
Laws of Pattern Composition

Hong Zhu and Ian Bayley

Oxford Brookes University, Wheatley Campus,
Wheatley, Oxfordshire OX33 1HX, UK

Email: hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract. Design patterns are rarely used on their own. They are almostalways
to be found composed with each other in real applications. Soit is crucial that we
can reason about their compositions. In our previous work, we defined a set of
operators on patterns so that pattern compositions can be represented as expres-
sions on patterns. In this paper, we investigate the algebraic properties of these
operators, prove a set of algebraic laws that they obey, and use the laws to show
the equivalence of pattern compositions.

Keywords: Design patterns, Pattern composition, Formal methods, Algebraic
laws, First order logic

1 Introduction

Design patterns are codified reusable solutions to recurring design problems [9, 1].
Many such patterns have been identified, documented, catalogued [6] and included in
software tools [11, 16, 14]. Although each is specified separately, they are usually to be
found composed with each other with overlaps except in trivial cases [17]. However,
while the importance of pattern compositions has been widely recognised, it has not
been studied intensively. This is perhaps partly because the patterns have been docu-
mented informally.

In the past few years, significant progress has been made by several researchers in
the formalisation of design patterns. Several approaches have been advanced in the lit-
erature [15, 13, 19, 7, 10, 5]. In spite of the differences in the formalisms used by these
approaches, the basic ideas underlying them are similar. Inparticular, a specification of
a pattern usually consists of statements on the common structural features and, some-
times, behavioural features of its instances. The structural features of a pattern are typ-
ically specified by assertions on the existence of certain types of components in the
pattern. The configuration of the elements is also described, in terms of the static rela-
tionship between them. The behavioural features are normally defined by assertions on
the temporal orders of the messages exchanged between the components as manifested
in the designs of systems. This formalisation lays a foundation for systematically and
formally investigating the composition of design patterns.

However, very few authors have investigated composition formally. In [18], Taibi
illustrated the concept of pattern composition in his framework of pattern formalisation
with an example. In [3], we formally defined a universal pattern composition opera-
tor. In [22], we extended and revised the work, but took a radically different approach.

2 Laws of Pattern Composition

We replaced the single operator with a set of simpler operators that express compo-
sition when used together. A case study was also reported there to demonstrate the
expressiveness of the operators. In this paper, we continuethe work in this direction
by investigating how to reason about pattern compositions,such as how to determine
whether two pattern compositions are equivalent. We will prove a set of algebraic laws
that these operators obey and demonstrate, with an example,how to prove equivalence
of pattern compositions by equational reasoning.

The particular formalism that we will use in this paper to define operators and to
prove their algebraic laws is that advanced in our previous work. This uses the first-
order logic induced from the abstract syntax of UML defined inGEBNF [20, 21] to
define both the structural and behavioural features of design patterns. In this way, we
have already formally specified the 23 patterns in the classic Gang of Four (hereafter
referred to as GoF) book [9], and we have specified variants too [2, 4, 5]. We have also
constructed a prototype software tool to check whether a design represented in UML
conforms to a pattern [23, 24]. It is worth noting that the definitions of the operations
and the algebraic laws proved in this paper are independent of the formalism and thus
can equally well be applied to others such as OCL [8], temporal logic [18], and so on,
but the results may be less readable. In particular OCL wouldneed to be applied at the
meta-level to assert the existence of the required classes and methods.

The remainder of the paper is organised as follows. Section 2reviews our approach
to formalisation and lays the theoretical foundation for our proofs. Section 3 outlines
the set of operations on design patterns. Section 4 presentsthe algebraic laws that they
obey. Section 5 outlines the use of laws in equational reasoning about the equivalence of
pattern compositions with an example. Section 6 concludes the paper with a discussion
of related works and future work. For the sake of readabilityand space, the proofs of
the algebraic laws are removed from the body of the paper and some are given in the
appendix.

2 Background

This section briefly reviews our approach to the formal specification of design patterns.
It is based on meta-modelling in the sense that each pattern is a subset of the design
models having certain structural and behavioral features.Readers are referred to [2, 4,
23, 5] for details.

2.1 Meta-modelling in GEBNF

Our approach starts by defining the domain of all models with an abstract syntax written
in the meta-notation Graphic Extension of BNF (GEBNF) [20].GEBNF extends the
traditional BNF notation with a ‘reference’ facility to define the graphical structure of
diagrams. In addition, each syntactic element in the definition of a language construct
is assigned an identifier (called afield name) so that a first-order language (FOL) can
be induced from the abstract syntax definition [21].

Laws of Pattern Composition 3

For example, the following are some example syntax rules in GEBNF for the UML
modelling language.

