaviours of the agents in the environment. The where-
clause is the pre-condition of the action. The event on the right-hand-side of −>
symbol is the action to be taken when the scenario happens and if the pre-condition is
satisfied. The agent may have a non-deterministic behaviour. The expression prob in a
behaviour rule is an expression that defines the probability for the agent to take the
specified action in the scenario. SLABS also allows the specification of non-determi-
nistic behaviour without giving the probability distribution. In such cases, the
probability expression is omitted. It means that the probability is greater than 0 and
less than 1. For example, the following behaviour rule of search engines states that if
there is an agent A in the environment that calls for search the Web with a set of
keywords, it will return a set of urls that matches the keywords.

 [$]|−> Search_Result(keywords, urls); if ∃ A:[Search(Self, keywords)]

2.3 The Development Process

In [20], we proposed a process for developing formal specifications of multi-agent
systems and devised a simple diagrammatic notation to support the process. As shown
in Fig 1, the process is an iteration of the following activities.
• Architectural analysis. Its main purpose is to define the overall structure of the

system. It is achieved by identifying the agents and castes and their inter-
relationships in terms of how agents influence each other.

Architectural
analysis

Interaction
analysis

Scenario
analysis

Structural
Model

Interaction
Model

Behaviour
Rules

When an agent’s behaviour is too complicated to analyse its behaviour

Derivation of
formal spec

Formal Spec
in SLABS

Fig. 1. Process of developing formal specifications in SLABS

• Interaction analysis. It aims to further clarify the interactions between the agents
by identifying the visible actions and states of each agent or a caste of agents.

• Scenario analysis. It is applied to each agent or each caste of agents to identify the
typical scenarios that the agent will deal with and its designed behaviour in such a
scenario. The result of scenario analysis is a set of behaviour rules that characterize
the dynamic behaviour of the agent or the caste of agents.

• Iteration and refinement. When an agent's behaviour is too complicated to express
in terms of the scenarios in the environment and the events that the agent responds
to, the internal structure of the agent is analysed. An iteration of the process of
architectural analysis and interaction analysis starts and continues until scenario
analysis can be successfully applied to the agents.

• Derivation of formal specification. The formal specification of the multi-agent
system is derived based on the results of above analysis.

2.4 Diagrammatic Representation of Agent Models

An architectural model of a multi-agent system can be built and represented in a
simple diagrammatic notation given in Fig 2.

Fig. 2. Notation of agent diagram

There are two types of nodes in an agent diagram. An agent node represents an
agent in the system. A caste node represents a set of agents in a caste. A link from
node A to node B represents that the visible behaviour of agent/caste A is observed by
agent/caste B. Therefore, agent/caste A influences agent/caste B. An agent may have
an ‘open end arrow’ from a caste to an agent. It means that all the agents in the caste
may influence the agent. If an ‘open end arrow’ that points to the agent connects to no
caste, it means that all agents in the environment influents its behaviour.

An agent or caste in an agent diagram may itself be a complicated multi-agent
system. In such a case, a lower level diagram is drawn for the node that represents the

 Agent Caste Nodes:

Links: A B Agent B observes the visible behaviour of agent A

B Agent A takes an action that agent B observes for all agents
in the environment A

B Agent B observes the visible behaviour of all agents in caste A A

B Agent B observes the visible behaviour of all agents in its
environment

A B Each agent in caste B observes the visible behaviour of a
specific agent XB in caste A

B Every agent in caste B observes the visible behaviour of all
agents in the caste A

A

A B Every agent in caste B observes the visible behaviour of agent A

agent. Fig 3 shows an
example of lower level
diagrams for a node
AgentX, where agents E1,
and E2 and caste C1 are the
agents and castes in the
environment that interact
with AgentX. Y1 and Y2 are
the component agents
internal to the AgentX.

3 Case Study: Amalthaea

Amalthaea is an evolutionary multi-agent ecosystem developed at MIT Media
Laboratory [21]. Its main purpose was to assist its users in finding interesting
information on the web. There are two species of agents in the system: information
filtering agents (IFA) that model and monitor the interests of the user, and
information discovery agents (IDA) that model the information sources. These agents
evolve, compete and collaborate in a market-like ecosystem. Agents that are useful to
the user or other agents reproduce while low-performing agents are destroyed. The
evolution of the system enables it to keep track of the changing interests of the user.
In this section, we apply the methodology described in the previous section to develop
a formal specification of Amalthaea in SLABS.

3.1 System's Architecture and Interactions Between the Agents

Amalthaea [21] is composed of the following components.
• User Interface, where the user is presented with the retrieved information and

gives feedback on its relevance;
• The Ecosystem, which consists of IDA and IFA agents;
• The WWW search engines for retrieving documents;
• WKV Generator, which extracts keywords from retrieved documents and generates

the weighted keyword vectors;
• A Database of the retrieved documents.

These components plus the user are the agents of system. The visible states and
actions of the agents are determined by how information flows in the system. For
example, the user browses the information presented on the interface and gives a
rating for each item. The only visible action of the user is 'rate on a digest'. The
analysis of the interactions between the agents can be represented on the diagram by
annotating the links with the actions that an agent / caste is interested in. Fig 4 is the
result of the architectural and interaction analysis of Amalthaea.

The visible actions and states of the agents / castes can be derived directly from
such a diagram. For example, the Interface should have two visible actions:
Pass_Rate(url, r) and Present_Digest(url) according to the diagram.

Action Act1(...); Act2 (....)
Action ActInternal(...)

Y1
Act2(...)

ActInternal(...)

Y2 Act1(...)

E1

E2

C1

AgentX

Fig. 3. Lower level agent diagram for a node

Fig. 4. Agent diagram with observable actions

3.2 Scenario Analysis and Description of Behaviour

Agent and castes of simple behaviour can be easily described via scenario analysis. In
Amalthaea, the Search Engines is a caste that consists of a number of search engines,
which have a common simple behaviour. Whenever a search engine receives a search
request, it performs the Internet search and returns a set of URLs as search results.
This can be specified by the following rule.

 [$] |−> [Search_Result(keywords, urls)]; if ∃ A: [Search(Self, keywords)]
Together with the information contained in Fig. 4, we can derive the following

specification of the caste of Search Engines.

The Database, User, Interface and WKV generator are also simple agents. Their
formal specifications can be derived similarly.

Action Present_Digets(url: URL)
 Pass_Rate (url: URL, rate: {1, 2, 3, 4, 5})

 [$] |−> Pass_Rate(url, r); if User: [Rate(url, r)]
 [$] |−> Present_digest(url); if Ecosystem: [Submit(url)]

Interface

User

Ecosystem

Action Rate(url: URL, r: {1, 2, 3, 4, 5})

 [$] |−> Rate(url, r); if Interface: [$, Present_Digest(url), $^k || N>k≥0]

User

Interface

Action Search_Result (K:Keywords, urls: set of URL)

 [$] |−> Search_Result(keywords, urls); if ∃ A: [Search(Self, keywords)]

Search Engines

All

User

Interface

Ecosystem

Search engine

Present_Digest(url) Rate(url, r)

Pass_Rate(url, r) Submit(url, confidence)

Search(engine, keywords) Search_Result(keywords, urls)

Store(url, wkv),
Query(url, wkv)

Stored(url, wkv, succ)
Query_Result(url, wkv, answer)

Extract(file)

Extracted(file, wkv)

WKV Extractor Database

3.3 Decomposition and Analysis of Internal Structure

The Ecosystem in Amalthaea has complicated behaviours that cannot be described
straightforwardly as above. It is therefore decomposed and analysed for its internal
structure. The Ecosystem contains two types of agents: IFAs and IDAs. IFAs select
the information proposed by IDAs and submit it to the interface. IDAs search the
Internet by interacting with the search engines, database and WKV generator. The
Interface passes user’s rating to the Ecosystem, which takes an internal action of
assigning credits to the agents who discovered, selected and submitted the
information to the Interface. All the agents in the Ecosystem must also pay a fixed
amount of rent for each fixed period of time. Hence, we have the refined description
of the Ecosystem in Fig 5.

