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Abstract. This paper proposes a novel approach to the formal definition of
UML semantics. We distinguish descriptive semantics from functional seman-
tics of modelling languages. The former defines which system is an instance of
a model while the later defines the basic concepts underlying the models. In this
paper, the descriptive semantics of class diagram, interaction diagram and state
machine diagram are defined by first order logic formulas. A translation tool is
implemented and integrated with the theorem prover SPASS to enable auto-
mated reasoning about models. The formalisation and reasoning of models is
then applied to model consistency checking.

1. Introduction

With the rapid development of model-driven software development, concerns have
been expressed on the semantics of modelling languages such as UML. It is widely
recognised that a clear and rigorous semantics of UML is indispensable for rigorous
modelling. Unfortunately, in spite of the numerous efforts in the past decade, formal
specification of UML has not been satisfactory. This paper proposes a novel approach
to defining formal semantics of modelling languages. It is applied to UML class dia-
gram, interaction diagram and state machine diagram. The usefulness of the approach
is demonstrated by its implementation in an automated tool and its application to
model consistency checking.

The paper is organised as follows. Section 2 describes the proposed approach and
discusses the related work. Section 3 elaborates our approach by a formal definition
of UML class diagram. Section 4 further discusses how to deal with multiple views
defined by separate metamodels and illustrates our approach through defining the
semantics of interaction diagram and state machine. Section 5 applies the formal se-
mantics to model consistency checking. Section 6 presents an automated tool, which
translates UML models into first order logic and uses a theorem prover SPASS [1] to
reason about models. Section 7 concludes the paper and discusses future work.

2. Proposed approach

2.1. Basic concepts

As Seidewitz pointed out [2], a software model, like models in any other scientific
disciplines, is ‘a set of statements about some system under study’, where statements



are expressions that can be evaluated to a truth value with respect to the modelled
systems. Further, Seidewitz stated that a model’s meaning has two aspects. One is the
model’s relationship to the things being modelled. This meaning is implied when say-
ing ‘this model means that the Java program must contain these classes’. In this sense,
a model is mapped to a collection of systems in a subject domain. By subject domain,
we mean a set of systems that a modelling language intends to model, e.g. the collec-
tion of Java software systems. Another example of subject domain is the collection of
real world systems described with OO concepts. In these subject domains, the truth of
a statement like ‘a system contains these classes’ can be judged.

The other aspect of models’ meaning is about the functions and properties of sys-
tems being modelled. This meaning is indicated when saying ‘an inheritance relation
means that every instance of the subclass is also an instance of the superclass’. On
this aspect, the meaning of a model is concerned with the basic concepts such as what
is a class, and their properties and behaviours such as how the instances of a class
behave. Semantics on this aspect determines the functions of the systems that satisfy a
model, and hence whether two models are functionally equivalent even if they look
different. To distinguish these two aspects of meanings of models, we call the former
descriptive semantics and the later functional semantics.

From this point of view, we can examine the weakness in the definition of UML

semantics. In the UML specification [3], the ‘semantics’ sections explain properties
and structure of each metaclass. Little has been said about how a model is mapped to
a collection of systems, or equivalently, how to judge whether a system satisfies a
model. Take a simple class diagram that contains one and only one class node labelled
with identifier A as an example. It can be interpreted in any of the following ways.
there is only one class in the system and it is named A,
there is at least one class named A in the system (which may have other classes),
there is only one class in the system and its name does not matter,
there is at least one class in the system and its name does not matter.
The official UML documentation does not specify which interpretation of this sim-
plest class diagram is correct. As Kent et al pointed out, a UML model ‘typically has
more than one possible implementation’, and such ‘underspecification’” must be re-
flected by explicit definitions of the semantics [4]. However, formalisation of UML
descriptive semantics is difficult due to the following reasons.

First, UML is not only for modelling software systems, but also for modelling real
world systems, organisations and business processes. Any domain described with OO
concepts can be a subject domain. This feature enables UML to bridge the gap be-
tween problem domains in the real world and the computation domain, and to model
different problem fields including software, hardware, business process, etc. A formal
definition of UML semantics must enable such multiple interpretations.

Second, when the full-fledged UML is considered, even the mapping from UML
models to systems in a fixed subject domain is non-trivial due to the large set of lan-
guage elements with complicated interrelations. It is also recognised by many re-
searchers that the official definition of UML contains errors, hence, it evolves rapidly.

Third, UML employs the multiple view principle of modelling. A large humber of
different types of diagrams can be drawn to model a system from different perspec-
tives. Each type of diagram is defined by one metamodel. These metamodels are in-
terrelated through references and inheritances between metaclasses. The connections



between metamodels further complicate the semantics of the language and also cause
a potential serious problem of model inconsistency. A formal definition of UML se-
mantics must be able to deal with such cross references between metamodels.

Another major cause of difficulty comes from the abstraction and under-
specification nature of models [4]. UML is intended to be used in different stages of
software engineering to describe systems at different levels of abstraction. For exam-
ple, a model produced at requirements stage should be more abstract than a model
built at design stage. The formalisation of UML semantics must reflect the use of the
language at different levels of abstraction.

Finally, one of the most important features of UML language is its flexibility. This
is achieved by at least two mechanisms. One is the extension mechanism with which
new metaclasses can be introduced through the definition of profiles. The other is the
under-definition of language elements.

2.2. Related work

Addressing the underspecification and ambiguity in UML’s semantics, remarkable
efforts have been made in the past decade to formalise UML semantics. As far as we
know, all of them are about the functional semantics or aim at ‘a deeper understand-
ing of OO concepts’ [5]. The following proposals are among the most well-known.