ClassDiag ::= classes : Class+, assocs, inherits, compag : Rel∗

Class ::= name : String, [attrs : Property∗], [opers : Operation∗]
Rel ::= [name : String], source : End, end : End

End ::= node : Class, [name : String], [mult : Multiplicity]

The first line defines a class diagram as consisting of a non-empty set of classes and
a collection of three relations on the set. Hereclasses, assocs, inherits andcompag
are field names. Each field name is a function. For example,classes is a function from
a ClassDiag to the set of class nodes in the model. Functionsassocs, inherits and
compag are mappings from a class diagram to the sets of association,inheritance and
composite/aggregate relations in the model. The non-terminalClass in the definition
of End is a reference occurrence. This means that the node at the endof a relation
must be an existing class node in the diagram, not a newly introduced class node. The
definitions of the class diagrams and sequence diagrams of UML in GEBNF can be
found in [5]. Table 1 gives the functions used in this paper that are induced from these
definitions as well as those that are based on them. A formal more detailed treatment of
this can be found in [5].

Table 1.Some Functions Induced from GEBNF Syntax Definition of UML

ID Domain Function

Functions directly induced from GEBNF syntax definition of UML
classes Class diagram The set of class nodes in the class diagram
assocs Class diagram The set of association relations in the class diagram
inherits Class diagram The set of inheritance relations in the class diagram
compag Class diagram The set of composite and aggregate relations in the class diagram
name Class node The name of the class
attr Class node The attributes contained in the class node
opers Class node The operations contained in the class node
sig Message The signature of the message
Functions defined based on induced functions
X −−⊲+ Y Class ClassX inherits classY directly or indirectly
X −→

+ Y Class There is an association from classX to classY directly or indirectly
X ⋄−→

+ Y Class There is an composite or aggregate relation fromX toY directly or indirectly
isInterface(X) Class ClassX is an interface
CDR(X) Class No messages are send to a subclass ofX from outside directly
subs(X) Class The set of class nodes that are subclasses ofX
calls(x, y) Operation Operationx calls operationy
isAbstract(op) Operation Operationop is abstract
fromClass(m) Message The class of the object that messagem is sent from
toClass(m) Message The class of the object that messagem is sent to
X ≈ Y Operation OperationsX andY share the same name

2.2 Formal specification of patterns

Given a formal definition of the domain of models, we can for each pattern, define a
predicate in first-order logic to constrain the models such that each model that satisfies
the predicates is an instance of the pattern.

4 Laws of Pattern Composition

Definition 1. (Formal specification of DPs)
A formal specification of a design pattern is a tripleP = 〈V, Prs, P rd〉, wherePrs

and Prd are predicates on the domain of UML static class diagrams anddynamic
sequence diagrams, respectively, andV is a set of declarations of the variables that are
free in the predicatesPrs andPrd. LetV = {v1 : T1, · · · , vn : Tn}. The semantics of
the specification is the closed formula in the following form.

∃v1 : T1 · · · ∃vn : Tn · (Prs ∧ Prd) (1)

In the sequel, we writeSpec(P) to denote the predicate (1) above,V ars(P) for the
set of variables declared inV , andPred(P) for the predicatePrs ∧ Prd.

For example, Fig. 1 shows the specification of the Object Adapter design pattern.
The class diagram from the GoF book has been included for the sake of readability.

Specification 1 (Object Adapter Pattern)
Components

1. Target,Adapter,Adaptee ∈ classes,
2. requests ⊆ Target.opers,
3. specreqs ⊆ Adaptee.opers

Static Conditions

1. Adapter−−⊲+ Target,Adapter −→+ Adaptee,
2. CDR(Target)

Dynamic Conditions

1. ∀o ∈ requests · ∃o′ ∈ specreqs · (calls(o, o′))

Fig. 1.Specification of Object Adapter Pattern

Fig. 2 gives the specification of theComposite pattern. Both patterns will be used
throughout the paper.

2.3 Reasoning about patterns

We often want to show that a concrete design really conforms to a design pattern. This
is a far from trivial task for some other formalisation approaches. For us though, the

Laws of Pattern Composition 5

Specification 2 (Composite)
Components

1. Component, Composite ∈ classes,
2. Leaves ⊆ classes,
3. ops ⊆ Component.opers

Static Conditions

1. ops 6= ∅
2. ∀o ∈ ops.isAbstract(o),
3. ∀l ∈ Leaves · (l −−⊲+ Component ∧ ¬(l ⋄−→+ Component))
4. isInterface(Component)
5. Composite−−⊲∗ Component

6. Composite ⋄−→+ Component

7. CDR(Component)

Dynamic Conditions

1. any call toComposite causes follow-up calls

∀m ∈ messages · ∃o ∈ ops · (toClass(m) = Composite ∧m.sig ≈ o ⇒

∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig)

2. any call to a leaf does not

∀m ