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Abstract. This paper proposes a novel approach to the formal definition of 
UML semantics. We distinguish descriptive semantics from functional seman-
tics of modelling languages. The former defines which system is an instance of 
a model while the later defines the basic concepts underlying the models. In this 
paper, the descriptive semantics of class diagram, interaction diagram and state 
machine diagram are defined by first order logic formulas. A translation tool is 
implemented and integrated with the theorem prover SPASS to enable auto-
mated reasoning about models. The formalisation and reasoning of models is 
then applied to model consistency checking.  

1. Introduction 

With the rapid development of model-driven software development, concerns have 
been expressed on the semantics of modelling languages such as UML. It is widely 
recognised that a clear and rigorous semantics of UML is indispensable for rigorous 
modelling. Unfortunately, in spite of the numerous efforts in the past decade, formal 
specification of UML has not been satisfactory. This paper proposes a novel approach 
to defining formal semantics of modelling languages. It is applied to UML class dia-
gram, interaction diagram and state machine diagram. The usefulness of the approach 
is demonstrated by its implementation in an automated tool and its application to 
model consistency checking.  

The paper is organised as follows. Section 2 describes the proposed approach and 
discusses the related work. Section 3 elaborates our approach by a formal definition 
of UML class diagram. Section 4 further discusses how to deal with multiple views 
defined by separate metamodels and illustrates our approach through defining the 
semantics of interaction diagram and state machine. Section 5 applies the formal se-
mantics to model consistency checking. Section 6 presents an automated tool, which 
translates UML models into first order logic and uses a theorem prover SPASS [1] to 
reason about models. Section 7 concludes the paper and discusses future work.  

2. Proposed approach 

2.1. Basic concepts 

As Seidewitz pointed out [2], a software model, like models in any other scientific 
disciplines, is ‘a set of statements about some system under study’, where statements 



are expressions that can be evaluated to a truth value with respect to the modelled 
systems. Further, Seidewitz stated that a model’s meaning has two aspects. One is the 
model’s relationship to the things being modelled. This meaning is implied when say-
ing ‘this model means that the Java program must contain these classes’. In this sense, 
a model is mapped to a collection of systems in a subject domain. By subject domain, 
we mean a set of systems that a modelling language intends to model, e.g. the collec-
tion of Java software systems. Another example of subject domain is the collection of 
real world systems described with OO concepts. In these subject domains, the truth of 
a statement like ‘a system contains these classes’ can be judged.  

The other aspect of models’ meaning is about the functions and properties of sys-
tems being modelled. This meaning is indicated when saying ‘an inheritance relation 
means that every instance of the subclass is also an instance of the superclass’. On 
this aspect, the meaning of a model is concerned with the basic concepts such as what 
is a class, and their properties and behaviours such as how the instances of a class 
behave. Semantics on this aspect determines the functions of the systems that satisfy a 
model, and hence whether two models are functionally equivalent even if they look 
different. To distinguish these two aspects of meanings of models, we call the former 
descriptive semantics and the later functional semantics.  

From this point of view, we can examine the weakness in the definition of UML 
semantics. In the UML specification [3], the ‘semantics’ sections explain properties 
and structure of each metaclass. Little has been said about how a model is mapped to 
a collection of systems, or equivalently, how to judge whether a system satisfies a 
model. Take a simple class diagram that contains one and only one class node labelled 
with identifier A as an example. It can be interpreted in any of the following ways.  
− there is only one class in the system and it is named A,  
− there is at least one class named A in the system (which may have other classes), 
− there is only one class in the system and its name does not matter,  
− there is at least one class in the system and its name does not matter.  

The official UML documentation does not specify which interpretation of this sim-
plest class diagram is correct. As Kent et al pointed out, a UML model ‘typically has 
more than one possible implementation’, and such ‘underspecification’ must be re-
flected by explicit definitions of the semantics [4]. However, formalisation of UML 
descriptive semantics is difficult due to the following reasons.  

First, UML is not only for modelling software systems, but also for modelling real 
world systems, organisations and business processes. Any domain described with OO 
concepts can be a subject domain. This feature enables UML to bridge the gap be-
tween problem domains in the real world and the computation domain, and to model 
different problem fields including software, hardware, business process, etc. A formal 
definition of UML semantics must enable such multiple interpretations.  

Second, when the full-fledged UML is considered, even the mapping from UML 
models to systems in a fixed subject domain is non-trivial due to the large set of lan-
guage elements with complicated interrelations. It is also recognised by many re-
searchers that the official definition of UML contains errors, hence, it evolves rapidly.  

Third, UML employs the multiple view principle of modelling. A large number of 
different types of diagrams can be drawn to model a system from different perspec-
tives. Each type of diagram is defined by one metamodel. These metamodels are in-
terrelated through references and inheritances between metaclasses. The connections 



between metamodels further complicate the semantics of the language and also cause 
a potential serious problem of model inconsistency. A formal definition of UML se-
mantics must be able to deal with such cross references between metamodels.   

Another major cause of difficulty comes from the abstraction and under-
specification nature of models [4]. UML is intended to be used in different stages of 
software engineering to describe systems at different levels of abstraction. For exam-
ple, a model produced at requirements stage should be more abstract than a model 
built at design stage. The formalisation of UML semantics must reflect the use of the 
language at different levels of abstraction.  

Finally, one of the most important features of UML language is its flexibility. This 
is achieved by at least two mechanisms. One is the extension mechanism with which 
new metaclasses can be introduced through the definition of profiles. The other is the 
under-definition of language elements.  

2.2. Related work  

Addressing the underspecification and ambiguity in UML’s semantics, remarkable 
efforts have been made in the past decade to formalise UML semantics. As far as we 
know, all of them are about the functional semantics or aim at ‘a deeper understand-
ing of OO concepts’ [5]. The following proposals are among the most well-known. 