On the formalisation of class diagram, which is considered the most important type
of diagrams in UML, a number of proposals have been advanced. The work by Evans
et al. defines classifier, association, generalisation and attribute etc. in Z schemas [5].
Relations between objects and classifiers are specified as axioms. Diagrammatical
transformation rules are defined as deduction rules to prove properties of UML mod-
els. See [6] for a survey of different approaches to formalising class diagram with Z
or Object-Z. First order logic (FOL) and description logics (DLs) are used to formal-
ise class diagram [7]. By encoding UML class diagrams in DL knowledge bases, DL
reasoning systems can be used to reason about class diagrams. Formalisation of other
types of diagrams has also been investigated, especially on state machine diagram. In
[8], a rule-based operational semantics of state machine is proposed based on transi-
tion systems. Another work on operational semantics of state machine is reported in
[9].

Great efforts have been made on formalising different diagrams in one semantic
framework. Considering the semantics of a UML model as a set of acceptable struc-
tured process, the authors of [10] map class diagrams and state machines into alge-
braic specifications in Casl-Itl [11]. Another work aiming at integrated semantics of
class diagram, object diagram and state machine diagrams is based on graph trans-
formation [12].

To bridge the gap between UML and formal methods, the extensibility mechanism
of UML profile is used to define specialisations of UML. In [13], a profile UML-B is
designed so that the semantics of specialised UML entities is defined via a translation
into B. In [14], an integrated formal method combining the process algebra CSP with
the specification language Object-Z is used as the intermediate specification language
to link UML and Java. A UML profile for CSP-OZ is designed with the aim of gener-
ating part of the CSP-OZ specifications from the specialised UML models.

The above existing methods define the semantics of UML by mapping models into



a specific semantic domain, such as labelled transition systems, or OO software sys-
tems specified in a formal notation such as Z. The properties of OO systems are speci-
fied as axioms and used to reason about UML models. In other words, they mostly
addressed the functional semantics of UML. Each method focuses on certain proper-
ties of OO systems, hence a certain subset of UML is formalised. However, it is hard
to see how these approaches could work either alone or together for the full-fledged
UML. Most importantly, the ambiguity in descriptive semantics is not addressed in
these works. Instead, their semantics formalisations are based on explicit or implicit
assumption on the descriptive semantics. Automation of translating UML models to
formal specifications to facilitate automated reasoning of UML models has not been
achieved in the existing methods.

2.3. Outline of the proposed approach

In this paper, we take a novel approach to formalising the semantics of UML models
by explicitly distinguishing descriptive semantics from functional semantics and
specifying them separately.

First, the descriptive semantics is defined through a mapping from UML models to
a set of first order logic statements, which are constructed from a set of predicates and
functions via logic connectives and quantifiers. Predicates and functions represent the
basic concepts of the modelling language. For example, predicate Class(x) is defined
to represent the concept class in UML. Interrelations between basic concepts as speci-
fied in UML metamodels are characterised by a set of axioms, called axioms of de-
scriptive semantics in the sequel. The satisfaction of a model by a system is defined as
the evaluation of the truth of the statements in the context of the system, provided that
how to evaluate these predicates and functions is known.

Second, the functional semantics of UML is defined for the predicates and func-
tions. The properties and dynamic behaviours of modelled systems can be character-
ised by a set of axioms called axioms of functional semantics. Thus, the functional
semantics of a model determines the functions and runtime behaviours of the systems
that satisfy a model.

Formally, we have the following structure of semantics for a modelling language.
Definition 1. (Semantics of a modelling language) A formal semantic definition of a
modelling language consists of the following elements.

— A signature Sig, which defines a formal logic system;

— A set Axmp of axioms about the descriptive semantics, which is in the formal logic
system defined by Sig;

— A set Axmg of axioms about the functional semantics, which is also in the formal
logic systems defined by Sig;

— A mapping F from models to a set of formulas in the formal logic system defined
by Sig. The formulas are the statements for the descriptive semantics of the model;

— A mapping H from models to a set of formulas in the formal logic system defined
by Sig. The formulas represent the hypothesis about the context in which the de-
scriptive semantics is interpreted. [

In the above definition, the signature defines the symbols that can be used in the
formulas and axioms. The evaluation of a first order logic formula is as usual.
Definition 2. (Semantics of a model)



Given a semantics definition of a modelling language as in Definition 1, the semantics
of a model M under the hypothesis H, written Sem,,(M), is defined as follows.
Semy(M) = Axmpu Axmeu F(M) U H(M)
where F(M) and H(M) are the sets of statements obtained by applying the semantic
mappings F and H to model M, respectively. The descriptive semantics of a model M
under the hypothesis H, written DesSem,(M), is defined as follows.
DesSemy(M) = Axmpu F(M) UH (M) 0

Given a semantics definition of a modelling language in the above framework, rea-

soning about the properties of a model can be defined as logical inference as follows.
Definition 3. (Properties of a model)
Let Semy(M) be the semantics of a model M. M has a property P (represented as a
formula in the logic system defined by Sig) under the semantics definition Semy(M)
and the hypothesis H, if and only if AxmpUAXmgUF(M) UH(M) |- P in the formal
logic system. Similarly, we say that M has a property P in descriptive semantics, if
and only if AxmpuUF(M) UH(M) |- P in the formal logic system. [

A key concept of the semantics of modelling languages is the satisfaction of a
model by a system. Before defining this concept, let’s first define the notion of sub-
ject domain and the interpretation of a formal logic in a subject domain.

Definition 4. (Subject domain)

A subject domain Dom of signature Sig with an interpretation Eva is a triple <D, Sig,
Eva>, where D is a collection of systems on which the formulas of the logic system
defined by Sig can be evaluated according to a specific evaluation rule Eva. The value
of a formula f evaluated according to the rule Eva in the context of system seD, writ-
ten as Eva(f, s), is called the interpretation of the formula f in s. We write S|=g.f, if a
formula f is evaluated to true in a system seD, i.e. s|=g,f iff Eva(f, s)= true. (]

When there is no risk of confusion, we will omit the subscript in s|=g,.f. For a set F
of formulas, we write s|=F to denote that for all f in F, s|=f.

Definition 5. (Satisfaction of a model)

Let Sig be a given signature and Dom a subject domain of Sig. A system s in D satis-
fies a model M according to a semantic definition Semy(M) if s|= Semy(M), i.e. for all
formulas f in Semy (M), s|=f. [

In the remainder of the paper, we will elaborate the approach by defining the de-
scriptive semantics of UML class diagram, interaction diagram and state machine
diagram. We will also demonstrate the application of the semantic definition to model
consistency checking.

3. Descriptive Semantics of Class Diagram
3.1. Metamodel

Fig. 1 shows the simplified metamodel on which our formal definition of the descrip-
tive semantics of UML class diagrams is based.

3.2. Derivation of signature

Given a metamodel, the signature of a formal logic system can be induced by apply-



ing the derivation rules defined as follows.

— Signature Rule 1: Unary predicates. For each metaclass named MC in the meta-
model, we define a unary atomic predicate MC(x).

— Signature Rule 2: Binary predicates. For each association named MA between two

metaclasses X and Y in the metamodel, a binary predicates MA(X, y) is defined to rep-

resent the relation between elements of type X and Y.
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Fig. 1 Metamodel of Class Diagram

A predicate MC(x) means that element x is of type MC. For example, a unary
predicate Class(x) is defined to represent the metaclass Class in Fig. 1. A binary
predicate MA(x,y) means that elements x and y are related by the relation MA. For
example, a binary predicate specific(x, y) is defined to represent the association
named specific from metaclass Generalisation to Classifier in Fig. 1.

Constants and functions in the signature are also derived from the metamodel.

— Signature Rule 3: Constants. For each enumeration value EV given in an enumera-
tion metaclass ME in the metamodel, a constant EV is defined.

For example, two enumeration values t and f are defined in the enumeration meta-
class Boolean in Fig. 1. Thus, two constants t and f are defined.

— Signature Rule 4: Functions. For each meta-attribute MAttr of type MT in a meta-
class MC, a function MAttr is defined with domain MC and range MT.

For example, in Fig. 1, metaclass Classifier has an attribute isAbstract of type Boo-
lean. Thus, a function isAbstract is defined on domain Classifier and range Boolean.
A statement isAbstract(x)=t means element x” property on isAbstract is t.

Table 2 summarises the constants representing enumeration values and their types,
as well as the functions derived from the metamodel in Fig. 1 . These functions are
partial, i.e. they can be undefined on some elements in a model.

The interpretation of the functions and predicates must be defined in the context of
a subject domain. Take the set of C++ programs as an example of subject domain.



Given a C++ program, the predicate Class(User) is true if User is a class in the pro-
gram. The statement isAbstract(User) is true when the class User in the program is
declared to be abstract. In this paper, we leave the definition of the interpretation open
so that a model can be interpreted in different subject domains.

Table 1 Predicates for Class Diagram

Predicate Meaning

ValueSpecification(x) x has type ValueSpecification
MultiplicityElement(x) X has type MultiplicityElement
StructuralFeature(x) x has type StructuralFeature
TypedElement(x) x has type TypedElement

Feature(x) X has type Feature

BehaviouralFeature(x) x has type BehaviouralFeature
NamedElement(x) x has type NamedElement

Type(x) X has type Type

Classifier(x) x has type Classifier

Relationship(x) x has type Relationship
DirectedRelationship(x) x has type DirectedRelationship
Parameter(x) X has type Parameter

Property(x) X has type Property

Operation(x) x has type Operation

Class(x) x has type Class

Interface(x) X has type Interface

Signal(x) x has type Signal

Generalisation(x) x has type Generalisation

Association(x) X has type Association

DataType(x) X has type DataType
ParameterDirectionKind(x) X has type ParameterDirectionKind
AggregationKind(x) x has type AggregationKind

Boolean(x) X has type Boolean

VisibilityKind(x) x has type VisibilityKind

upperValue(x, y) the relation between x and y is upperValue
lowerValue(x, y) the relation between x and y is lowerValue
type(x, y) the relation between x and y is type
general(x, y) the relation between x and y is general
specific(x, y) the relation between x and y is specific
ownedParameter(X, y) the relation between x and y is ownedParameter
ownedAttribute(x, y) the relation between x and y is ownedAttribute
ownedOperation(x, y) the relation between x and y is ownedOperation
associateTo(X, Y) the relation between x and y is AssociateTo
memberEnd(x, y) the relation between x and y is memberEnd

Table 2 Functions and Constants for Class Diagrams

. . Range
Function Domain Type Values
isStatic Feature Boolean ft
visibility NamedElement  VisibilityKind public, private, protected, package
isAbstract Classifier Boolean fit
direction Parameter ParameterDirectionKind in, out, inout, return
aggregation  Property AggregationKind shared, composite, hone
3.3. Axioms

A UML metamodel is a model that defines the abstract syntax of UML diagrams. It



can also be regarded as a collection of statements that evaluate to truth values on
UML models. A UML model is syntactically valid only if all these statements are
true. Thus, they are axioms on the formal systems representing descriptive semantics
of models. We identified the following five groups of axioms.

A. Inheritance hierarchy on metaclasses

In a metamodel, concrete metaclasses define types of model elements, while abstract

metaclasses define common features of concrete metaclasses. These common features

may be specialised by concrete metaclasses. In the sequel, we call a type defined by a

concrete metaclass a concrete type, and a type defined by an abstract metaclass an

abstract type. Each element has exactly one concrete type, but may belong to a num-
ber of abstract types.

— Axiom Rule 1: Logical implication of inheritance. For an inheritance relation from
metaclass MA to MB, we have an axiom in the form of ¥x. MA(x) = MB(x)

For example, from the inheritance relation from Class to Classifier in Fig. 1, an
axiom is derived to state that if an element has Class as its type, it also belongs to the
type Classifier. Formally, ¥x. Class(x) —> Classifier(x).

— Axiom Rule 2: Completeness of specialisations. Let MA be a metaclass in a meta-
model and MB;, MB,, ..., MBy be the set of metaclasses specialising MA. We have
an axiom in the form of Vx. MA(X) -> MB1(X) v MBx(X) v ... v MB(X)

For example, the following axiom is derived from the metamodel in Fig. 1. It states
that if an element has Classifier as its type, it must belong to one of the 5 sub-types:
Association, DataType, Class, Interface or Signal.

Vx. Classifier(x) —>DataType(x)vAssociation(x)vClass(x)vInterface(x)v Signal(x)

— Axiom Rule 3: Uniqueness of element classification. Let MC;, MC,, ..., MC, be the
set of concrete metaclasses in a metamodel. For each pair of different concrete
metaclasses MC;and MC;, i#j, we have an axiom in the following form.

vx. MCi(x) = = MCj(x)

For example, the following axiom states that if an element has Property as its con-
crete type, it cannot be an Operation at the same time.

Vx. Property(x) —> - Operation(x)

B. Navigation between element types

Let MA be an association from metaclass MC; to MC, in a metamodel. For the binary

predicate MA(x,y) derived from the association MA, the two parameters must be ele-

ments of type MC, and MC,, respectively. Thus, we have the following axiom rule.

— Axiom Rule 4: Types of parameters of predicates. For each binary predicate
MA(x,y) derived from an association from metaclass MC; to MC; in the meta-
model, we have an axiom in the following form.

vX,y. MA(X,y) —> MCy(X) A MCy(Y)

For example, the following axiom is derived from the association general from
metaclass Generalisation to Classifier in Fig. 1. It states that if predicate general(x,y)
is true, x must belong to the type Generalisation and y must belong to Classifier.

VX,y. general(x,y) —> Generalisation(x) A Classifier(y)

Similar to binary predicates, for each function MAttr, we have an axiom to specify
its domain and range.

— Axiom Rule 5: Domain and range of functions. For each function MAttr derived



from a meta-attribute MAttr of type MT in a metaclass MC, we have an axiom in

the following form.

VX,y. MC(x) A (MALtr(x) = y) —> MT(y)

For example, for the meta-attribute isAbstract of Classifier in Fig. 1, the following
axiom is derived. It states that if function isAbstract is applied on an element of the
type Classifier, the value of the function must belong to Boolean.

vx,y. Classifier(x) A (isAbstract(x) =y) ->Boolean(y)

C. Well-formedness constraints

UML class diagram is insufficient for fully defining the abstract syntax of UML. In

complementary, well-formedness constraints are specified in the UML documenta-

tion. Some of these well-formedness rules (WFR) are formally defined in OCL, which

should also be specified as axioms.

— Axiom Rule 6: Well-formedness rules. For each WFR formally specified in OCL,
we have a corresponding axiom in the first order language.

For example, a WFR in UML document is “Generalization hierarchies must be di-
rected and acyclical. A classifier cannot be both a transitively general and transi-
tively specific classifier of the same classifier.” Thus, we have the following axiom.

VX, y. Inherit(x, y) — - Inherit(y, x)
where Inherit(x,y) is a binary predicate introduced to simplify the specification of the
axiom. It is formally defined by the following two formulas.
Vx,y. Generalisation(z) A specific(z, X) A general(z, y) -> Inherit(x, y)
VX, Y, Z. Inherit(x, y) A Inherit(y, z)-> Inherit(x, z)

Some well-formedness rules are informally defined in the UML documentation.
They cannot be easily specified in first order logic. For example, a rule for Multiplic-
ityElement is ‘if a non-literal VValueSpecification is used for the lower or upper bound,
then evaluating that specification must not have side effects’. It cannot be formally
specified as an axiom.

D. Definition of enumeration values

We identified three axiom rules to characterise the information contained in each

enumeration metaclass.

— Axiom Rule 7: Distinguishability of the literal constants. For each pair of different
literal values a and b defined in an enumeration type, we have an axiom in the
form of a =b.

For example, the metaclass Boolean defines two literal values t and f. Thus, we

have the axiom t = f.

— Axiom Rule 8: Type of the literal constants. For each enumeration value a defined
in an enumeration metaclass ME, we have an axiom in the form of ME(a) stating
that the type of a is ME.

For example, for the Boolean values t and f, we have the following two axioms.
Boolean(t), Boolean(f).

— Axiom Rule 9: Completeness of the enumeration. An enumeration type only con-
tains the listed literal constants as its values, hence for each enumeration metaclass
ME with literal values aj, ay, ..., a,, we have an axiom in the form of

VX. ME(X) -> (x=ay) v (X =ay) v...v (X = ay)
For example, we have the following axiom for the Boolean metaclass.



Vx. Boolean(x) -> (x =t) v (x =)
3.4. Translating models into first order logic formulas

This subsection shows how to translate diagrammatic models to first order logic for-
mulas. We will use the class diagram in Fig. 2 as an example.
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Fig. 2 Class Diagram in the Model Ticketing Office

A. Semantics mapping Fy

For each class diagram, the following rules are applied to generate formulas.

— Translation Rule 1: Classification of elements. For each identifier id of concrete
type MC, a formula in the form of MC(id) is generated.

By applying this rule to every element in a diagram, a set of formulas are generated
to declare the classification of the identifiers. For example, the following formulas are
among those generated from the class nodes in Fig. 2.

Class(User), Class(Bank), Class(BoxOffice).

Similarly, formulas are generated by applying other unary predicates that represent

concrete types such as Property, Association, Operation, etc.

— Translation Rule 2: Properties of elements. For each element a in the model and
every applicable function MAttr that represents a meta-attribute, a formula in the
form of MAttr(a)=v is generated, where v is a’s value on the property.

For example, Clerk in Fig. 2 is a concrete class. Therefore, the following formula is
generated, which states that the value of function isAbstract on Clerk is false.

isAbstract(Clerk) = f

Table 3 lists the functions applicable on each concrete type of model elements and
the elements contained in the class diagram in Fig. 2. Applicable functions are derived
from the metamodel according to the inheritance relation between metaclasses.

— Translation Rule 3: Relationships between elements. For each related pair (ey, €;)
of elements in a model, a formula in the form of R(e,, €,) is generated to specify
the relationship by applying binary predicate R(x1, X,).

For example, the class diagram in Fig. 2 depicts a generalisation relation from class



Clerk to User. Hence, we have the formula specific(g, Clerk), where g denotes the
generalisation arrow.

Table 3 Constants representing model elements

Type Applicable functions Elements in Fig.2

Class isAbstract, visibility ~ Bank, User, BoxOffice, Clerk, Customer, Ticket

Property isStatic, aggregation,  name, creditCardNum, ID, ticketList, holder, client, server,
visibility businessClient, bankServer, hasTicket, bOffice

GetName, Pay, GetCardNum, Charge, BuyTicket, Refund-

Operation isStatic, visibility Ticket, Buy, Refund

Association isAbstract, visibility ~ UserBoxoffice, BoxofficeTicket, BoxofficeBank
DataType isAbstract, visibility ~ String, Integer, Bool, List

Generalisation / customerUser, clerkUser

Parameter direction, visibility cardNum, cost, seatNum

Signal isAbstract, visibility — /

Interface isAbstract, visibility — /

ValueSpecification / 0, 50, 1, 200

B. Hypothesis mapping Hy

In addition to the above translation rules that are applied to all models, hypothesis

rules are needed to generate formulas that represent the meanings of models in spe-

cific uses of the modelling language. Their application should be determined by users
according to the situation in which a model is used. The following are some examples
of such hypothesis rules.

Let ey, e, ..., & be the set of elements of a concrete type MC in a model.

— Hypothesis Rule 1: Distinguishability of elements. The hypothesis that the elements
of type MC in the model are all different can be generated as formulas in the form
of e =g, for izje{1,2,... k}.

For example, if it is assumed that in Fig. 2 class Clerk is different from class Cus-
tomer, the formula Clerk = Customer is generated. This hypothesis is applicable if the
model is considered as a design, thus force the programmer to implement two classes
Clerk and Customer separately. However, if the model is used as a requirements
specification, this hypothesis may not be necessary because a program with one class
implementing both Clerk and Customer can be considered as satisfying the model.

— Hypothesis Rule 2: Completeness of elements. The hypothesis on the completeness
of elements of type MC can be generated as a formula in the following form.

VX. MC(X) —> (x=e)) v(X=e) Vv..v(X=¢g)

For example, the assumption that the model in Fig. 2 contains all classes in the
modelled system can be specified as follows.

VX. Class(x) —> (x = Ticket) v (x = Clerk) v (x = Customer)
v (x = User) v (x = Bank) v (x = BoxOffice)

This hypothesis on the completeness of classes is applicable when a model repre-
sents a system in reverse engineering or as a detailed design. However, when a model
is used as requirements specification, an implementation of the system may introduce
additional classes and still be regarded as satisfying the requirements. In this case, this
hypothesis is not applicable.

Similarly, we have the following hypothesis on the completeness of relations. Let
R(x1, X2) be a binary predicate, R(e11, €12), R(€21, €22), ..., R(en1, €n2) be the set of R
relations contained in the model.



— Hypothesis Rule 3: Completeness of relations. The hypothesis on the completeness

of relation R in the model can be generated as a formula in the following form.
VX1,X2.R(X1,X2)—>((X1=€1 1) A(X2=€1 2) )V ((X1= €21)A (Xo= €22))V... ((X1= €n1)A (X2= €n2))

This hypothesis assumes that all relations of a certain type are specified in the
model, thus any additional relation in a system will be regarded as not satisfying the
model. For example, for the model in Fig. 2, we will specify the following formula, if
we believe all inheritance relations in the modelled system are depicted in the model.
Vvx,y. specific(x,y)—>((x=ClerkUser) A(y=Clerk))v((x=CustomerUser)A(y= Customer))

It is worth noting that the above hypothesis rules are just examples. They are by no
means considered as complete. The point here is the flexibility of UML for different
uses can be explicitly revealed through a set of optional hypothesis mappings. How
hypothesis rules are related to the use of the modelling language will be an interesting
practical problem for further research.

4. Semantics of Interaction and State Machine

Our approach to defining descriptive semantics is applicable on various types of UML
diagrams. This section defines the descriptive semantics of interaction diagram and
state machine. The same rules and process described in section 3 are applied. The
only difference is that their metamodels are connected to the metamodel of class dia-
gram. This section will focus on how to deal with such connections.

4.1. Integration of Metamodels

Fig. 3 shows a simplified metamodel of interaction diagram.

+contex
Classifier(from Kernel) Behaviour BehaviouralFeature (from Kernel)

Z% +specification

Interaction

+
+sender

+receiver
represents

| TypedElement(from kernel)

+lifeline

| ConnectableElement | | MessageEvent |
+operation +signal
| Operation (from Kernel) H SendOperationEvent || SendSignalEvent H Signal (from Kernel)

Fig. 3 Metamodel of Interaction Diagram

Metaclasses Operation, Signal, TypedElement, BehaviouralFeature and Classifier
in Fig. 3 were defined in the metamodel of class diagram in Fig. 1 as indicated by
‘from Kernel® after their names. They are included in this metamodel to specify the
connection between the metamodels. For the associations that relate a metamodel to
external metaclasses, the rules for defining predicates and axioms differ from the or-
dinary rules. For example, in Fig. 3, the association operation denotes the correspon-



dence between SendOperationEvent in interaction diagram and Operation in class

diagram. Similarly, the association signal denotes the correspondence between Send-

SignalEvent in interaction diagram and Signal in class diagram. Thus, the Signature

Rule 2 is not applied on them. Instead, such correspondences are specified as axioms

about the related element types. The following two axioms are derived from associa-

tions operation and signal in Fig. 3, respectively.
Vvx. SendOperationEvent(x) —> Operation(x)
Vvx. SendSignalEvent(x) —> Signal(x)

Formally, we have the following general rule for generating axioms from cross
metamodel associations.

— Axiom Rule 10: Cross metamodel association. For each cross metamodel associa-
tion from metaclass MA to external metaclass MB, we have an axiom in the form of
VX. MA(X) —> MB(X).

Axioms for multiple-view UML models comprise the axioms for different types of
diagrams, which are separately derived from the respective metamodels. When the
different sets of axioms are integrated, the axioms about ‘completeness of specialisa-
tions’ have to be modified due to the overlap between the inheritance hierarchies in
the different metamodels. Formally,

— Axiom Rule 2’: Completeness of specialisations across metamodels. Let MA be a
metaclass depicted in two metamodels MM; and MM,. Let metaclasses MB;,
MB,, ..., MBy be the set of metaclasses that specialise MA in metamodel MM, and
MC;, MC,, ..., MC, be the set of metaclasses that specialise MA in metamodel
MM,. We have the following axiom when a model is defined by MM; and MM,.

VX. MA(X) -> MBy(X) v ... v MBy(X) v MCy(X) v ... v MCy(x)

Take the specialisations of metaclass TypedElement in Fig. 1 and Fig. 3 as an ex-
ample. Axiom (1) below will be derived from Fig. 1 by applying Axiom Rule 2 for
defining the semantics of models that only contains class diagrams. Similarly, when a
model only contains sequence diagrams, axiom (2) will be used. When the model
contains both class diagrams and sequence diagrams, i.e. the models are defined by
the two interrelated metamodels, axiom (3) below will be used.

vx. TypedElement(x) —> Parameter(x) v StructuralFeature(x) (1)
Vvx. TypedElement(x) —> ConnectableElement(x) (2
Vvx. TypedElement(x) —> (3)

Parameter(x) v StructuralFeature(x) v ConnectableElement(x)
The signature and axioms of state machine diagrams are derived from the meta-
model shown in Fig. 4 by applying the rules given in section 3 and section 4.1. Table
4 summarises the number of generated predicates, functions and axioms.

4.2. Translating diagrams into first order logic formulas

The translation rules given in section 3 are applied to sequence diagrams and state
machines to generate first order logic formulas. For example, the following formulas
are among those generated from the interaction diagram shown in Fig. 5 (A).
Message(buyTicket) , sender(buyTicket, c).
Below are some of the formulas generated from the state machine in Fig. 5 (B).
State(available), trigger(Transition7,refund), source(Transition7,unavailable).



Totally 1459 formulas were generated from the three diagrams of the model Tick-
eting Office.

’ Behaviour (from Interaction) ‘

DirectedRelationship(from Kernel) ‘ StateMachine

+transition

[ ‘ +vertex
- 3 - +target -
ProtocolStateMachine BehaviourStateMachine Vertex Transition
+generalMachine +source
+trigger +guard

+specificMachint

PseudoState . B
ProtocolConformance ’ State ‘ ’ Trigger H Constraint ‘
+kind: PseudostateKind

<<enueration>>

PseudostateKind
“+initial +entry &exif +dgActivity
+final
+shallowHistory
+join
+fork
“+junction
+choice

Fig. 4 Metamodel of State Machine Diagram

Table 4 Summary of the signature and axioms defined for three types of diagrams

Class Interaction State
Diagram Diagram Machine

Unar Abstract metaclasses 10 3 2

Pre di% ate Concrete metaclasses 10 5 9

Signa- Enumeration metaclasses 4 0 1
ture Binary Predicates 10 8 12
Functions 5 0 1
Enumeration constants 13 0 8
Inheritance relations 20 4 6
Completeness of specialisation 10 3 4

Axiom Completeness of classification 10 5 9
Valid application of binary predicates/functions 15 8 13
Well-formedness rules 7 1 21

¢ : User b : BoxOffice t: Ticket s : Bank
available
buyTicket()
refund buy
pay() charpe() .
0

(A) Sequence Diagram (B) State Machine Diagram

Fig. 5 Sequence Diagram and State Machine Diagram in the Model Ticketing Office



5. Consistency Check: An Application of Descriptive Semantics

The formal definition of UML semantics in our approach naturally facilitates reason-
ing about models. This section demonstrates the application of the descriptive seman-
tics in consistency checking of models.

Aiming at rigorous modelling, great efforts have been made to define and check
models’ consistency [15-18], especially in the context of UML models [19-22]. With
the definition of model semantics in first order logic, checking the consistency of a
model is to prove that the formulas generated from the model are consistent in the
context of the axioms. Moreover, additional stronger consistency constraints can also
be specified in first order logic. The validity of such constraints, i.e. their consistency
with the axioms, can be formally proved.

5.1. Checking consistency as logical inference

Let F be a set of formulas in a signature Sig. As in first order logic, if we can deduce
that F|—false, then F is inconsistent. Thus, we have the following definition.
Definition 6. (Logical consistency)

Let Semy(M) = Axmpu Axmeu F(M)u H(M) be the semantics of a model M. Model
M is said to be logically inconsistent in the semantic definition Semy(M) if
Semy(M)|—false; otherwise, we say that the model is logically consistent. []

It is easy to see that a logically inconsistent model is not satsifiable in a subject
domain whose interpretation of formulas is consistent with the logic system.
Definition 7. (Consistent interpretation of formulas in a subject domain)

Let Dom=<D, Sig, Eva> be a subject domain as defined in Definition 4. The interpre-
tation of formulas in signature Sig is consistent with first order logic if and only if for
all formulas q and py, pa2, ..., Pk that p1, p2, ..., Pk |- g, and for all systems s in D that
Eva(p;, s) =true for i=1,2,..., k, we always have Eva(q, s) =true. [J

Theorem 1. (Unsatisfiability of inconsistent model)

A model M that is logically inconsistent in the semantic definition Semy(M) is not
satisfiable on any subject domain whose interpretation of formulas is consistent with
first order logic.

Proof. We prove by contradiction. Let M be a logically inconsistent model, s be a
system in a subject domain Dom that satisfies the model according to the semantic
definition Semy(M). By Definition 5, for all formulas p in Semy(M), s|=p. By
Definition 6, M is logically inconsistent means that Semy(M)|—false. By the property
that the interpretation of formulas in the subject domain Dom is consistent with the
first order logic, it follows (Definition 8) that s|=false. Thus, we find a contradiction.
Therefore, the theorem is true. [

In the experiment, we used SPASS theorem prover to prove that each set of the for-
mulas generated from the three diagrams in the model Ticketing Office shown in Fig.
2 and Fig. 5 are logically consistent. Their union is also consistent. Moreover, the set
of axioms for class diagrams, interaction diagrams and state machines are also proven
to be logically consistent. Thus, we have the following theorem.

Theorem 2. (Consistency of the axioms in semantics definition)
The sets of axioms generated from the metamodels for class diagrams, interaction



diagrams and state machines are consistent as they are individually as well as to-
gether.
Proof. As stated above. [

We have also made various minor changes to the diagrams in the model Ticketing
Office to demonstrate that some changes can lead to logically inconsistent set of for-
mulas, thus proved the existence of inconsistent models in UML according to our
semantic definition. Thus, it is feasible to check models’ consistency through logic
inferences based on descriptive semantics.

It is worth noting that, generally speaking, logical consistency does not guarantee
that the model is satsifiable in a subject domain.

5.2. Checking consistency against additional constraints

In addition to checking the consistency of a model as described in the previous sub-
section, it is often desirable to check models against addition constraints. For exam-
ple, the following consistency constraint has been studied in the literature [23, 24]. It
states that a life line must represent an instance of a class.

VX, Y, z. Lifeline(x) A represent(x,y) A type(y, z) -> Class(z)

If a consistency constraint cannot be derived from the axioms, a model that is logi-
cally consistent does not necessarily satisfy the additional constraint. Thus, we have
the following notion of consistency with respect to a set of constraints.

Definition 8. (Consistency w.r.t. consistency constraints)

Given a set of consistency constraints C={c, c,, ..., Cn}, the consistency of a model M

with respect to the constraints C under the semantics definition Semy(M) is the con-

sistency of the set U = Semy(M) UC of formulas. In particular, we say that a model
fails on a specific constraint c, if Semy(M) is consistent, but Semy (M) W{c} is not. [

The following are some commonly used consistency constraints.

Message represents operation call of the message receiver [23]. Formally,
VX, Y, Z, U. Message(x) A event(x,y) A SendOperationCall(y)
A receiver(x,z) A type(z, u)—> ownedOperation(u,y)
The classifier of a message’s sender must be associated to the classifier of the
message’s receiver [23]. Formally,

VX,y,z,u,v. Message(x) A sender(x,y) A type(y,u) A receiver(x,z) A type(z,v)

—> 3 w,m,n. Association(w) A memberEnd(w, m) A memberEnd(w, n) AAssoci-
ateTo(m, u) A AssociateTo(n,v)

— Protocol transition refers to an operation (i.e., has a call trigger corresponding to
an operation), and that operation applies to the context classifier of the state ma-
chine of the protocol transition. Formally,

VX,y,z. ProtocolStateMachine(x) A transition(x,y) A trigger(y,z)
A context(x,u) —> Operation(z) A ownedOperation(u,z)

— The order of messages in interaction diagram must be consistent with the order of
triggers on transitions in state machine diagram [23, 25]
VX,Y,z,u.Message(x)nevent(x,z) AMessage(y) revent(y,u) Aafter(x,y)—>Trigs(z,u)

where Trigs(x,y) is an auxiliary predicate defined as follows.

VX,Y,Z,u,v. Transition(x) A trigger(x,u) A target(x,y) ATransition(z) A trigger(z,v) A
source(z,y) —> Trigs(v,u)



VX,Y,Z. Trigs (X,y) A Trigs (y,z) —> Trigs (x,2)

In the above discussion, we have made an implicit assumption about the validity of
the constraints. Informally, a constraint is invalid if it conflicts with the semantics
axioms of the language and thus cannot be satisfied by any model. Here, we distin-
guish two types of validity: descriptive validity and functional validity.

Definition 9. (Validity of consistency constraints)

Let Ap and Ar be the sets of axioms for descriptive semantics and functional seman-
tics, respectively. A set C={cy, ¢,, ..., c,} of consistency constraints is descriptively
valid if ApuUC is logically consistent. The set C of consistency constraints is function-
ally valid ApUArUC is logically consistent. [

We have conducted an experiment with the validity of consistency constraints us-
ing SPASS. It is proved that the constraints given above are all descriptively valid.

A consistency constraint can be ineffective if it does not impose any additional re-
striction on models. This is true if the constraint can be deduced from the axioms in
first order logic. Thus, we have the following definition.

Definition 10. (Effectiveness of consistency constraints)
Let A be a set of semantics axioms. A set C={cy, Cy, ..., Cn} Of consistency constraints
is logically ineffective with respect to the set A of axioms if A |- C. [

Obviously, if C is logically ineffective, a model logically consistent in the context
of axiom A will be consistent with respect to C.

The consistency constraints given above are all proven to be not ineffective.

6. Implementation of Semantics Translation Tool

By translating UML models into first order logic statements, reasoning about models
can be realised as logical inferences and automated by using a theorem prover. We
have designed and implemented a tool Translator to translate UML models to first
order logic statements. The tool is integrated with a modelling tool and a theorem
prover. Fig. 6 shows the structure and workflow of the tools.

The input to Translator is UML models in XMI formats. StarUML [26], a UML
modelling tool, is used to generate XMI representation of UML models. The output of
our tool is a text file that is readable by SPASS, which is an automated theorem
prover for first order logic with equality. Fig. 7 gives a screen snapshot of Translator,
where XMI editor on the left displays the input XMl file and Logic editor on the right
displays the generated formulas in SPASS input format.
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Fig. 6 Process of formalising and reasoning UML models
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Fig. 7 Snapshot of Translator

When SPASS is invoked with an input generated by Translator, the consistency of
the statements is inferred. In particular, it infers whether S|-false can be proved, where
S is the set of formulas including the axioms, hypothesis and formulas generated from
the model and optionally some consistency constraints. Since SPASS is refutationally
complete [27], if the set of statements in S is logically inconsistent, the system termi-
nates with ‘proof found’ and outputs a proof of false; otherwise if it terminates with
‘completion found’, which means no proof of false can be found, so S is logically
consistent.

We have used the tool to conduct a number of experiments on reasoning about in-
teresting properties of UML diagrams. These experiments include checking the con-
sistency of the axioms, checking model consistency without additional constraints and
with various additional constraints, checking consistency constraints’ validity and
effectiveness, etc. Details of the experiments will be reported separately.

7. Conclusion

The main contribution of this paper is three-fold. First, we introduced the notions of
descriptive semantics and functional semantics, and proposed a general framework for
separately defining these two aspects of semantics of modelling languages. Second,
we proposed a systematic technique to formally specify the descriptive semantics of
UML in first order logic, which include the rules for rigorously inducing first order
languages from metamodels, the rules for systematically deriving axioms from meta-
models, and the rules for automatic translating models into formulas. Third, we suc-
cessfully applied the technique to UML class diagram, interaction diagram and state
machine. We also demonstrated the usefulness of the formal definition of descriptive
semantics by applying it to model consistency checking, and thus laid a logic founda-
tion for consistency checking.

Our approach has the following distinctive features in comparison with existing
methods, which are in complementary to ours in the sense that they mostly defined
the functional aspect of semantics.



First, our approach explicitly separates descriptive semantics from functional se-
mantics of modelling languages. This enables the definition of the descriptive aspect
of semantics to be abstract in the sense that it is independent of any subject domain.
This reflects the practical uses of UML that a same model describes both real world
systems and computer information systems.

Second, by introducing the notion of hypothesis in semantic definition, our ap-
proach achieves the flexibility of semantics of UML models, i.e. the same language is
used for various purposes in software development.

Third, the approach is practically useful as we demonstrated the successful applica-
tion of the approach on non-trivial subsets of class diagrams, interaction diagrams and
state machines. In particular, our approach provides a natural and nice solution to the
problem in defining multiple view modelling languages where each view is defined
by one metamodel and these meat-models are interconnected.

Moreover, the translation from UML models to semantics can be rigorously de-
fined. The translation for the subset of class diagram, interaction diagram and state
machine has been implemented and tested.

Finally, the semantic definition facilitates formal and automated reasoning about
models. We have demonstrated the application of such reasoning to a well-known
non-trivial problem of software modelling, i.e. consistency checking. Experiments
have shown promising results.

We are further researching on the definition of the functional semantics of UML in
a form that can be nicely linked to descriptive semantics reported in this paper. We
are also investigating logical properties of the semantic definitions.

In our investigation of UML semantics, we found a number of errors in its meta-
model. Some of them were corrected in the simplified metamodel presented in this
paper. More details will be reported separately.
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