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Abstract. Design patterns are rarely used on their own. They are alahostys
to be found composed with each other in real applicationdt iSarucial that we
can reason about their compositions. In our previous woekdefined a set of
operators on patterns so that pattern compositions canpbesented as expres-
sions on patterns. In this paper, we investigate the algepraperties of these
operators, prove a set of algebraic laws that they obey, sedhe laws to show
the equivalence of pattern compositions.
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1 Introduction

Design patterns are codified reusable solutions to reaudisign problems [9, 1].
Many such patterns have been identified, documented, gatad6] and included in
software tools [11, 16, 14]. Although each is specified saedy, they are usually to be
found composed with each other with overlaps except inarivases [17]. However,
while the importance of pattern compositions has been widstognised, it has not
been studied intensively. This is perhaps partly becaus@dlterns have been docu-
mented informally.

In the past few years, significant progress has been made/byaseesearchers in
the formalisation of design patterns. Several approacaes been advanced in the lit-
erature [15,13,19,7, 10, 5]. In spite of the differencedimformalisms used by these
approaches, the basic ideas underlying them are similparticular, a specification of
a pattern usually consists of statements on the commonstaliéeatures and, some-
times, behavioural features of its instances. The strattaatures of a pattern are typ-
ically specified by assertions on the existence of certgdedyof components in the
pattern. The configuration of the elements is also describgdrms of the static rela-
tionship between them. The behavioural features are nbrohafined by assertions on
the temporal orders of the messages exchanged betweemtip@ents as manifested
in the designs of systems. This formalisation lays a founddbr systematically and
formally investigating the composition of design patterns

However, very few authors have investigated compositiomé&dly. In [18], Taibi
illustrated the concept of pattern composition in his frauoek of pattern formalisation
with an example. In [3], we formally defined a universal patteomposition opera-
tor. In [22], we extended and revised the work, but took adgaltli different approach.
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We replaced the single operator with a set of simpler opesdtmt express compo-
sition when used together. A case study was also reported thedemonstrate the
expressiveness of the operators. In this paper, we contireug/ork in this direction
by investigating how to reason about pattern compositisnsh as how to determine
whether two pattern compositions are equivalent. We wilpra set of algebraic laws
that these operators obey and demonstrate, with an exangwep prove equivalence
of pattern compositions by equational reasoning.

The particular formalism that we will use in this paper to defoperators and to
prove their algebraic laws is that advanced in our previoagkwThis uses the first-
order logic induced from the abstract syntax of UML definedsBBNF [20, 21] to
define both the structural and behavioural features of dgsidgterns. In this way, we
have already formally specified the 23 patterns in the aaSsing of Four (hereafter
referred to as GoF) book [9], and we have specified variantftol, 5]. We have also
constructed a prototype software tool to check whether ydespresented in UML
conforms to a pattern [23, 24]. It is worth noting that the wi&fins of the operations
and the algebraic laws proved in this paper are independéné dormalism and thus
can equally well be applied to others such as OCL [8], tempogic [18], and so on,
but the results may be less readable. In particular OCL woeét to be applied at the
meta-level to assert the existence of the required clasgbmathods.

The remainder of the paper is organised as follows. Sectienigws our approach
to formalisation and lays the theoretical foundation for proofs. Section 3 outlines
the set of operations on design patterns. Section 4 prefenédgebraic laws that they
obey. Section 5 outlines the use of laws in equational reag@bout the equivalence of
pattern compositions with an example. Section 6 conclugepaper with a discussion
of related works and future work. For the sake of readabditg space, the proofs of
the algebraic laws are removed from the body of the paper ame @re given in the
appendix.

2 Background

This section briefly reviews our approach to the formal djetion of design patterns.
It is based on meta-modelling in the sense that each patarsubset of the design
models having certain structural and behavioral featiResders are referred to [2, 4,
23, 5] for details.

