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Abstract. How to specify agent’s intelligent behaviour is a challenging 
open problem in the development of agent-based systems. This paper 
presents a case study of developing the formal specification of the evo-
lutionary multi-agent ecosystem Amalthaea developed at MIT Media 
Lab. A diagrammatic notation is used for the development of agent 
models and to derive a formal specification of the system in SLABS, 
which is a formal specification language for agent-based systems.  

1  Introduction 

Agent technology is widely perceived to be a viable solution for large-scale industrial 
and commercial applications in the Internet environment [1~4]. However, it has been 
recognised that the lack of rigour is one of the major factors hampering the wide-scale 
adoption of agent technology [5]. How to specify, test and verify the intelligent 
behaviours of agent-based systems remains an open problem.  

Much work has been done on formal modelling of agents' rational behaviour by 
logic systems and game theories, c.f. [6~11]. On the other hand, research work has 
also been reported in the literature about the development processes and methods for 
engineering agent-based systems by utilising diagrammatic notations, e.g. [12~16]. 
Unfortunately, there is a big gap between these two approaches. In this paper, we 
investigate how descriptions of multi-agent systems in a simple diagrammatic 
notation can be used to derive formal specifications of multi-agent systems.  

The paper is organised as follows. Section 2 gives the background of the paper by a 
brief review of the formal specification language SLABS [17~19] and a methodology 
and a diagrammatic notation [20] for agent-oriented software system analysis, design 
and modelling. Section 3 presents the case study of an evolutionary multi-agent 
ecosystem called Amalthaea, which is developed in MIT's Media Lab [21]. Section 4 
concludes the paper with discussions of related works and further work.  

2  Review of the Language and Methodology 

SLABS is a model-based formal specification language designed for engineering 
multi-agent systems [17, 18]. This section briefly reviews the main features of the 
language and a methodology of developing formal specifications in SLABS. 



 

 

2.1  The Underlying Model 

In our model, agents are defined as encapsulations of data, operations and behaviours 
that situate in their designated environments. Here, data represents an agent's state. 
Operations are the actions that an agent can take. Behaviour is a collection of 
sequences of state changes and operations performed by the agent in the context of its 
environment. By encapsulation, we mean that an agent's state can only be changed by 
the agent itself. Moreover, an agent has its own rules that govern its behaviour in its 
designated environment. Constructively, agents are active computational entities with 
a structure comprising the following elements.  
1. Name, which is the agent’s identity.  
2. Environment description, which indicates what the agent interacts with.  
3. State, which consists of a set of variables and is divided into two parts: the visible 

state and internal state.   
4. Actions, which are the atomic actions that the agent can take. Each action has a 

name and may have parameters.  
5. Behaviour rules, which determine the behaviour of the agent.  

Agents constructively defined above have a number of features. First, they are 
autonomous in the sense of [22]. Second, they are communicative and social, yet it is 
independent of any particular agent communication language or protocol. Third, 
agents are situated in their designated environments. It requires an explicit and clear 
specification of the boundary and interface between an agent and its environment as 
well as the effects of the environment on the agent's behaviour. Fourth, as argued in 
[18], our definition implies that objects are special cases of agents in a degenerate 
form, while agents may be not objects. Finally, various agent models can be naturally 
defined in our model. Using the SLABS language, we have formally specified 
examples of personal assistants [17], ants, learning agents [18], communication 
protocols [19], etc. In this paper, we will also demonstrate how an evolutionary multi-
agent ecosystem can be formally specified in SLABS. A formal definition of the 
model can be found in [18].  

The notion of caste plays an important role in our model. It is a natural evolution of 
the key notion of class in object-oriented paradigm. Here, a caste is a template of 
agents as class is a template of objects. Similarly, agents are instances of castes just as 
objects are instances of classes. The agents of a caste, thus, have common structural 
and behavioural characteristics. Castes also have inheritance relations between them. 
However, there are a number of significant differences between classes and castes; 
hence, they deserve a new name. Readers are referred to [19] for more details about 
the notion of caste and its role in the development of multi-agent systems.  