Fig. 5. Agent diagram of the Ecosystem

Fig. 6. The phenotype of information filtering agents

Action Extracted (f: HTML_file, k: WKV)

 [$] |-> Extracted(f, wkv) ; if ∃ A:[Extract(f)]

WKV Generator

All

Action Search(E: Engine, K: Keywords); Submit(url: URL, confidence: Real);
Store(url:URL, wkv: WKV); Extrat(F: HTML_file);
Query(url, URL, wkv: WKV);

Action Credit(A: Agent, c: integer);

Ecosystem

Search
Engines

WKV Generator

Information filtering
agents

Information discovery
agents

Credit(Agent, c) Credit(Agent, c)

Interface
Submit(url, confidence)

Search(engine, keywords)

Search_Result(keywords, urls)

Extract(file) Extracted(file, wkv)

Store(url, wkv)
Query(url, wkv)

Stored(url, wkv)
Query_Result(url, wkv, ans)

Interest(keywords) Available(url, wkv)

Pay(c) Pass-Rate(url, r)

Database

 Fitness Creation User Execution
(Credits) Date Created? code

 Weight Weight Weight
 Keyword Keyword Keyword

Genotype Phenotyp

Each IFA only selects a specific type of documents that is determined by its
‘phenotype’; see Fig 6. Therefore, an IFA has four internal state variables: (1) the
fitness, (2) creation date, (3) the tag for if it is user created, and (4) the genotype in the
form of a weighted keyword vector.

The following four scenarios trigger the behaviour of IFA.
• Scenario 1: when the Ecosystem credits the agent.
• Scenario 2: when it is the time to pay the rent.
• Scenario 3: when a user’s interests in a topic are announced.
• Scenario 4: when an IDA retrieved some information.

For each scenario, the behaviour of an IFA can be specified by rules. For example,
in Scenario 1, when the Ecosystem credits an agent, it increases the fitness by the
amount of the credit assigned. Therefore, the rule is as follows.

 [!(fitness=x)] |−> !(fitness = x+c); if Ecosystem: [credit(self, c)]
The specifications of IFAs and IDAs are given below.

The credit of an agent serves as the fitness function. The higher the fitness of an
agent, the more chances it has to survive and produce offspring. In the analysis of the
behaviour of the Ecosystem, the following scenarios are identified.

Action Search(engine:Search Engine, keywords: set of keywords, max, min: Natural)
 Pay (rent: Natural); Extract(f: HTML_file); Query(url: URL, wkv: WKV)
 Store(url: URL, wkv: WKV); Available(url: URL, wkv: WKV)

Var Fitness: Integer; Creation Date: Date; SearchEngine: Search Engines
 NumberOfkKeywords, MinimumHits, MaximunHits: Natural

 [!(fitness=x)] |−> !(fitness = x+c); if Ecosystem: credit(Self, c)
 [!(fitness=x)] |−> t: pay(c) !(fitness = x−c); where pay_time(t)
 [$] |−> search(Self.SearchEngine, keywords, Self.minimum_hit,
 Self.maximum_hit);
 if ∃ A: [Interest(keywords)], where Good_Track_Record(A)=true
 [search(Engine, keywords, min, max)]
 |−> Forall file ∈ {f at u | u ∈ urls}. Extract(file);
 if Engine:[Search_Result(keyword, urls)]
 [Extract(file)] |−> Query(url, wkv); if WKV Generator : [Extracted(file, wkv)]
 [Query(url, wkv)] |−> Available(url, wkv);

if DataBase:[Query_Result(url, wkv, 'no')]

Information Discovery Agents

All: IFA

Ecosystem

E: Search
Engines

Database
WKV

Generator

Action Recommend(Title, URL); Request(keywords); Pay Rental (Natural)
Var Fitness: Integer; Creation Date: Date; User Created: Bool;

Genotype: WKV
 [!(fitness=x)] |−> !(fitness = x+c); if Ecosystem: [credit(self, c)]
 [!(fitness=x)] |−> t: pay(c) !(fitness = x-c); where pay_time(t)
 [$] |−> Interest(keys(Self.genotype));
 [Interest(keywords)] |−> Submit(url, confidence);
 if ∃ A∈ IDA: [Available(urls, wkv)]
 where confidence=Distance(genotype, wkv) and confidence > threshold

Information Filtering Agents

All: IDA

Ecosystem

Interface

• Scenario 1: when the user's rating on a presented digest is passed to the Ecosystem.
• Scenario 2: when it is the time for the agents to pay.

In scenario 1, the system credits the IFA that proposed the item and the IDA that
retrieved it. Let Credit_IFA:Rate×Confidence→N and Credit_IDA: Rate×Confidence
→N be functions that calculate the amount of the credit to be given to the IFA and
IDA, respectively. Then, we have the following rule.

[$] |−> (Credit(A, c1), Credit(B, c2)) ;
 if Interface: [Pass_rate(url, r)] & A: [$, Submit(url, confidence), $^k] & B: [Available(url, wkv), $^k'],
 where c1=Credit_IFA(r, confidence) and c2=Credit_IDA(r)
In scenario 2, the Ecosystem evolves by purging bad agents and producing new

offspring. The overall fitness is measured according to the percentage of positive
feedbacks from the user in the past N ratings. It decides the numbers of agents to be
purged and new agents to be produced. Only the best agents of the whole population
are allowed to produce offspring, while the worst are purged. Let NPurges (ratings)
be the number of agents to be purged. We have the following rule.

[!(A∈ IFA∪ IDA)] |−> Purge(A) !(A∉ IFA∪ IDA) ;
 if ∀ X:IFA:[Pay(c)] and ∀ Y:IDA:[Pay(c)] and Interface:[Pass_rating(rn)^N]
 where A∈ PurgeSet & PurgeSet⊆ {X| X∈ IFA or X∈ IDA} &
 ∀ X∈ PurgeSet.∀ Y∉ PurgeSet. (X.fitness≤Y.Fitness} & ||PurgeSet|| = NPurges(<rn>n=1,...,N)

where Purge is an internal action that removes an agent from the system.
Similarly, we have the following rule for producing offspring.
 [!(A∉ IFA∪ IDA)] |−> Generate(A) !(A∈ IFA∪ IDA) ;
 if ∀ X:IFA:[Pay(c)] & ∀ Y:IDA:[Pay(c)] & Interface:[Pass_rating(rn)^N], where A∈ NewAgentSet

where Generate is an internal action that adds an agent to the system. Therefore, we
have the following specification of the ecosystem.

This completes the specification of Amalthaea system.

Action Search(E: Engine, K: Keywords); Submit(url: URL, confidence: Real)
 Store(url:URL, wkv: WKV); Extract_WKV(F:HTML_file);
 Query(url, URL, wkv: WKV)

Var IFA: Caste Information_Filtering_Agents;

 IDA: Caste Information_Discovery_Agents
Action Credit(A: Agent, c: Integer); Purge(A: Agent); Generate(A: Agent)