On the formalisation of class diagram, which is considered the most important type 
of diagrams in UML, a number of proposals have been advanced. The work by Evans 
et al. defines classifier, association, generalisation and attribute etc. in Z schemas [5]. 
Relations between objects and classifiers are specified as axioms. Diagrammatical 
transformation rules are defined as deduction rules to prove properties of UML mod-
els. See [6] for a survey of different approaches to formalising class diagram with Z 
or Object-Z. First order logic (FOL) and description logics (DLs) are used to formal-
ise class diagram [7]. By encoding UML class diagrams in DL knowledge bases, DL 
reasoning systems can be used to reason about class diagrams. Formalisation of other 
types of diagrams has also been investigated, especially on state machine diagram. In 
[8], a rule-based operational semantics of state machine is proposed based on transi-
tion systems. Another work on operational semantics of state machine is reported in 
[9].  

Great efforts have been made on formalising different diagrams in one semantic 
framework. Considering the semantics of a UML model as a set of acceptable struc-
tured process, the authors of [10] map class diagrams and state machines into alge-
braic specifications in Casl-ltl [11]. Another work aiming at integrated semantics of 
class diagram, object diagram and state machine diagrams is based on graph trans-
formation [12].  

To bridge the gap between UML and formal methods, the extensibility mechanism 
of UML profile is used to define specialisations of UML. In [13], a profile UML-B is 
designed so that the semantics of specialised UML entities is defined via a translation 
into B. In [14], an integrated formal method combining the process algebra CSP with 
the specification language Object-Z is used as the intermediate specification language 
to link UML and Java. A UML profile for CSP-OZ is designed with the aim of gener-
ating part of the CSP-OZ specifications from the specialised UML models.   

The above existing methods define the semantics of UML by mapping models into 



a specific semantic domain, such as labelled transition systems, or OO software sys-
tems specified in a formal notation such as Z. The properties of OO systems are speci-
fied as axioms and used to reason about UML models. In other words, they mostly 
addressed the functional semantics of UML. Each method focuses on certain proper-
ties of OO systems, hence a certain subset of UML is formalised. However, it is hard 
to see how these approaches could work either alone or together for the full-fledged 
UML. Most importantly, the ambiguity in descriptive semantics is not addressed in 
these works. Instead, their semantics formalisations are based on explicit or implicit 
assumption on the descriptive semantics. Automation of translating UML models to 
formal specifications to facilitate automated reasoning of UML models has not been 
achieved in the existing methods.  

2.3. Outline of the proposed approach  

In this paper, we take a novel approach to formalising the semantics of UML models 
by explicitly distinguishing descriptive semantics from functional semantics and 
specifying them separately. 

First, the descriptive semantics is defined through a mapping from UML models to 
a set of first order logic statements, which are constructed from a set of predicates and 
functions via logic connectives and quantifiers. Predicates and functions represent the 
basic concepts of the modelling language. For example, predicate Class(x) is defined 
to represent the concept class in UML. Interrelations between basic concepts as speci-
fied in UML metamodels are characterised by a set of axioms, called axioms of de-
scriptive semantics in the sequel. The satisfaction of a model by a system is defined as 
the evaluation of the truth of the statements in the context of the system, provided that 
how to evaluate these predicates and functions is known.  

Second, the functional semantics of UML is defined for the predicates and func-
tions. The properties and dynamic behaviours of modelled systems can be character-
ised by a set of axioms called axioms of functional semantics. Thus, the functional 
semantics of a model determines the functions and runtime behaviours of the systems 
that satisfy a model.  

Formally, we have the following structure of semantics for a modelling language.  
Definition 1. (Semantics of a modelling language) A formal semantic definition of a 
modelling language consists of the following elements. 
− A signature Sig, which defines a formal logic system; 
− A set AxmD of axioms about the descriptive semantics, which is in the formal logic 

system defined by Sig;  
− A set AxmF of axioms about the functional semantics, which is also in the formal 

logic systems defined by Sig;  
− A mapping F from models to a set of formulas in the formal logic system defined 

by Sig. The formulas are the statements for the descriptive semantics of the model;  
− A mapping H from models to a set of formulas in the formal logic system defined 

by Sig. The formulas represent the hypothesis about the context in which the de-
scriptive semantics is interpreted. � 
In the above definition, the signature defines the symbols that can be used in the 

formulas and axioms. The evaluation of a first order logic formula is as usual.  
Definition 2. (Semantics of a model) 



Given a semantics definition of a modelling language as in Definition 1, the semantics 
of a model M under the hypothesis H, written SemH(M), is defined as follows.  

SemH(M) = AxmD∪ AxmF∪ F(M) ∪ H(M)    
where F(M) and H(M) are the sets of statements obtained by applying the semantic 
mappings F and H to model M, respectively. The descriptive semantics of a model M 
under the hypothesis H, written DesSemH(M), is defined as follows. 

DesSemH(M) = AxmD∪ F(M) ∪H (M)  �  
Given a semantics definition of a modelling language in the above framework, rea-

soning about the properties of a model can be defined as logical inference as follows.  
Definition 3. (Properties of a model) 
Let SemH(M) be the semantics of a model M. M has a property P (represented as a 
formula in the logic system defined by Sig) under the semantics definition SemH(M) 
and the hypothesis H, if and only if AxmD∪AxmF∪F(M) ∪H(M)  |− P in the formal 
logic system.  Similarly, we say that M has a property P in descriptive semantics, if 
and only if AxmD∪F(M) ∪H(M)  |− P in the formal logic system. � 