2.2 The SLABS Language 

The specification of a multi-agent system in SLABS consists of a set of specifications 
of agents and castes. The main body of an agent/caste specification in SLABS 
contains a description of the structure of its states and actions, a description of its 
behaviour, and a description of its environment. The following gives the graphic form 
of specifications of castes and agents. Their syntax in EBNF can be found in [18]. 

 



 

 

 
  
  
  
 
   
 
The SLABS language enables software engineers to explicitly specify the 

environment of an agent as a subset of the agents in the system that may influence its 
behaviour. Environment description can be in three forms: (a) an agent-name, which 
indicates an agent is in its environment, (a) All: caste-name, which means all agents 
of the caste are in the environment, (3) variable: caste-name, which is a parameter of 
the caste. When it is instantiated, it represents an agent in the environment.  

Agents behave in real-time concurrently and autonomously. An agent's behaviour 
is an events sequence indexed by the time. The state space of an agent is described by 
a set of variables with keyword VAR. The set of actions is described by a set of 
identifiers with keyword ACTION, which may have some parameters. The global 
state of a multi-agent system at any time consists of the states and actions of all agents 
in the system. However, each agent can only view the externally visible states and 
actions of the agents in its environment explicitly specified in its description. Because 
an agent's view is only a part of the global state, two different global states may 
become equivalent from its view. Although an agent may not be able to distinguish 
two global states, the histories of the runs leading to states may be different. The 
SLABS language provides language facilities to express an agent's view of the current 
state as well as the history of the run of the system so that intelligent behaviours such 
as learning and evolution can be easily specified. A pattern describes the behaviour of 
an agent in the environment by a sequence of observable state changes and actions. 
Scenarios describe global situations of the whole system. Table 1 and 2 below give 
the formats and the meanings of patterns and scenarios, respectively.  

An agent's behaviour is defined by a set of rules that describe its responses in 
various scenarios. A rule has the following structure.  

Behaviour-rule ::= [<rule-name>] pattern|[ prob]−>event, [if Scenario] [where pre-cond] ; 

Table 1. Meanings of the patterns 

Pattern Meaning 

$ The wild card, which matches with all actions 

∼ The silence event 

Action  variable  It matches an action 

P^k A sequence of k events that match pattern  P 

! Predicate The state of the agent satisfies the predicate 

Act (a1, a2, ...ak) An action Act that takes place with parameters match (a1, a2, ...ak) 

[p1,..., pn]  The previous sequence of events match the patterns p1, ..., pn  

Visible state-variables and actions  
Invisible state-variables and actions  

Behaviour-specification  

Name <= castes (instantiation) 

Environment 
description 

Visible state-variables and actions  

Invisible state-variables and actions  

Behaviour-specification 

Name: castes (Instantiation) 

Environment 
description 



 

 

Table 2. Semantics of scenario descriptions 

Scenario Meaning 

A: P The situation when agent A's behaviour matches pattern P 

∀ X∈ C: P The situation when the behaviours of all agents in caste C match pattern P 

∃ [m]X∈ C:P The situation when there exists at least m agents in caste C whose behaviour 
matches pattern P where the default value of the optional expression m is 1 

µ X∈ C: P The number of agents in caste C whose behaviour matches pattern P  

S1 & S2 The situation when both scenario S1 and scenario S2 are true 

S1 ∨  S2 The situation when either scenario S1 or scenario S2 or both are true 

¬  S The situation when scenario S is not true 

In a behaviour rule, the pattern on the left-hand-side of the −> symbol describes the 
pattern of the agent's previous behaviour. The scenario describes the situation in the 
environment, which are the behaviours of the agents in the environment. The where-
clause is the pre-condition of the action. The event on the right-hand-side of −> 
symbol is the action to be taken when the scenario happens and if the pre-condition is 
satisfied. The agent may have a non-deterministic behaviour. The expression prob in a 
behaviour rule is an expression that defines the probability for the agent to take the 
specified action in the scenario. SLABS also allows the specification of non-determi-
nistic behaviour without giving the probability distribution. In such cases, the 
probability expression is omitted. It means that the probability is greater than 0 and 
less than 1. For example, the following behaviour rule of search engines states that if 
there is an agent A in the environment that calls for search the Web with a set of 
keywords, it will return a set of urls that matches the keywords.  

 [$]|−> Search_Result(keywords, urls); if ∃ A:[Search(Self, keywords)] 

2.3 The Development Process 

In [20], we proposed a process for developing formal specifications of multi-agent 
systems and devised a simple diagrammatic notation to support the process. As shown 
in Fig 1, the process is an iteration of the following activities.  
• Architectural analysis. Its main purpose is to define the overall structure of the 

system. It is achieved by identifying the agents and castes and their inter-
relationships in terms of how agents influence each other.  

Architectural 
analysis 

Interaction 
analysis 

Scenario 
analysis 

Structural 
Model 

Interaction 
Model 

Behaviour 
Rules 

When an agent’s behaviour is too complicated to analyse its behaviour 

Derivation of 
formal spec 

Formal Spec 
in SLABS  

Fig. 1. Process of developing formal specifications in SLABS 



 

 

• Interaction analysis. It aims to further clarify the interactions between the agents 
by identifying the visible actions and states of each agent or a caste of agents.  

• Scenario analysis. It is applied to each agent or each caste of agents to identify the 
typical scenarios that the agent will deal with and its designed behaviour in such a 
scenario. The result of scenario analysis is a set of behaviour rules that characterize 
the dynamic behaviour of the agent or the caste of agents.  

• Iteration and refinement. When an agent's behaviour is too complicated to express 
in terms of the scenarios in the environment and the events that the agent responds 
to, the internal structure of the agent is analysed. An iteration of the process of 
architectural analysis and interaction analysis starts and continues until scenario 
analysis can be successfully applied to the agents.  

• Derivation of formal specification. The formal specification of the multi-agent 
system is derived based on the results of above analysis.  

2.4 Diagrammatic Representation of Agent Models 

An architectural model of a multi-agent system can be built and represented in a 
simple diagrammatic notation given in Fig 2.   

Fig. 2. Notation of agent diagram 

There are two types of nodes in an agent diagram. An agent node represents an 
agent in the system. A caste node represents a set of agents in a caste. A link from 
node A to node B represents that the visible behaviour of agent/caste A is observed by 
agent/caste B. Therefore, agent/caste A influences agent/caste B. An agent may have 
an ‘open end arrow’ from a caste to an agent. It means that all the agents in the caste 
may influence the agent. If an ‘open end arrow’ that points to the agent connects to no 
caste, it means that all agents in the environment influents its behaviour. 

An agent or caste in an agent diagram may itself be a complicated multi-agent 
system. In such a case, a lower level diagram is drawn for the node that represents the 

  Agent  Caste  Nodes: 

Links: A B Agent B observes the visible behaviour of agent A  

B Agent A takes an action that agent B observes for all agents 
in the environment  A 

B Agent B observes the visible behaviour of all agents in caste A  A 

B Agent B observes the visible behaviour of all agents in its 
environment 

A B Each agent in caste B observes the visible behaviour of a 
specific agent XB in caste A  

B Every agent in caste B observes the visible behaviour of all 
agents in the caste A  

A 

A B Every agent in caste B observes the visible behaviour of agent A 



 

 

agent. Fig 3 shows an 
example of lower level 
diagrams for a node 
AgentX, where agents E1, 
and E2 and caste C1 are the 
agents and castes in the 
environment that interact 
with AgentX. Y1 and Y2 are 
the component agents 
internal to the AgentX.  

3 Case Study: Amalthaea 

Amalthaea is an evolutionary multi-agent ecosystem developed at MIT Media 
Laboratory [21]. Its main purpose was to assist its users in finding interesting 
information on the web. There are two species of agents in the system: information 
filtering agents (IFA) that model and monitor the interests of the user, and 
information discovery agents (IDA) that model the information sources. These agents 
evolve, compete and collaborate in a market-like ecosystem. Agents that are useful to 
the user or other agents reproduce while low-performing agents are destroyed. The 
evolution of the system enables it to keep track of the changing interests of the user. 
In this section, we apply the methodology described in the previous section to develop 
a formal specification of Amalthaea in SLABS.  

3.1 System's Architecture and Interactions Between the Agents 

Amalthaea [21] is composed of the following components.  
• User Interface, where the user is presented with the retrieved information and 

gives feedback on its relevance; 
• The Ecosystem, which consists of IDA and IFA agents; 
• The WWW search engines for retrieving documents; 
• WKV Generator, which extracts keywords from retrieved documents and generates 

the weighted keyword vectors; 
• A Database of the retrieved documents. 

These components plus the user are the agents of system. The visible states and 
actions of the agents are determined by how information flows in the system. For 
example, the user browses the information presented on the interface and gives a 
rating for each item. The only visible action of the user is 'rate on a digest'. The 
analysis of the interactions between the agents can be represented on the diagram by 
annotating the links with the actions that an agent / caste is interested in. Fig 4 is the 
result of the architectural and interaction analysis of Amalthaea.  

The visible actions and states of the agents / castes can be derived directly from 
such a diagram. For example, the Interface should have two visible actions: 
Pass_Rate(url, r) and Present_Digest(url) according to the diagram.  

Action Act1(...);  Act2 (....) 
Action  ActInternal(...) 

Y1 
Act2(...) 

ActInternal(...) 

Y2 Act1(...) 

E1 

E2 

C1 

AgentX 

 
Fig. 3. Lower level agent diagram for a node 



 

 

Fig. 4. Agent diagram with observable actions 

3.2 Scenario Analysis and Description of Behaviour 

Agent and castes of simple behaviour can be easily described via scenario analysis. In 
Amalthaea, the Search Engines is a caste that consists of a number of search engines, 
which have a common simple behaviour. Whenever a search engine receives a search 
request, it performs the Internet search and returns a set of URLs as search results. 
This can be specified by the following rule. 

 [$] |−> [Search_Result(keywords, urls)]; if ∃ A: [Search( Self, keywords)] 
Together with the information contained in Fig. 4, we can derive the following 

specification of the caste of Search Engines.  

The Database, User, Interface and WKV generator are also simple agents. Their 
formal specifications can be derived similarly.   

 
 
 
 
 
 
 
 
 
 
 

Action Present_Digets(url: URL) 
 Pass_Rate (url: URL, rate: {1, 2, 3, 4, 5}) 

 [$]  |−> Pass_Rate(url, r); if User: [Rate(url, r)] 
 [$]  |−> Present_digest(url); if Ecosystem: [Submit(url)] 

Interface 

User 

Ecosystem 

Action Rate(url: URL, r: {1, 2, 3, 4, 5}) 

 [$]  |−> Rate(url, r); if Interface: [$, Present_Digest(url), $^k || N>k≥0 ] 

User 

Interface 

Action  Search_Result (K:Keywords, urls: set of URL) 
 

 [$] |−> Search_Result(keywords, urls);  if ∃ A: [Search( Self, keywords)] 

Search Engines 

All 

User 

Interface 

Ecosystem 

Search engine 

Present_Digest(url) Rate(url, r) 

Pass_Rate(url, r) Submit(url, confidence) 

Search(engine, keywords) Search_Result(keywords,  urls) 

Store(url, wkv), 
Query(url, wkv) 

Stored(url, wkv, succ) 
Query_Result(url, wkv, answer) 

Extract(file) 

Extracted(file, wkv) 

WKV Extractor Database 



 

 

 
 

 
 
 

3.3 Decomposition and Analysis of Internal Structure 

The Ecosystem in Amalthaea has complicated behaviours that cannot be described 
straightforwardly as above. It is therefore decomposed and analysed for its internal 
structure. The Ecosystem contains two types of agents: IFAs and IDAs. IFAs select 
the information proposed by IDAs and submit it to the interface. IDAs search the 
Internet by interacting with the search engines, database and WKV generator. The 
Interface passes user’s rating to the Ecosystem, which takes an internal action of 
assigning credits to the agents who discovered, selected and submitted the 
information to the Interface. All the agents in the Ecosystem must also pay a fixed 
amount of rent for each fixed period of time. Hence, we have the refined description 
of the Ecosystem in Fig 5.  

Fig. 5. Agent diagram of the Ecosystem 

 
 
  

 

Fig. 6. The phenotype of information filtering agents 

Action  Extracted (f: HTML_file, k: WKV) 
 
 [$] |-> Extracted(f, wkv) ; if ∃ A:[Extract(f)] 

WKV Generator 

All 

Action  Search(E: Engine, K: Keywords);  Submit(url: URL, confidence: Real);  
Store(url:URL, wkv: WKV);   Extrat(F: HTML_file);  
Query(url, URL, wkv: WKV); 

  
Action Credit(A: Agent, c: integer); 
 

Ecosystem 

Search 
Engines 

WKV Generator 

Information filtering 
agents 

Information discovery 
agents 

Credit(Agent, c) Credit(Agent, c) 

Interface 
Submit(url, confidence) 

Search(engine, keywords) 

Search_Result(keywords, urls) 

Extract(file) Extracted(file, wkv) 

Store(url, wkv) 
Query(url, wkv) 

Stored(url, wkv) 
Query_Result(url, wkv, ans) 

Interest(keywords) Available(url, wkv) 

Pay(c) Pass-Rate(url, r) 

Database 

 Fitness Creation  User Execution 
(Credits) Date Created? code 

  Weight  Weight  Weight 
  Keyword  Keyword Keyword 

Genotype Phenotyp



 

 

Each IFA only selects a specific type of documents that is determined by its 
‘phenotype’; see Fig 6. Therefore, an IFA has four internal state variables: (1) the 
fitness, (2) creation date, (3) the tag for if it is user created, and (4) the genotype in the 
form of a weighted keyword vector.  

The following four scenarios trigger the behaviour of IFA.  
• Scenario 1: when the Ecosystem credits the agent.  
• Scenario 2: when it is the time to pay the rent.  
• Scenario 3: when a user’s interests in a topic are announced.  
• Scenario 4: when an IDA retrieved some information. 

For each scenario, the behaviour of an IFA can be specified by rules. For example, 
in Scenario 1, when the Ecosystem credits an agent, it increases the fitness by the 
amount of the credit assigned. Therefore, the rule is as follows.  

 [!(fitness=x) ] |−> !(fitness = x+c); if Ecosystem: [credit(self, c)] 
The specifications of IFAs and IDAs are given below. 

The credit of an agent serves as the fitness function. The higher the fitness of an 
agent, the more chances it has to survive and produce offspring. In the analysis of the 
behaviour of the Ecosystem, the following scenarios are identified.  

Action Search(engine:Search Engine, keywords: set of keywords, max, min: Natural)  
 Pay (rent: Natural); Extract(f: HTML_file); Query(url: URL, wkv: WKV) 
 Store(url: URL, wkv: WKV); Available(url: URL, wkv: WKV) 
 
Var  Fitness: Integer; Creation Date: Date; SearchEngine: Search Engines 
  NumberOfkKeywords, MinimumHits, MaximunHits: Natural  
 
 [!(fitness=x) ] |−> !(fitness = x+c); if Ecosystem: credit(Self, c) 
 [!(fitness=x) ] |−> t: pay(c) !(fitness = x−c); where pay_time(t) 
 [$] |−> search(Self.SearchEngine, keywords, Self.minimum_hit,  
 Self.maximum_hit);  
  if ∃ A: [Interest(keywords)], where Good_Track_Record(A)=true 
 [search(Engine, keywords, min, max) ] 
 |−> Forall file ∈ {f at u | u ∈  urls}. Extract(file);  
  if Engine:[Search_Result(keyword, urls)] 
 [Extract(file)] |−> Query(url, wkv); if WKV Generator : [Extracted(file, wkv)] 
 [Query(url, wkv)] |−> Available(url, wkv);  

if DataBase:[Query_Result(url, wkv, 'no')] 

Information Discovery Agents 

All: IFA 

Ecosystem 

E: Search 
Engines 

Database 
WKV 

Generator 

Action Recommend(Title, URL); Request(keywords); Pay Rental (Natural) 
Var  Fitness: Integer; Creation Date: Date; User Created: Bool;  

Genotype: WKV 
 [!(fitness=x) ] |−> !(fitness = x+c); if Ecosystem: [credit(self, c)] 
 [!(fitness=x) ] |−> t: pay(c) !(fitness = x-c); where pay_time(t) 
 [$] |−> Interest(keys(Self.genotype));  
 [Interest(keywords)] |−> Submit(url, confidence);  
  if ∃ A∈ IDA: [Available(urls, wkv)] 
  where confidence=Distance(genotype, wkv) and confidence > threshold  

Information Filtering Agents 

All: IDA 

Ecosystem 

Interface 



 

 

• Scenario 1: when the user's rating on a presented digest is passed to the Ecosystem.  
• Scenario 2: when it is the time for the agents to pay. 

In scenario 1, the system credits the IFA that proposed the item and the IDA that 
retrieved it. Let Credit_IFA:Rate×Confidence→N and Credit_IDA: Rate×Confidence 
→N be functions that calculate the amount of the credit to be given to the IFA and 
IDA, respectively. Then, we have the following rule. 

[$] |−> (Credit(A, c1), Credit(B, c2)) ;   
 if Interface: [Pass_rate( url, r)] & A: [$, Submit(url, confidence), $^k] & B: [Available(url, wkv), $^k'], 
  where c1=Credit_IFA(r, confidence) and c2=Credit_IDA(r) 
In scenario 2, the Ecosystem evolves by purging bad agents and producing new 

offspring. The overall fitness is measured according to the percentage of positive 
feedbacks from the user in the past N ratings. It decides the numbers of agents to be 
purged and new agents to be produced. Only the best agents of the whole population 
are allowed to produce offspring, while the worst are purged. Let NPurges (ratings) 
be the number of agents to be purged. We have the following rule.  

[!(A∈ IFA∪ IDA)] |−> Purge(A) !(A∉ IFA∪ IDA) ;  
 if ∀ X:IFA:[Pay(c)] and ∀ Y:IDA:[Pay(c)] and Interface:[Pass_rating(rn)^N] 
 where A∈ PurgeSet & PurgeSet⊆ {X| X∈ IFA or X∈ IDA} &   
  ∀ X∈ PurgeSet.∀ Y∉ PurgeSet. (X.fitness≤Y.Fitness} & ||PurgeSet|| = NPurges(<rn>n=1,...,N) 

where Purge is an internal action that removes an agent from the system.  
Similarly, we have the following rule for producing offspring.  
 [!(A∉ IFA∪ IDA)] |−> Generate(A) !(A∈ IFA∪ IDA) ;  
  if ∀ X:IFA:[Pay(c)] & ∀ Y:IDA:[Pay(c)] & Interface:[Pass_rating(rn)^N], where A∈ NewAgentSet 

where Generate is an internal action that adds an agent to the system. Therefore, we 
have the following specification of the ecosystem.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This completes the specification of Amalthaea system.  