 [$] |-> (Credit(A, c1), Credit(B, c2)) ;
 if Interface: [Pass_rating(url, r)] & A: [$, Submit(url, confidence), $^k]
 & B: [Available(url, wkv), $^k'],
 where c1=Credit_IFA(r, confidence) and c2=Credit_IDA(r, confidence)
 [!(A∈ IFA∪ IDA)] |-> Purge(A) !(A∉ IFA∪ IDA) ;
 if ∀ X:IFA:[Pay(c)] & ∀ Y:IDA:[Pay(c)] & Interface:[Pass_rating(rn)^N]
 where A∈ PurgeSet and PurgeSet⊆ {X| X∈ IFA or X∈ IDA}
 and ∀ X∈ PurgeSet.∀ Y∉ PurgeSet. (X.fitness≤Y.Fitness}
 and ||PurgeSet|| = NPurges(<rn>n=1,...,N)
 [!(A∉ IFA∪ IDA)] |-> Generate(A) !(A∈ IFA∪ IDA) ;
 if ∀ X:IFA:[Pay(c)] & ∀ Y:IDA:[Pay(c)] & Interface:[Pass_rating(rn)^N]
 where A∈ NewAgentSet & NewAgentSetSpec

Ecosystem

Interface

All: Search
Engines

Database

WKV
Generator

4 Conclusion

In this paper, we presented a case study of developing a formal specification of a non-
trivial evolutionary multi-agent system, which has a number of attractive features of
its own. The result of the case study was satisfactory. A complete formal specification
of the system is obtained with a reasonable effort through a smooth process.

Existing work on agent-oriented software development methodology has been
focused on process models for analysis and design of agent-based systems using
diagrammatic notations. Little work has been reported that enable software engineers
to use formal logic and other formalisms that have been investigated in the literature
for agent technology. Few complete formal specifications of non-trivial multi-agent
systems are reported in the literature. It is unclear about how to use formal modal
logic systems of BDI such as [8] and game theories [9] to express the behaviours of
evolutionary ecosystems, which involves purging existing agents and producing
offspring of existing agents.

The case study clearly demonstrated a number of advantages of the language
SLABS and the methodology for developing formal specifications in SLABS in
comparison with formal specification in general purpose languages such as Z
[23~25]. Firstly, the language is expressive and suitable for the formal specification
of multi-agent systems. The evolution process as well as other intelligent behaviour of
the system can be clearly and naturally described. Second, the model of the system
represented in the diagrammatic notation greatly helped to understand the system’s
behaviour, especially how agents communicate with each other. This model can be
naturally transformed into the overall structure of the formal specification, which,
from our previous experience, is one of the most difficult tasks in developing formal
specifications without such a model. Third, the process naturally bridges the gap
between informal and formal notations.

We are further investigating how tools can be developed to automate the
transformation from the diagrammatic notation to formal specification in SLABS in
the way that structured requirements definitions are translated into formal
specifications in Z [26, 27]. We are also investigating how scenarios analysis can be
graphically represented in a diagrammatic notation.

References

1. Jennings, N.R., Wooldridge, M.J. (eds.): Agent Technology: Foundations, Applications,
And Markets. Springer, Berlin Heidelberg New York (1998)

2. Huhns, M., Singh, M.P. (eds.): Readings in Agents. Morgan Kaufmann, San Francisco
(1997)

3. Jennings, N. R.: On agent-based software engineering. Artificial Intelligence 117, (2000)
277~296.

4. Lange, D. B.: Mobile Objects and mobile agents: The future of distributed computing? In:
Proc. of The European Conference on Object-Oriented Programming, (1998)

5. Brazier, F.M.T., Dunin-Keplicz, B.M., Jennings, N.R., Treur, J.: DESIRE: Modelling Multi-
Agent Systems in a Compositional Formal Framework. Int. J. of Cooperative Information
Systems 1(6) (1997) 67~94

6. Rao, A.S., Georgreff, M.P.: Modeling Rational Agents within a BDI-Architecture. In: Proc.
of the International Conference on Principles of Knowledge Representation and Reasoning
(1991) 473~484.