A key concept of the semantics of modelling languages is the satisfaction of a 
model by a system. Before defining this concept, let’s first define the notion of sub-
ject domain and the interpretation of a formal logic in a subject domain.  
Definition 4. (Subject domain) 
A subject domain Dom of signature Sig with an interpretation Eva is a triple <D, Sig, 
Eva>, where D is a collection of systems on which the formulas of the logic system 
defined by Sig can be evaluated according to a specific evaluation rule Eva. The value 
of a formula f evaluated according to the rule Eva in the context of system s∈D, writ-
ten as Eva(f, s), is called the interpretation of the formula f in s. We write s|=Evaf, if a 
formula f is evaluated to true in a system s∈D, i.e. s|=Evaf iff Eva(f, s)= true. � 

When there is no risk of confusion, we will omit the subscript in s|=Evaf. For a set F 
of formulas, we write s|=F to denote that for all f in F, s|=f. 
Definition 5. (Satisfaction of a model) 
Let Sig be a given signature and Dom a subject domain of Sig. A system s in D satis-
fies a model M according to a semantic definition SemH(M) if s|= SemH(M), i.e. for all 
formulas f in SemH(M), s|=f. � 

In the remainder of the paper, we will elaborate the approach by defining the de-
scriptive semantics of UML class diagram, interaction diagram and state machine 
diagram. We will also demonstrate the application of the semantic definition to model 
consistency checking. 

3. Descriptive Semantics of Class Diagram 

3.1. Metamodel  

Fig. 1 shows the simplified metamodel on which our formal definition of the descrip-
tive semantics of UML class diagrams is based.  

3.2. Derivation of signature 

Given a metamodel, the signature of a formal logic system can be induced by apply-



ing the derivation rules defined as follows.  
− Signature Rule 1: Unary predicates. For each metaclass named MC in the meta-

model, we define a unary atomic predicate MC(x).  
− Signature Rule 2: Binary predicates. For each association named MA between two 
metaclasses X and Y in the metamodel, a binary predicates MA(x, y) is defined to rep-
resent the relation between elements of type X and Y.  
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Fig. 1 Metamodel of Class Diagram  

A predicate MC(x) means that element x is of type MC. For example, a unary 
predicate Class(x) is defined to represent the metaclass Class in Fig. 1. A binary 
predicate MA(x,y) means that elements x and y are related by the relation MA. For 
example, a binary predicate specific(x, y) is defined to represent the association 
named specific from metaclass Generalisation to Classifier in Fig. 1.  

Constants and functions in the signature are also derived from the metamodel. 
− Signature Rule 3: Constants. For each enumeration value EV given in an enumera-
tion metaclass ME in the metamodel, a constant EV is defined.  

For example, two enumeration values t and f are defined in the enumeration meta-
class Boolean in Fig. 1. Thus, two constants t and f are defined.  
− Signature Rule 4: Functions.  For each meta-attribute MAttr of type MT in a meta-
class MC, a function MAttr is defined with domain MC and range MT.  

For example, in Fig. 1, metaclass Classifier has an attribute isAbstract of type Boo-
lean. Thus, a function isAbstract is defined on domain Classifier and range Boolean. 
A statement isAbstract(x)=t means element x’ property on isAbstract is t.  

Table 2 summarises the constants representing enumeration values and their types, 
as well as the functions derived from the metamodel in Fig. 1 . These functions are 
partial, i.e. they can be undefined on some elements in a model.  

The interpretation of the functions and predicates must be defined in the context of 
a subject domain. Take the set of C++ programs as an example of subject domain. 



Given a C++ program, the predicate Class(User) is true if User is a class in the pro-
gram. The statement isAbstract(User) is true when the class User in the program is 
declared to be abstract. In this paper, we leave the definition of the interpretation open 
so that a model can be interpreted in different subject domains.  

Table 1 Predicates for Class Diagram  

Predicate Meaning 
ValueSpecification(x) x has type ValueSpecification 
MultiplicityElement(x) x has type MultiplicityElement 
StructuralFeature(x) x has type StructuralFeature 
TypedElement(x) x has type TypedElement 
Feature(x) x has type Feature 
BehaviouralFeature(x) x has type BehaviouralFeature 
NamedElement(x) x has type NamedElement 
Type(x) x has type Type 
Classifier(x) x has type Classifier 
Relationship(x) x has type Relationship 
DirectedRelationship(x) x has type DirectedRelationship 
Parameter(x) x has type Parameter 
Property(x) x has type Property 
Operation(x) x has type Operation 
Class(x) x has type Class 
Interface(x) x has type Interface 
Signal(x) x has type Signal 
Generalisation(x) x has type Generalisation 
Association(x) x has type Association 
DataType(x) x has type DataType 
ParameterDirectionKind(x) x has type ParameterDirectionKind 
AggregationKind(x) x has type AggregationKind 
Boolean(x) x has type Boolean 
VisibilityKind(x) x has type VisibilityKind 
upperValue(x, y) the relation between x and y is upperValue 
lowerValue(x, y) the relation between x and y is lowerValue 
type(x, y) the relation between x and y is type 
general(x, y) the relation between x and y is general 
specific(x, y) the relation between x and y is specific 
ownedParameter(x, y) the relation between x and y is ownedParameter 
ownedAttribute(x, y) the relation between x and y is ownedAttribute 
ownedOperation(x, y) the relation between x and y is ownedOperation 
associateTo(x, y) the relation between x and y is AssociateTo 
memberEnd(x, y) the relation between x and y is memberEnd 

Table 2 Functions and Constants for Class Diagrams 

Range Function Domain Type Values 
isStatic Feature Boolean f, t 
visibility NamedElement VisibilityKind public, private, protected, package 
isAbstract Classifier Boolean f, t 
direction Parameter ParameterDirectionKind in, out, inout, return 
aggregation Property AggregationKind shared, composite, none 

3.3. Axioms 

A UML metamodel is a model that defines the abstract syntax of UML diagrams. It 



can also be regarded as a collection of statements that evaluate to truth values on 
UML models. A UML model is syntactically valid only if all these statements are 
true. Thus, they are axioms on the formal systems representing descriptive semantics 
of models. We identified the following five groups of axioms.  

A. Inheritance hierarchy on metaclasses  
In a metamodel, concrete metaclasses define types of model elements, while abstract 
metaclasses define common features of concrete metaclasses. These common features 
may be specialised by concrete metaclasses. In the sequel, we call a type defined by a 
concrete metaclass a concrete type, and a type defined by an abstract metaclass an 
abstract type. Each element has exactly one concrete type, but may belong to a num-
ber of abstract types.  
− Axiom Rule 1: Logical implication of inheritance. For an inheritance relation from 

metaclass MA to MB, we have an axiom in the form of ∀x. MA(x) −> MB(x) 
For example, from the inheritance relation from Class to Classifier in Fig. 1, an 

axiom is derived to state that if an element has Class as its type, it also belongs to the 
type Classifier. Formally, ∀x. Class(x) −> Classifier(x). 
− Axiom Rule 2: Completeness of specialisations. Let MA be a metaclass in a meta-

model and MB1, MB2, …, MBk be the set of metaclasses specialising MA. We have 
an axiom in the form of ∀x. MA(x) -> MB1(x) ∨ MB2(x) ∨ … ∨ MBk(x) 
For example, the following axiom is derived from the metamodel in Fig. 1. It states 

that if an element has Classifier as its type, it must belong to one of the 5 sub-types: 
Association, DataType, Class, Interface or Signal.  

∀x. Classifier(x) −>DataType(x)∨Association(x)∨Class(x)∨Interface(x)∨ Signal(x) 
− Axiom Rule 3: Uniqueness of element classification. Let MC1, MC2, …, MCn be the 

set of concrete metaclasses in a metamodel. For each pair of different concrete 
metaclasses MCi and MCj, i≠j, we have an axiom in the following form. 

∀x. MCi(x) −> ¬ MCj(x) 
For example, the following axiom states that if an element has Property as its con-

crete type, it cannot be an Operation at the same time.  
∀x. Property(x) −> ¬ Operation(x) 

B. Navigation between element types  
Let MA be an association from metaclass MC1 to MC2 in a metamodel. For the binary 
predicate MA(x,y) derived from the association MA, the two parameters must be ele-
ments of type MC1 and MC2, respectively. Thus, we have the following axiom rule. 
− Axiom Rule 4: Types of parameters of predicates. For each binary predicate 

MA(x,y) derived from an association from metaclass MC1 to MC2 in the meta-
model, we have an axiom in the following form.  

∀x,y. MA(x,y) −> MC1(x) ∧ MC2(y) 
For example, the following axiom is derived from the association general from 

metaclass Generalisation to Classifier in Fig. 1. It states that if predicate general(x,y) 
is true, x must belong to the type Generalisation and y must belong to Classifier.  

∀x,y. general(x,y) −> Generalisation(x) ∧ Classifier(y) 
Similar to binary predicates, for each function MAttr, we have an axiom to specify 

its domain and range.  
− Axiom Rule 5: Domain and range of functions. For each function MAttr derived 



from a meta-attribute MAttr of type MT in a metaclass MC, we have an axiom in 
the following form. 

∀x,y. MC(x) ∧ (MAttr(x) = y) −> MT(y) 
For example, for the meta-attribute isAbstract of Classifier in Fig. 1, the following 

axiom is derived. It states that if function isAbstract is applied on an element of the 
type Classifier, the value of the function must belong to Boolean.  

∀x,y. Classifier(x) ∧ (isAbstract(x) = y)  ->Boolean(y) 

C. Well-formedness constraints  
UML class diagram is insufficient for fully defining the abstract syntax of UML. In 
complementary, well-formedness constraints are specified in the UML documenta-
tion. Some of these well-formedness rules (WFR) are formally defined in OCL, which 
should also be specified as axioms.  
− Axiom Rule 6: Well-formedness rules. For each WFR formally specified in OCL, 

we have a corresponding axiom in the first order language.  
For example, a WFR in UML document is “Generalization hierarchies must be di-

rected and acyclical. A classifier cannot be both a transitively general and transi-
tively specific classifier of the same classifier.” Thus, we have the following axiom.   

∀x, y. Inherit(x, y) −> ¬ Inherit(y, x) 
where Inherit(x,y) is a binary predicate introduced to simplify the specification of the 
axiom. It is formally defined by the following two formulas.  

∀x,y. Generalisation(z) ∧ specific(z, x) ∧ general(z, y) -> Inherit(x, y) 
∀x, y, z. Inherit(x, y) ∧ Inherit(y, z)-> Inherit(x, z) 

Some well-formedness rules are informally defined in the UML documentation. 
They cannot be easily specified in first order logic. For example, a rule for Multiplic-
ityElement is ‘if a non-literal ValueSpecification is used for the lower or upper bound, 
then evaluating that specification must not have side effects’. It cannot be formally 
specified as an axiom.  

D. Definition of enumeration values  
We identified three axiom rules to characterise the information contained in each 
enumeration metaclass.  
− Axiom Rule 7: Distinguishability of the literal constants. For each pair of different 

literal values a and b defined in an enumeration type, we have an axiom in the 
form of a ≠b.  
For example, the metaclass Boolean defines two literal values t and f. Thus, we 

have the axiom t ≠ f. 
− Axiom Rule 8: Type of the literal constants. For each enumeration value a defined 

in an enumeration metaclass ME, we have an axiom in the form of ME(a) stating 
that the type of a is ME. 
For example, for the Boolean values t and f, we have the following two axioms.  

Boolean(t),  Boolean(f). 
− Axiom Rule 9: Completeness of the enumeration. An enumeration type only con-

tains the listed literal constants as its values, hence for each enumeration metaclass 
ME with literal values a1, a2, …, ak, we have an axiom in the form of 

∀x. ME(x) -> (x = a1) ∨ (x = a2) ∨…∨ (x = ak) 
 For example, we have the following axiom for the Boolean metaclass.  