2.1 Meta-modelling in GEBNF

Our approach starts by defining the domain of all models withtastract syntax written
in the meta-notation Graphic Extension of BNF (GEBNF) [2BEBNF extends the
traditional BNF notation with a ‘reference’ facility to deé the graphical structure of
diagrams. In addition, each syntactic element in the defmibf a language construct
is assigned an identifier (calledfi@ld namé so that a first-order language (FOL) can
be induced from the abstract syntax definition [21].
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For example, the following are some example syntax rulesHBF for the UML
modelling language.

ClassDiag := classes : Class™, assocs, inherits, compag : Rel*
Class = name : String, [attrs : Property*], [opers : Operation™|
Rel = [name : String], source : End,end : End

End = node : Class, [name : String], [mult : Multiplicity)

The first line defines a class diagram as consisting of a nqutyeset of classes and
a collection of three relations on the set. Hel@sses, assocs, inherits andcompag
are field names. Each field name is a function. For examfileses is a function from
a ClassDiag to the set of class nodes in the model. Functiensocs, inherits and
compag are mappings from a class diagram to the sets of associathwarjtance and
composite/aggregate relations in the model. The non-teimilass in the definition
of End is a reference occurrence. This means that the node at thefendelation
must be an existing class node in the diagram, not a newlydntred class node. The
definitions of the class diagrams and sequence diagrams &f UNGEBNF can be
found in [5]. Table 1 gives the functions used in this papet #re induced from these
definitions as well as those that are based on them. A formeg aetailed treatment of
this can be found in [5].

Table 1. Some Functions Induced from GEBNF Syntax Definition of UML

ID Domain Function

Functions directly induced from GEBNF syntax definition &1lU

classes Class diagram The set of class nodes in the class diagram

assocs Class diagram The set of association relations in the clagsam

inherits Class diagram The set of inheritance relations in the claggam

compag Class diagram The set of composite and aggregate relatidhs class diagram
name Classnode  The name of the class

attr Classnode  The attributes contained in the class node

opers Classnode  The operations contained in the class node

sig Message The signature of the message

Functions defined based on induced functions

X —»TY Class ClassX inherits clas” directly or indirectly

X —TYy Class There is an association from clago classY directly or indirectly
Xo—tyYy Class There is an composite or aggregate relation fkomo Y directly or indirectly
isInter face(X) Class ClassX is an interface

CDR(X) Class No messages are send to a subcla3s fodbm outside directly
subs(X) Class The set of class nodes that are subclass¥s of

calls(z,y) Operation Operatiom calls operatiory

isAbstract(op) Operation Operationp is abstract

fromClass(m) Message The class of the object that messagde sent from
toClass(m) Message The class of the object that messagde sent to

X=Y Operation OperationX andY share the same name

2.2 Formal specification of patterns

Given a formal definition of the domain of models, we can foctepattern, define a
predicate in first-order logic to constrain the models shett €ach model that satisfies
the predicates is an instance of the pattern.
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Definition 1. (Formal specification of DPs)

A formal specification of a design pattern is a tripfe= (V, Prs, Prq), wherePr,
and Pr, are predicates on the domain of UML static class diagrams dydamic
sequence diagrams, respectively, ant a set of declarations of the variables that are
free in the predicate®r, and Pry. LetV = {v; : T1,- - -, vy, : T, }. The semantics of
the specification is the closed formula in the following form

Fuy T+ Ty : Ty - (Prs A Pry) (1)

In the sequel, we writ&pec(P) to denote the predicate (1) abo¥&rs(P) for the
set of variables declared i, andPred(P) for the predicaté’rs A Pr.

For example, Fig. 1 shows the specification of the Object Aatagesign pattern.
The class diagram from the GoF book has been included fortkeec readability.

| Client ’—b Target Adaptee

Request(] SpecificRequest()

i

Adapter

Request() O-F----------- adaptes->SpecificRequesi() H

Specification 1 (Object Adapter Pattern)
Components

1. Target, Adapter, Adaptee € classes,
2. requests C Target.opers,
3. specreqs C Adaptee.opers

Static Conditions

1. Adapter —T Target, Adapter —+ Adaptee,
2. CDR(Target)

Dynamic Conditions

1. Vo € requests - 3o’ € specregs - (calls(o,0"))

Fig. 1. Specification of Object Adapter Pattern

Fig. 2 gives the specification of ti@omposite pattern. Both patterns will be used
throughout the paper.

2.3 Reasoning about patterns

We often want to show that a concrete design really confoonasdesign pattern. This
is a far from trivial task for some other formalisation apgebes. For us though, the
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Specification 2 (Composite)
Components

1. Component, Composite € classes,
2. Leaves C classes,
3. ops C Component.opers

Static Conditions

. ops Z£

Yo € ops.isAbstract(o),

Vi € Leaves - (I —1 Component A =(1 o—+ Component))
. isInter face(Component)

Composite —* Component

Composite T Component

. CDR(Component)

NooswNe

Dynamic Conditions

1. any call toComposite causes follow-up calls
Vm € messages - Jo € ops - (toClass(m) = Composite A m.sig = o =
Im’ € messages . calls(m, m’) A m’.sig ~ m.sig)
2. any call to a leaf does not
Vm € messages - Jo € ops - toClass(m) € Leaves A m.sig = o =

—3Im’ € messages . calls(m, m') A m'.sig ~ m.sig)

Fig. 2. Specification of the Composite Pattern

use of predicate logic makes it easy and we formally definedhéormance relation as
follows.

Letm be a model angr be a predicate. We write: = pr to denote that predicate
pr is true in modeln. Readers are referred to [21] for the formal definitiomof= pr.

Definition 2. (Conformance of a design to a pattern)

Letm be a model and® =< V, Pr,, Pry > be a formal specification of a design
pattern. The model: conformsto the design pattern as specified Byif and only if
m = Spec(P). O

To prove such a conformance we just need to give an assignimaintariables in
V to elements inn and evaluatéred(P) in the context ofv. If the result istrue, then
the model satisfies the specification. This is formalisethéfollowing lemma.

Lemma 1. (Validity of conformance proofs)

A modelm conforms to a design pattern specified by predidatéand only if there is
an assignment from Vars(P) to the elements im such thatEva, (m, Pred(P)) =
true. a

A software tool has been developed that employs the first twd& theorem prover
SPASSWith it, proofs of conformance can be performed automéyi¢as, 24].
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Given a formal specification of a pattefh we can infer the properties of any system
that conforms to it. Using the inference rules of first-ortbeyic, we can deduce that
Spec(P) = q wheregq is a formula denoting a property of the model. Intuitivelyg w
expect that all models that conform to the specification kEhbave this property and
the following lemma formalises this intuition.

Lemma 2. (Validity of property proofs)
Let P be a formal specification of a design pattefnSpec(P) = ¢ implies that for
all modelsm such thatm |= Spec(P) we have thatn |= q. O

In other words, every logical consequence of a formal spediéin is a property of
all the models that conform to the pattern specified.

There are several different kinds of relationships betwgstterns. Many of them
can be defined as logical relations and proved in first-orogic! Specialisation and
equivalence are examples of them.

Definition 3. (Specialisation relation between patterns)
Let P and @ be design patterns. PatterR is a specialisatiorof Q, written P < Q, if
for all modelsm, whenevemn conforms taP, then,m also conforms ta). a

Definition 4. (Equivalence relation between patterns)

Let P and(@ be design patterns. Patteif is equivalento @, written P = Q,if P < @

andQ@ < P. a
By Lemma 1, we can use inference in first-order logic to shoecilisation.

Lemma 3. (Validity of proofs of specialisation relation)
Let P and@ be two design patterns. Then, we have that
1. P < Q,if Spec(P) = Spec(Q), and
2. P = Q,if Spec(P) & Spec(Q). 0
Furthermore, by Definition 1 and Lemma 3, we can prove sgsat#dn and equiv-
alence relations between patterns by inference on theqatedparts alone if their vari-
able sets are equal.

Lemma 4. (Validity of proofs of predicate relation)
Let P and @ be two design patterns withars(P) = Vars(Q). ThenP < Q if
Pred(P) = Pred(Q),andP = Q if Pred(P) < Pred(Q). O

Specialisation is a pre-order with bottafA LS E and topT RU E defined as fol-
lows.

Definition 5. (TRUE and FALSE patterns)
Pattern TRUE is the pattern such that for all models, m = TRUE. Pattern
FALSE is the pattern such that for no model, m = FALSE. O

In summary, therefore, and letting, @ and R be any given patterns, we have the
following.

P<P )
(PQANQ@<R = (P<R) (3)
FALSE <P< TRUE (4)



Laws of Pattern Composition 7

3 Operators on Design Patterns

In this section, we review the set of operators on patterfisetkin [22]. The restriction
operator was first introduced in [3], where it was calledgpecialisatioroperator.

Definition 6. (Restriction operator)

Let P be a given pattern andbe a predicate defined on the componentB8.o restric-
tion of P with constrainte, written P [¢], is the pattern obtained fron? by imposing
the predicate: as an additional condition of the pattern. Formally,

1. Vars(Plc]) = Vars(P),
2. Pred(P[c]) = (Pred(P) A c). O

For example, the patte@omposite; is the variant of th&’omposite pattern that
has only one leaf:

Composite; = Composite|# Leaves = 1].

Many more examples are given in the case studies report&2Pin A frequently
occuring use is in expressions of the fofffu = v] for patternP and variables: and
v of the same type. This is the pattern obtained fiBry unifying components and
v and making them the same element.

The restriction operator does not introduce any new commsrieto the structure
of a pattern, but the following operators do.

Definition 7. (Superposition operator)

Let P and Q be two patterns. Assume that the component variablg? afd @ are
disjoint, i.e.Vars(P) N Vars(Q) = 0. Thesuperpositiorof P andQ, written P * Q,
is defined as follows.

1. Vars(P x Q) = Vars(P)UVars(Q);
2. Pred(P x Q) = Pred(P) A Pred(Q). O

Informally, P * @ is the minimal pattern (i.e. that with the fewest componeamis
weakest conditions) containing bothand @ without overlap. The definition has the
requirement that component variables be disjoint, but we alevays systematically
rename the variables to make them disjoint and the notatitmwhich we will do so
is as follows. Letz € Vars(P) be a component of patted® andz’ ¢ Vars(P). The
systematic renaming af to 2’ is written asP[z’ := z]. Obviously, for all modelsn,
we have thain = P < m | P2’ := z] becaus&pec(P) is a closed formula. In the
sequel, we assume that renaming is made implicitly befoogamiterns are superposed
when there is a naming conflict between them.

Definition 8. (Extension operator)

Let P be a pattern,VV be a set of variable declarations that are disjoint wikhis
component variables (i.8/ars(P) NV = 0), andc be a predicate with variables
in Vars(P) UV. The extension of patter® with component¥ and linkage condition
¢, written asP#(V e ¢), is defined as follows.

1. Vars(P#(V ec)) = Vars(P)UV;
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2. Pred(P#(V e¢)) = Pred(P) A c. O

For any predicate, let p[x\e] denote the result of replacing all free occurrences of
x in p with expressior.
Now we can define the flatten operator as follows.

Definition 9. (Flatten Operator)

Let P be a patterngs : P(T') be a variable inVars(P) andz : T be a variable not
in Vars(P). Then the flattening aP on variablex, written P |} zs\z, is defined as
follows.

1. Vars(P | xs\z) = (Vars(P) —{zs: P(T)}) U{x: T},
2. Pred(P || xs\z) = Pred(P)[zs\{z}]. O

Note thatP(T') is the power set of’, and thusgs : P(T') means that variables is
a set of elements of tygE. For exampleLcaves C classes in the specification of the
Composite pattern is the same dseaves : P(classes). Applying the flatten operator
on Leaves, theComposite; pattern can be equivalently expressed as follows.

Composite || Leaves\Leaf

As an immediate consequence of this definition, we have thenfimg property.
Forx, # xo andx) # ab,

(P U zi\z) I 22\wy = (P | wo\ah) I 1\]. (5)

Therefore, we can overload tHe operator to a set of component variables. Let
X be a subset oP’s component variables all of power set type, . = {z; :
P(Ty), -, zn : P(T})} C Vars(P),n > landX’' = {a} : T1,---,2}, : T,}
such thatX’ N Vars(P) = . Then we writeP |} X\ X’ to denoteP || z1\z} | --- |

Note that our pattern specifications are closed formulaetaiming no free vari-
ables. Although the names given to component variabledlgrieaprove readability,
they have no effect on semantics so, in the sequel, we winoftmit new variable
names and write simply |} « to represenf |} z\z'. Also, we will use plural forms
for the names of lifted variables, e.gs for the lifted form ofz, and similarly for sets
of variables, e.gX S for the lifted form of X

Definition 10. (Generalisation operator)

Let P be a patterng : T be a variable inVars(P) andzs : P(T') be a variable not in
Vars(P). Then thegeneralisatiomf P on variablez, written P 1} x\zs, is defined as
follows.

1. Vars(P f 2\zs) = (Vars(P) —{z: T})U{zs : P(T)},
2. Pred(P { 2\zs) = Vzx € xs - Pred(P). O
We will use the same syntactic sugar fipras we do for|. In other words, we

will often omit the new variable name and write } =, and thanks to an analogue of
Equation 5, we can and will promote the opergtdp sets.
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For example, by applying the generalisation operatardéeposite; on the com-
ponentLea f, we can obtain the pattetfiomposite. Formally,

Composite = Composite; ft Leaf\ Leaves.

The lift operator was first introduced in our previous work, [But in [22] it is
revised so that it only allows lifting class components. C8fars(P) be the set of
variables of patternB that range over classes, afd@red(P) be the predicate obtained
from Pred(P) by the existentially quantifying at the outermost the ramraj variables
notin CVars(P), i.e. those inVars(P) — CVars(P), which are the declarations of
the operations. Then, we can define lifting as follows.

Definition 11. (Lift Operator)

Let P be a pattern and”Vars(P) = {z1 : T1, -,z : T}, n > 0. Let X =
{z1, -, zr}, 1 < k < n, be a subset of the variables in the pattern. The lifting?of
with X as the key, writter® 1 X, is the pattern defined as follows.

1. Vars(P 1t X) ={xsy : PTh, -+, x8y, : PT}, },
2. Pred(P 1t X) = Va1 € xs1---Va), € xS - ITp1 € TSky1 -+ ITp € TSy -
OPred(P). O

When the key set is singleton, we omit the set brackets fqulgiity, so we writeP 1 «
instead ofP 1 {x}.

For exampleAdapter 1T Target is the following pattern.

Vars(Adapter T Target) = {Targets, Adapters, Adaptees C classes}

Pred(Adapter T Target) = VT arget € Targets - AAdapter € Adapter -
JAdaptee € Adaptees - OPred(Adapter).

Fig. 3 spells out the components and predicates of the patter

Specification 3 (Lifted Object Adapters Pattern)
Components

1. Targets, Adapters, Adaptees C classes,
Conditions

. VAdaptee € Adaptees - Aspecreqs € Adaptee.opers,

. VTarget € Targets - Irequests € Target.opers,

. VTarget € Targets - CDR(Target),

. VTarget € Targets - AAdapter € Adapters, Adaptee € Adaptees-
(@) Adapter —> Target,
(b) Adapter — Adaptee,
(€) Vo € Target.requests - 3o’ € Adaptee.specregs - (calls(o,0")))

A OWN P

Fig. 3. Specification of Lifted Object Adapter Pattern
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Informally, lifting a patternP results in a patterd®’ that contains a number of
instances of”. For exampleAdapter T Target is the pattern that contains a number of
Targets of adapted classes. Each of these has a depeAdenter and Adaptee class
configured as in the originaldapter pattern. In other words, the componé@hirget
in the lifted pattern plays a role similar to tpbeimary keyin a relational database.

4 Algebraic Laws of the Operations

This section studies the algebraic laws that the operatmey. d-or the sake of space,
we only give some proofs in the appendix.
4.1 Laws of restriction

Letvars(p) denote the set of free variables in a predigatEor all predicates, c1, c2
such thawars(c), vars(cy) andvars(cz) C Vars(P), the following equalities hold.

Plei] < Plea], if e1 = e (6)
Plc] = Pltrue] (7)
Pld[d = P[d ®)
Pley][ea] = Ples][ea] 9
Plci][ez] = Pler A eo) (10)
Pltrue] = P (11)
P[false] = FALSE (12)

4.2 Laws of superposition
For all patterng” and(@, we have the following equations.
PxQ<P (13)
Q<P=P+xQ=Q (14)
From this and reflexivity ok, it follows that superposition is idempotent.
PxP=P (15)

It also follows from (14) thafl’ RU E is the unit of superposition since it is the top
in <. Similarly, FALSE is the zero of superposition since it is the bottonxin

P*TRUE =TRUE*P =P (16)
P+« FALSE = FALSE « P = FALSE (17)

Superposition is also commutative and associative.

PxQ=Qx*P (18)
(P+xQ)*R=Px(Qx*R) (19)
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4.3 Laws of extension

The extension operation has the following properties.

Let U be any set of component variables that is disjoinViors(P), andcy, c2
be any given predicates such that-s(c;) C Vars(P) UU, i = 1,2. We have the
following inequalities.

P#U o c1) <
P#U o 1) <

#(U o 62), Zf C1 = Co (20)

P
P (21)

Let U andV be any sets of component variables that are disjoinfdes(P) and to
each otherg; andcs be any given predicates such that's(c;) C Vars(P) U U and
vars(cz) € Vars(P) U V. We have equalities.

P#(U ec1)#(Vecy) =PHUUV ecy Aca) (22)
P#(U ec1)#(V ecy) = PH(V ecy)#(U e cy) (23)

4.4 Laws of flattening and generalisation

LetX,Y C Vars(P)andX NY = 0.
(PUX)4Y =Py (XUY) (24)
(PHX)1Y =P (XUY) (25)

4.5 Laws connecting several operators

For all predicates such thawars(c) C Vars(P), we have that

Ple]* Q = (P *Q)[c]. (26)

Forall X C Vars(P), we have that

(PR X)*xQ=(P=*Q) X, (27)
(PIX)xQ=(P*xQ) I X. (28)

Let X C Vars(P) U Vars(Q). From (24), (27) and (28), we can prove that
(PxQ) 1 X = (P Xp)*(Q1 Xq), (29)
(PxQ) I X =(P I Xp)*(QI Xq), (30)

whereXp = X NVars(P), Xo = X NVars(Q).
For all sets of variableX such thatX Nvars(P) = () and all predicatessuch that
Vars(c) C (Vars(P) U X), we have that

P#(X e c) = P#(X e True)[d]. (31)

P#(X ec)=P[IX - ], (32)
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wheredX -c=3xy :Th - Fwg : T -, if X ={a1:Th, -, 2k : T}
Forallz € Vars(P) such that: : P(T), we have that

Py (2\a') = P#({2 : T} o (x = {a'}). (33)
Forall X C Vars(P) andX’ N Vars(P) = 0, we have that
P4 X\X' = (P 1 X\X') | (V - X'), (34)

(P4 X\X) I (X'\X) = P. (35)

whereV = Vars(P 1 X).
From (34) and (35), we can prove that forale Vars(P),

(Ptz) V=P (36)
whereV = Vars(P 1 x).
Let X C Vars(P), we have that
(PTX)xQ=(P*Q)1X) | Vars(Q). @7
Let ¢ be a predicate thatars(c) C X UV C Vars(P), we have that
(Pl +X) 4 VS) =((P1+X) 4 VI)[], (38)

wherec’ = Vay : w8y, -, Vay : xsg - ¢, {x1, -+, 2} = vars(c) N X.

5 Examples

In this section, we demonstrate the uses of the laws to phm/eduivalence of pattern
compositions.

We first consider the composition 6fomposite and Adapter in such a way that
one of theLeaves in the Composite pattern is thel'arget in the Adapter pattern.
This leaf is renamed as thdapted Lea f. The definition for the composition using the
operators is as follows:

OneAdaptedLeaf =
(Adapter * Composite)[Target € Leaves|[AdaptedLeaf := Target]
Then, we lifted the adapted leaf to enable several of tliegees to be adapted. That
is, we lift the One AdaptedLea f pattern withAdaptedLeaf as the key and then flat-
ten those components in the composite part of the patterntiie components in the
Composite pattern remain unchanged). Formally, this is defined aevll
(OneAdaptedLeaf 1 (AdaptedLeaf\ AdaptedLeaves))
I {Composites, Components, Leaveses} (39)

By the definitions of the operators, we derive the predicatdise pattern in Specifica-
tion 4 after some simplification in the first order logic.



Laws of Pattern Composition 13

Specification 4 (ManyAdaptedLeaves)
Components

1. Component, Composite € classes,
2. Leaves, AdaptedLeaves, Adapters, Adaptees C classes,
3. ops C Component.opers

Static Conditions

. ops Z£

Yo € ops.isAbstract(o),

Vi € Leaves.(I —+ Component A =(1 o—*1 Component))

vl € AdaptedLeaves.(l —> Component A =(l o— Component))
. isInter face(Component),

Composite —>T Component

Composite o—" Component

CDR(Component)

. VAdaptee € Adaptees - (Ispecreqs € Adaptee.opers,

. VAdLeaf € AdaptedLeaves - Irequests € AdLeaf.opers,

SCOCXNOUAWNE

[EY

Dynamic Conditions

1. any call toComposite causes follow-up calls

Vm € messages - Jo € ops - (toClass(m) = Composite A m.sig = o =

Im’ € messages . calls(m, m’) A m’.sig ~ m.sig)

2. any call to a leaf or an adapted leaf does not

Vm € messages - (3o € ops - (toClass(m) € Leaves U AdaptedLeaves A

m.sig & 0) = —3Im' € messages . calls(m,m’) Am/'.sig =~ m.sig))
3. VAdLeaf € AdaptedLeaves - JAdapter € Adapters, Adaptee € Adaptees-
(@) Adapter —> AdLeaf,

(b) Adapter — Adaptee,
(c) Yo € AdLeaf.requests- 30’ € Adaptee.specreqs - (calls(o,0")))

An alternative way of expressing the composition is firstifiothe Adapter with
target as the key and then to superposition it to emnposite patterns so that many
leaves can be adapted. Formally,

ManyAdaptedLeaves £
(((Adapter 1 (Target\Targets)) * Composite)[Targets C Leaves]
[AdaptedLeaves := Targets]

We now apply the algebraic laws to prove that expression 8%).is equivalent to the
definition of M any AdaptedLeaves.

First, by (37), we can rewritd/ any Adapted Leaves to the following expression,
whereVe = {Composites, Components, Leaveses}.

((Adapter * Composite) T (Target\Targets) || Vo
[Targets C Leaves] [Adaptedleaves := Targets] (40)
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Becausd.cavses isin Vo andTargets C Leaves is equivalent to
VT arget € Targets - (Target € Leaves),
by (38), we have that

((Adapter * Composite) 1 (Target\Targets) |} Vo) [Targets C Leaves] (41)
= ((Adapter * Composite)[T'arget € Leaves|) T (T'arget\Targets) | Ve

Now, renamingl’arget to AdaptedLeaf andTargets to AdaptedLeaves in ex-
pression on the right-hand-side of (41), we have the folhowi

((Adapter * Composite)[Target € Leaves][AdaptedLeaf := Target])
1 (AdaptedLea f\ AdaptedLeaves) || Vi (42)

By substituting the definition cDne AdaptedLea f into Equ. (42), we obtain (39).

6 Conclusion

In this paper, we proved a set of algebraic laws that the operan design patterns
obey and we demonstrated their use in proving the equivalefgattern compositions.
These operators and algebraic laws form a formal calculdesifjn patterns that enable
us to reasoning about pattern compositions. Although thmikes is developed in our
own formalisation framework, we believe that they can bdleaslapted to others,
such as that of Eden’s approach, which also uses first-oodér but no specification
of behavioural features [10], that of Taibi's approach, athis a mixture of first-order
logic and temporal logic [19], and that of [12], etc. as wallthe approaches based on
graphic meta-modelling languages, such as RBML [8] and DFMI]. However, the
definitions of the operators and proofs of the laws are moneise and readable in our
formalism.

For future work, we are investigating the uses of theorenvgnofor automated
reasoning about the compositions of design patterns bas#iteadheory developed in
this paper. We are also investigating the completenessddltebraic laws.
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Appendix. Proofs of the Algebraic Laws

In this appendix, we give some proofs of the algebraic laws.
Proof of Laws of Restrictian

For Law (6), letP be any given pattern, and, c; be any predicates such that
vars(c;) € Vars(P), i = 1,2. By Definition 6, we havé/ars(Plc¢;]) = Vars(P),
and Pred(P[c;]) = Pred(P) A ¢;, fori = 1,2. Assume that; = c2. Then, we have
that Pred(P[c1]) = Pred(P) A ¢; = Pred(P) A ca = Pred(P]cz]). So by Lemma
4, we have thaP[c1] < Ples].
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Similarly, we can prove thaPred(P[true]) = Pred(P) and Pred(P|c1][c2]) =
Pred(P[ey A c2], thus, Law (10) and (11) are true by Lemma 4.

Law (7) is the special case of (6) whergis true. For (8), we have that A ¢ = c.
Thus, it follows from (10).

Law (12) holds becausBred(P]false]) cannot be satisfied by any models. O

For the majority of laws, the variable sets on the two sidegb@iaw can be proven
to be equal. Therefore, by Lemma 4, the proof of the law resitieehe proof of the
equivalence or implication between the predicates. Howéwesome laws, these vari-
able sets are not equal. In such cases, we use Lemma 3. Thwifalis an example of
such a proof.
Proof of Law(13):

Let P and(@ be patterns with

Vars(P) ={x1,...,2m}, Vars(Q) = {y1,-..,yn}-

Assume that
Vars(P)NVars(Q) = 0. (43)
Spec(P x Q)
=3x1,... Tm,Y1...Yn - Pred(P) A Pred(Q), < Def.1>
=3z1,..., 2, - Pred(P)A3y1 ...y, - Pred(Q), < (43) >

= Jx1,..., %y - Pred(P), < FOL >
= Spec(P), < Def.1>
Thus, by Lemma 3, we have th@® « Q) < P. O
The following of the proof of Law (38), which involves threperators.
Proof of Law(38):

First, we prove that the variable sets on the two sides ofgo@ton are equal.
LetY = Vars(P) — (X UV). Then, we have thadtars(P) = X UY U V. By
definition of the operators, it is easy to see that

Vars(lhs) = ((XSUYSUVS)-VSHUV)=(XSUYSUV) =Vars(rhs).

Thus, we only need to prove the predicates of the two sidesqu&valent. LetX =

{wlv o 7176}1 Y = {yla T 7y71} andV = {Ula T 7Um}'
By the definitions of the operators, we have tRakd(lhs) is

Vri € x81...05 € TSE - Y1 €EYS1...Yn € YSp -
Juy € VS1 ... Um € VS, - (Pred(P) A c)vsi\{v1}] ... [vsm\{vm}]
=Vri €x81... 0 €XSE - IY1 €EYS1...Yn € YSn -
Juy € V81 ... Uy € VS, - (Pred(P)[vsi\{vi}] ... [vsm\{vm}]
Acfosi\{or}] [05m\ {om}])

=Vr) €x81... Tk € TSk - Y1 € YS1-.-Yn € YSn - (Pred(P) A c)
Becausears(c) N'Y = {), the above is equivalent to the following.
Vo, €281 ...2% € TSk - Y1 € YS1 ... Yn € YSn - Pred(P)
AVT] € x81...T) € TS - C

This is Pred(rhs). By Lemma 4, the law holds. O