7. Singh, M.P.: Semantic Considerations on Some Primitives for Agent Specification. In:
Wooldridge, M., Muller, J., Tambe, M. (eds): Intelligent Agents. LNAI, Vol. 1037. Springer
(1996) 49~64

8. Wooldridge, M.: Reasoning About Rational Agents. The MIT Press (2000)
9. Ambroszkiewicz, S., Komar, J.: A Model of BDI-Agent in Game-Theoretic Framework. In:

[10] (1999) 8~19
10. Myer, J-J., Schobbens, P-Y. (eds.): Formal Models of Agents - ESPRIT Project ModelAge

Final Workshop Selected Papers. LNAI, Vol. 1760. Springer (1999)
11. Wooldridge, M.J. and Jennings, N.R.: Agent Theories, Architectures, and Languages: A

Survey. In: Intelligent Agents. LNAI, Vol. 890. Springer-Verlag (1995) 1~32
12. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technology for Systems

of BDI Agents. In: Agents Breaking Away: Proc. of MAAMAW'96. LNAI, Vol. 1038.
Spriger-Verlag (1996)

13. Moulin, B., Brassard, M.: A Scenario-Based Design Method and An Environment for the
Development of Multiagent Systems. In: Lukose, D. and Zhang C. (eds.): First Australian
Workshop on Distributed Artificial Intelligence. LNAI, Vol. 1087. Springer-Verlag (1996)
216~231

14. Wooldridge, M., Jennings, N., Kinny, D.: A Methodology for Agent-Oriented Analysis and
Design. In: Proc. of ACM Third International Conference on Autonomous Agents, Seattle,
WA, USA (1999) 69~76

15. Iglesias, C.A., Garijo, M., Gonzalez, J.C.: A Survey of Agent-Oriented Methodologies. In:
Muller, J. P., Singh, M. P., Rao, A., (eds.): Intelligent Agents V. LNAI, Vol. 1555. Springer,
Berlin (1999) 317~330

16. Bauer, B., Muller, J.P., and Odell, J.: Agent UML: a Formalism for Specifying Multiagent
Software Systems. In: Ciancarini, P. and Wooldridge, M. (Eds.): Agent-Oriented Software
Engineering. LNCS, Vol. 1957. Springer (2001) 91~103

17. Zhu, H.: Formal Specification of Agent Behaviour through Environment Scenarios. In:
Proc. of FAABS 2000. LNCS, Vol. 1871. Springer (2001) 263~277

18. Zhu, H.: SLABS: A Formal Specification Language for Agent-Based Systems. Int. J. of
Software Engineering and Knowledge Engineering 11(5) (2001) 529~558

19. Zhu, H.: The Role of Caste in Formal Specification of MAS. In: Proc. of PRIMA’2001.
LNCS Vol. 2132. Springer (2001) 1~15

20. Zhu, H.: Developing formal specifications of MAS in SLABS, to appear in Proc. of
AOIS'’2002.

21. Moukas, A.: Amalthaea: Information Discovery and Filtering Using a Multi-Agent
Evolving Ecosystem. Journal of Applied Artificial Intelligence 11(5) (1997) 437~457

22. Jennings, N.R.: Agent-Oriented Software Engineering. In: Garijo, F.J., Boman, M. (eds.):
Multi-Agent System Engineering, LNAI 1647. Springer, (1999) 1~7

23. Spivey, J.M.: The Z Notation: A Reference Manual. 2nd edn. Prentice Hall (1992)
24. D'Inverno, M., Kinny, D., Luck M. and Wooldridge, M.: A formal specification of dMARS

in Singh, M. P. Rao, A. and Wooldridge, M. (eds.): Intelligent Agents IV: Agent Theories,
Architectures, and Languages. LNAI Vol. 1365. Springer (1998) 155~176

25. Luck, M. and d'Inverno, M.: A formal framework for agency and autonomy in Proc. of First
International Conference on Multi-agent Systems. AAAI Press/MIT Press (1995) 254~260,

26. Jin, L., Zhu, H.: Automatic Generation of Formal Specification from Requirements
Definition. In: Proc. of IEEE 1st Int. Conf. on Formal Engineering Methods, Hiroshima,
Japan (1997) 243~251

27. Zhu, H., Jin, L.: Scenario Analysis in an Automated Tool for Requirements Engineering. J.
of Requirements Engineering 5(1) (2000) 2~22