∀x. Boolean(x) -> (x = t) ∨ (x = f) 

3.4. Translating models into first order logic formulas 

This subsection shows how to translate diagrammatic models to first order logic for-
mulas. We will use the class diagram in Fig. 2 as an example.  
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+holder: String

+buy(customerName: String)
+refund()

Clerk
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0..10..1
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+hasTicket0..*

 
Fig. 2 Class Diagram in the Model Ticketing Office 

A. Semantics mapping FM 
For each class diagram, the following rules are applied to generate formulas.  
− Translation Rule 1: Classification of elements. For each identifier id of concrete 

type MC, a formula in the form of MC(id) is generated. 
By applying this rule to every element in a diagram, a set of formulas are generated 

to declare the classification of the identifiers. For example, the following formulas are 
among those generated from the class nodes in Fig. 2.  

Class(User), Class(Bank), Class(BoxOffice).  
Similarly, formulas are generated by applying other unary predicates that represent 
concrete types such as Property, Association, Operation, etc.  
− Translation Rule 2: Properties of elements.  For each element a in the model and 

every applicable function MAttr that represents a meta-attribute, a formula in the 
form of MAttr(a)=v is generated, where v is a’s value on the property.  
For example, Clerk in Fig. 2 is a concrete class. Therefore, the following formula is 

generated, which states that the value of function isAbstract on Clerk is false.   
isAbstract(Clerk) = f 

Table 3 lists the functions applicable on each concrete type of model elements and 
the elements contained in the class diagram in Fig. 2. Applicable functions are derived 
from the metamodel according to the inheritance relation between metaclasses.  
− Translation Rule 3: Relationships between elements. For each related pair (e1, e2) 

of elements in a model, a formula in the form of R(e1, e2) is generated to specify 
the relationship by applying binary predicate R(x1, x2).  
For example, the class diagram in Fig. 2 depicts a generalisation relation from class 



Clerk to User. Hence, we have the formula specific(g, Clerk), where g denotes the 
generalisation arrow. 

Table 3 Constants representing model elements 

Type Applicable functions Elements in Fig.2 
Class isAbstract, visibility Bank, User, BoxOffice, Clerk, Customer, Ticket 

Property isStatic, aggregation, 
visibility 

name, creditCardNum, ID, ticketList, holder, client, server, 
businessClient, bankServer, hasTicket, bOffice 

Operation isStatic, visibility GetName, Pay, GetCardNum, Charge, BuyTicket, Refund-
Ticket, Buy, Refund 

Association isAbstract, visibility UserBoxoffice, BoxofficeTicket, BoxofficeBank 
DataType isAbstract, visibility String, Integer, Bool, List 
Generalisation / customerUser, clerkUser 
Parameter direction, visibility cardNum, cost, seatNum 
Signal isAbstract, visibility / 
Interface isAbstract, visibility / 
ValueSpecification / 0, 50, 1, 200 

B. Hypothesis mapping HM 
In addition to the above translation rules that are applied to all models, hypothesis 
rules are needed to generate formulas that represent the meanings of models in spe-
cific uses of the modelling language. Their application should be determined by users 
according to the situation in which a model is used. The following are some examples 
of such hypothesis rules. 

Let e1, e2, …, ek be the set of elements of a concrete type MC in a model. 
− Hypothesis Rule 1: Distinguishability of elements. The hypothesis that the elements 

of type MC in the model are all different can be generated as formulas in the form 
of ei ≠ej, for i≠j∈{1,2,…,k}.  
For example, if it is assumed that in Fig. 2 class Clerk is different from class Cus-

tomer, the formula Clerk ≠ Customer is generated. This hypothesis is applicable if the 
model is considered as a design, thus force the programmer to implement two classes 
Clerk and Customer separately. However, if the model is used as a requirements 
specification, this hypothesis may not be necessary because a program with one class 
implementing both Clerk and Customer can be considered as satisfying the model.  
− Hypothesis Rule 2: Completeness of elements. The hypothesis on the completeness 

of elements of type MC can be generated as a formula in the following form. 
∀x. MC(x) −> (x = e1) ∨ (x = e2) ∨ … ∨ (x = ek) 

For example, the assumption that the model in Fig. 2 contains all classes in the 
modelled system can be specified as follows.  

∀x. Class(x) −> (x = Ticket) ∨ (x = Clerk) ∨ (x = Customer) 
∨ (x = User) ∨ (x = Bank) ∨ (x = BoxOffice) 

This hypothesis on the completeness of classes is applicable when a model repre-
sents a system in reverse engineering or as a detailed design. However, when a model 
is used as requirements specification, an implementation of the system may introduce 
additional classes and still be regarded as satisfying the requirements. In this case, this 
hypothesis is not applicable.   

Similarly, we have the following hypothesis on the completeness of relations. Let 
R(x1, x2) be a binary predicate, R(e1,1, e1,2), R(e2,1, e2,2), …, R(en,1, en,2) be the set of R 
relations contained in the model. 



− Hypothesis Rule 3: Completeness of relations. The hypothesis on the completeness 
of relation R in the model can be generated as a formula in the following form. 

∀x1,x2.R(x1,x2)−>((x1=e1,1)∧(x2=e1,2))∨((x1= e2,1)∧ (x2= e2,2))∨… ((x1= en,1)∧ (x2= en,2)) 
This hypothesis assumes that all relations of a certain type are specified in the 

model, thus any additional relation in a system will be regarded as not satisfying the 
model. For example, for the model in Fig. 2, we will specify the following formula, if 
we believe all inheritance relations in the modelled system are depicted in the model.  
∀x,y. specific(x,y)−>((x=ClerkUser)∧(y=Clerk))∨((x=CustomerUser)∧(y= Customer)) 

It is worth noting that the above hypothesis rules are just examples. They are by no 
means considered as complete. The point here is the flexibility of UML for different 
uses can be explicitly revealed through a set of optional hypothesis mappings. How 
hypothesis rules are related to the use of the modelling language will be an interesting 
practical problem for further research. 