Action  Search(E: Engine, K: Keywords);  Submit(url: URL, confidence: Real) 
 Store(url:URL, wkv: WKV);  Extract_WKV(F:HTML_file); 
 Query(url, URL, wkv: WKV) 
 
Var IFA: Caste Information_Filtering_Agents;   

 IDA: Caste Information_Discovery_Agents 
Action Credit(A: Agent, c: Integer); Purge(A: Agent);   Generate(A: Agent) 
 
 [$] |-> (Credit(A, c1), Credit(B, c2)) ;  
      if   Interface: [Pass_rating( url, r)] & A: [$, Submit(url, confidence), $^k]  
   & B: [Available(url, wkv), $^k'],  
      where c1=Credit_IFA(r, confidence) and c2=Credit_IDA(r, confidence) 
 [!(A∈ IFA∪ IDA)] |-> Purge(A) !(A∉ IFA∪ IDA) ;  
      if ∀ X:IFA:[Pay(c)] & ∀ Y:IDA:[Pay(c)] & Interface:[Pass_rating(rn)^N] 
      where A∈ PurgeSet and PurgeSet⊆ {X| X∈ IFA or X∈ IDA}  
   and ∀ X∈ PurgeSet.∀ Y∉ PurgeSet. (X.fitness≤Y.Fitness}  
   and ||PurgeSet|| = NPurges(<rn>n=1,...,N)  
 [!(A∉ IFA∪ IDA)] |-> Generate(A) !(A∈ IFA∪ IDA) ;  
       if ∀ X:IFA:[Pay(c)] & ∀ Y:IDA:[Pay(c)] & Interface:[Pass_rating(rn)^N] 
       where A∈ NewAgentSet & NewAgentSetSpec 

Ecosystem 

Interface 

All: Search 
Engines 

Database 

WKV 
Generator 



 

 

4 Conclusion 

In this paper, we presented a case study of developing a formal specification of a non-
trivial evolutionary multi-agent system, which has a number of attractive features of 
its own. The result of the case study was satisfactory. A complete formal specification 
of the system is obtained with a reasonable effort through a smooth process.  

Existing work on agent-oriented software development methodology has been 
focused on process models for analysis and design of agent-based systems using 
diagrammatic notations. Little work has been reported that enable software engineers 
to use formal logic and other formalisms that have been investigated in the literature 
for agent technology. Few complete formal specifications of non-trivial multi-agent 
systems are reported in the literature. It is unclear about how to use formal modal 
logic systems of BDI such as [8] and game theories [9] to express the behaviours of 
evolutionary ecosystems, which involves purging existing agents and producing 
offspring of existing agents.  

The case study clearly demonstrated a number of advantages of the language 
SLABS and the methodology for developing formal specifications in SLABS in 
comparison with formal specification in general purpose languages such as Z 
[23~25]. Firstly, the language is expressive and suitable for the formal specification 
of multi-agent systems. The evolution process as well as other intelligent behaviour of 
the system can be clearly and naturally described. Second, the model of the system 
represented in the diagrammatic notation greatly helped to understand the system’s 
behaviour, especially how agents communicate with each other. This model can be 
naturally transformed into the overall structure of the formal specification, which, 
from our previous experience, is one of the most difficult tasks in developing formal 
specifications without such a model. Third, the process naturally bridges the gap 
between informal and formal notations.  

We are further investigating how tools can be developed to automate the 
transformation from the diagrammatic notation to formal specification in SLABS in 
the way that structured requirements definitions are translated into formal 
specifications in Z [26, 27]. We are also investigating how scenarios analysis can be 
graphically represented in a diagrammatic notation.  
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