4. Semantics of Interaction and State Machine 

Our approach to defining descriptive semantics is applicable on various types of UML 
diagrams. This section defines the descriptive semantics of interaction diagram and 
state machine. The same rules and process described in section 3 are applied. The 
only difference is that their metamodels are connected to the metamodel of class dia-
gram. This section will focus on how to deal with such connections.  

4.1. Integration of Metamodels  

Fig. 3 shows a simplified metamodel of interaction diagram.  

Interaction

Lifeline Message

+lifeline +message

ConnectableElement

+represents

MessageEvent

SendOperationEvent SendSignalEventOperation (from Kernel) Signal (from Kernel)

+operation +signal

+event

+sender

+receiver
+after

Behaviour BehaviouralFeature (from Kernel)Classifier(from Kernel)

+specification

+context

TypedElement(from kernel)

 
Fig. 3 Metamodel of Interaction Diagram  

Metaclasses Operation, Signal, TypedElement, BehaviouralFeature and Classifier 
in Fig. 3 were defined in the metamodel of class diagram in Fig. 1 as indicated by 
‘from Kernel’ after their names. They are included in this metamodel to specify the 
connection between the metamodels. For the associations that relate a metamodel to 
external metaclasses, the rules for defining predicates and axioms differ from the or-
dinary rules. For example, in Fig. 3, the association operation denotes the correspon-



dence between SendOperationEvent in interaction diagram and Operation in class 
diagram. Similarly, the association signal denotes the correspondence between Send-
SignalEvent in interaction diagram and Signal in class diagram. Thus, the Signature 
Rule 2 is not applied on them. Instead, such correspondences are specified as axioms 
about the related element types. The following two axioms are derived from associa-
tions operation and signal in Fig. 3, respectively.   

∀x. SendOperationEvent(x) −> Operation(x)  
∀x. SendSignalEvent(x) −> Signal(x)  

Formally, we have the following general rule for generating axioms from cross 
metamodel associations. 
− Axiom Rule 10: Cross metamodel association. For each cross metamodel associa-

tion from metaclass MA to external metaclass MB, we have an axiom in the form of 
∀x. MA(x) −> MB(x).  
Axioms for multiple-view UML models comprise the axioms for different types of 

diagrams, which are separately derived from the respective metamodels. When the 
different sets of axioms are integrated, the axioms about ‘completeness of specialisa-
tions’ have to be modified due to the overlap between the inheritance hierarchies in 
the different metamodels. Formally, 
− Axiom Rule 2’: Completeness of specialisations across metamodels. Let MA be a 

metaclass depicted in two metamodels MM1 and MM2. Let metaclasses MB1, 
MB2, …, MBk be the set of metaclasses that specialise MA in metamodel MM1, and 
MC1, MC2, …, MCp be the set of metaclasses that specialise MA in metamodel 
MM2. We have the following axiom when a model is defined by MM1 and MM2.  

∀x. MA(x) -> MB1(x)  ∨ … ∨ MBk(x) ∨ MC1(x) ∨ … ∨ MCp(x) 
Take the specialisations of metaclass TypedElement in Fig. 1 and Fig. 3 as an ex-

ample. Axiom (1) below will be derived from Fig. 1 by applying Axiom Rule 2 for 
defining the semantics of models that only contains class diagrams. Similarly, when a 
model only contains sequence diagrams, axiom (2) will be used. When the model 
contains both class diagrams and sequence diagrams, i.e. the models are defined by 
the two interrelated metamodels, axiom (3) below will be used.  

∀x. TypedElement(x) −> Parameter(x) ∨ StructuralFeature(x)  (1) 
∀x. TypedElement(x) −> ConnectableElement(x)  (2) 

∀x. TypedElement(x) −>  
Parameter(x) ∨ StructuralFeature(x) ∨ ConnectableElement(x)  

(3) 

The signature and axioms of state machine diagrams are derived from the meta-
model shown in Fig. 4 by applying the rules given in section 3 and section 4.1. Table 
4 summarises the number of generated predicates, functions and axioms.  

4.2. Translating diagrams into first order logic formulas 

The translation rules given in section 3 are applied to sequence diagrams and state 
machines to generate first order logic formulas. For example, the following formulas 
are among those generated from the interaction diagram shown in Fig. 5 (A).  

Message(buyTicket) , sender(buyTicket, c). 
Below are some of the formulas generated from the state machine in Fig. 5 (B).  
State(available),  trigger(Transition7,refund), source(Transition7,unavailable). 



Totally 1459 formulas were generated from the three diagrams of the model Tick-
eting Office.  
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Fig. 4 Metamodel of State Machine Diagram 

Table 4 Summary of the signature and axioms defined for three types of diagrams 

 Class 
Diagram 

Interaction 
Diagram 

State 
Machine 

Abstract metaclasses 10 3 2 
Concrete metaclasses 10 5 9 Unary 

Predicate 
Enumeration metaclasses 4 0 1 

Binary Predicates 10 8 12 
Functions 5 0 1 

Signa-
ture 

Enumeration constants 13 0 8 
Inheritance relations 20 4 6 
Completeness of specialisation 10 3 4 
Completeness of classification 10 5 9 
Valid application of binary predicates/functions 15 8 13 

Axiom 

Well-formedness rules 7 1 21 
 

c : User b : BoxOffice t : Ticket s : Bank

buyTicket()

pay() charge()

buy()

 

available

unavailable

buyrefund

 
 (A) Sequence Diagram (B) State Machine Diagram 

Fig. 5 Sequence Diagram and State Machine Diagram in the Model Ticketing Office          



5. Consistency Check: An Application of Descriptive Semantics 

The formal definition of UML semantics in our approach naturally facilitates reason-
ing about models. This section demonstrates the application of the descriptive seman-
tics in consistency checking of models.  

Aiming at rigorous modelling, great efforts have been made to define and check 
models’ consistency [15-18], especially in the context of UML models [19-22]. With 
the definition of model semantics in first order logic, checking the consistency of a 
model is to prove that the formulas generated from the model are consistent in the 
context of the axioms. Moreover, additional stronger consistency constraints can also 
be specified in first order logic. The validity of such constraints, i.e. their consistency 
with the axioms, can be formally proved.  

5.1. Checking consistency as logical inference 

Let F be a set of formulas in a signature Sig. As in first order logic, if we can deduce 
that F|−false, then F is inconsistent. Thus, we have the following definition. 
Definition 6. (Logical consistency)  
Let SemH(M) = AxmD∪ AxmF∪ F(M)∪ H(M) be the semantics of a model M. Model 
M is said to be logically inconsistent in the semantic definition SemH(M) if 
SemH(M)|−false; otherwise, we say that the model is logically consistent. � 

It is easy to see that a logically inconsistent model is not satsifiable in a subject 
domain whose interpretation of formulas is consistent with the logic system.  
Definition 7. (Consistent interpretation of formulas in a subject domain)  
Let Dom=<D, Sig, Eva> be a subject domain as defined in Definition 4. The interpre-
tation of formulas in signature Sig is consistent with first order logic if and only if for 
all formulas q and p1, p2, …, pk that p1, p2, …, pk |− q, and for all systems s in D that 
Eva(pi, s) =true for i=1,2,…, k, we always have Eva(q, s) =true. � 
Theorem 1. (Unsatisfiability of inconsistent model) 
A model M that is logically inconsistent in the semantic definition SemH(M) is not 
satisfiable on any subject domain whose interpretation of formulas is consistent with 
first order logic.  
Proof. We prove by contradiction. Let M be a logically inconsistent model, s be a 
system in a subject domain Dom that satisfies the model according to the semantic 
definition SemH(M).  By Definition 5, for all formulas p in SemH(M), s|=p. By 
Definition 6, M is logically inconsistent means that SemH(M)|−false. By the property 
that the interpretation of formulas in the subject domain Dom is consistent with the 
first order logic, it follows (Definition 8) that s|=false. Thus, we find a contradiction. 
Therefore, the theorem is true. � 

In the experiment, we used SPASS theorem prover to prove that each set of the for-
mulas generated from the three diagrams in the model Ticketing Office shown in Fig. 
2 and Fig. 5 are logically consistent. Their union is also consistent. Moreover, the set 
of axioms for class diagrams, interaction diagrams and state machines are also proven 
to be logically consistent. Thus, we have the following theorem. 
Theorem 2. (Consistency of the axioms in semantics definition) 
The sets of axioms generated from the metamodels for class diagrams, interaction 



diagrams and state machines are consistent as they are individually as well as to-
gether.  
Proof. As stated above. � 

We have also made various minor changes to the diagrams in the model Ticketing 
Office to demonstrate that some changes can lead to logically inconsistent set of for-
mulas, thus proved the existence of inconsistent models in UML according to our 
semantic definition. Thus, it is feasible to check models’ consistency through logic 
inferences based on descriptive semantics.  

It is worth noting that, generally speaking, logical consistency does not guarantee 
that the model is satsifiable in a subject domain.  

5.2. Checking consistency against additional constraints  

In addition to checking the consistency of a model as described in the previous sub-
section, it is often desirable to check models against addition constraints. For exam-
ple, the following consistency constraint has been studied in the literature [23, 24]. It 
states that a life line must represent an instance of a class.  

∀x, y, z. Lifeline(x) ∧ represent(x,y) ∧ type(y, z) -> Class(z) 
If a consistency constraint cannot be derived from the axioms, a model that is logi-

cally consistent does not necessarily satisfy the additional constraint. Thus, we have 
the following notion of consistency with respect to a set of constraints.  
Definition 8. (Consistency w.r.t. consistency constraints) 
Given a set of consistency constraints C={c1, c2, …, cn}, the consistency of a model M 
with respect to the constraints C under the semantics definition SemH(M) is the con-
sistency of the set U = SemH(M) ∪C of formulas.  In particular, we say that a model 
fails on a specific constraint ck, if SemH(M) is consistent, but SemH(M) ∪{ck} is not. � 

The following are some commonly used consistency constraints.  
− Message represents operation call of the message receiver [23]. Formally,  

∀x, y, z, u. Message(x) ∧ event(x,y) ∧ SendOperationCall(y) 
∧ receiver(x,z) ∧ type(z, u)−> ownedOperation(u,y) 

− The classifier of a message’s sender must be associated to the classifier of the 
message’s receiver [23]. Formally,  
∀x,y,z,u,v. Message(x) ∧ sender(x,y) ∧ type(y,u) ∧ receiver(x,z)  ∧ type(z,v)  

−> ∃ w,m,n. Association(w) ∧ memberEnd(w, m) ∧ memberEnd(w, n) ∧Associ-
ateTo(m, u) ∧ AssociateTo(n,v) 

− Protocol transition refers to an operation (i.e., has a call trigger corresponding to 
an operation), and that operation applies to the context classifier of the state ma-
chine of the protocol transition. Formally,  

∀x,y,z. ProtocolStateMachine(x) ∧ transition(x,y) ∧ trigger(y,z) 
∧ context(x,u) −> Operation(z) ∧ ownedOperation(u,z) 

− The order of messages in interaction diagram must be consistent with the order of 
triggers on transitions in state machine diagram [23, 25]  

∀x,y,z,u.Message(x)∧event(x,z)∧Message(y)∧event(y,u)∧after(x,y)−>Trigs(z,u) 
where Trigs(x,y) is an auxiliary predicate defined as follows.  

∀x,y,z,u,v. Transition(x) ∧ trigger(x,u) ∧ target(x,y) ∧Transition(z) ∧ trigger(z,v) ∧ 
source(z,y) −> Trigs(v,u) 



∀x,y,z. Trigs (x,y) ∧ Trigs (y,z) −> Trigs (x,z) 
In the above discussion, we have made an implicit assumption about the validity of 

the constraints. Informally, a constraint is invalid if it conflicts with the semantics 
axioms of the language and thus cannot be satisfied by any model. Here, we distin-
guish two types of validity: descriptive validity and functional validity.  
Definition 9. (Validity of consistency constraints) 
Let AD and AF be the sets of axioms for descriptive semantics and functional seman-
tics, respectively. A set C={c1, c2, …, cn} of consistency constraints is descriptively 
valid if AD∪C is logically consistent. The set C of consistency constraints is function-
ally valid AD∪AF∪C is logically consistent. � 

We have conducted an experiment with the validity of consistency constraints us-
ing SPASS. It is proved that the constraints given above are all descriptively valid.  

A consistency constraint can be ineffective if it does not impose any additional re-
striction on models. This is true if the constraint can be deduced from the axioms in 
first order logic. Thus, we have the following definition. 
Definition 10. (Effectiveness of consistency constraints) 
Let A be a set of semantics axioms. A set C={c1, c2, …, cn} of consistency constraints 
is logically ineffective with respect to the set A of axioms if A |− C. � 

Obviously, if C is logically ineffective, a model logically consistent in the context 
of axiom A will be consistent with respect to C.  

The consistency constraints given above are all proven to be not ineffective.  

6. Implementation of Semantics Translation Tool 

By translating UML models into first order logic statements, reasoning about models 
can be realised as logical inferences and automated by using a theorem prover. We 
have designed and implemented a tool Translator to translate UML models to first 
order logic statements. The tool is integrated with a modelling tool and a theorem 
prover. Fig. 6 shows the structure and workflow of the tools.  

The input to Translator is UML models in XMI formats. StarUML [26], a UML 
modelling tool, is used to generate XMI representation of UML models. The output of 
our tool is a text file that is readable by SPASS, which is an automated theorem 
prover for first order logic with equality. Fig. 7 gives a screen snapshot of Translator, 
where XMI editor on the left displays the input XMI file and Logic editor on the right 
displays the generated formulas in SPASS input format. 

   
Fig. 6 Process of formalising and reasoning UML models 



 

Fig. 7  Snapshot of Translator 

When SPASS is invoked with an input generated by Translator, the consistency of 
the statements is inferred. In particular, it infers whether S|-false can be proved, where 
S is the set of formulas including the axioms, hypothesis and formulas generated from 
the model and optionally some consistency constraints. Since SPASS is refutationally 
complete [27], if the set of statements in S is logically inconsistent, the system termi-
nates with ‘proof found’ and outputs a proof of false; otherwise if it terminates with 
‘completion found’, which means no proof of false can be found, so S is logically 
consistent.  

We have used the tool to conduct a number of experiments on reasoning about in-
teresting properties of UML diagrams. These experiments include checking the con-
sistency of the axioms, checking model consistency without additional constraints and 
with various additional constraints, checking consistency constraints’ validity and 
effectiveness, etc. Details of the experiments will be reported separately.  

7. Conclusion 

The main contribution of this paper is three-fold. First, we introduced the notions of 
descriptive semantics and functional semantics, and proposed a general framework for 
separately defining these two aspects of semantics of modelling languages. Second, 
we proposed a systematic technique to formally specify the descriptive semantics of 
UML in first order logic, which include the rules for rigorously inducing first order 
languages from metamodels, the rules for systematically deriving axioms from meta-
models, and the rules for automatic translating models into formulas. Third, we suc-
cessfully applied the technique to UML class diagram, interaction diagram and state 
machine. We also demonstrated the usefulness of the formal definition of descriptive 
semantics by applying it to model consistency checking, and thus laid a logic founda-
tion for consistency checking.  

Our approach has the following distinctive features in comparison with existing 
methods, which are in complementary to ours in the sense that they mostly defined 
the functional aspect of semantics.  



First, our approach explicitly separates descriptive semantics from functional se-
mantics of modelling languages. This enables the definition of the descriptive aspect 
of semantics to be abstract in the sense that it is independent of any subject domain. 
This reflects the practical uses of UML that a same model describes both real world 
systems and computer information systems.  

Second, by introducing the notion of hypothesis in semantic definition, our ap-
proach achieves the flexibility of semantics of UML models, i.e. the same language is 
used for various purposes in software development.  

Third, the approach is practically useful as we demonstrated the successful applica-
tion of the approach on non-trivial subsets of class diagrams, interaction diagrams and 
state machines. In particular, our approach provides a natural and nice solution to the 
problem in defining multiple view modelling languages where each view is defined 
by one metamodel and these meat-models are interconnected.   

Moreover, the translation from UML models to semantics can be rigorously de-
fined. The translation for the subset of class diagram, interaction diagram and state 
machine has been implemented and tested.  

Finally, the semantic definition facilitates formal and automated reasoning about 
models. We have demonstrated the application of such reasoning to a well-known 
non-trivial problem of software modelling, i.e. consistency checking. Experiments 
have shown promising results.  

We are further researching on the definition of the functional semantics of UML in 
a form that can be nicely linked to descriptive semantics reported in this paper. We 
are also investigating logical properties of the semantic definitions.  

In our investigation of UML semantics, we found a number of errors in its meta-
model. Some of them were corrected in the simplified metamodel presented in this 
paper. More details will be reported separately.  
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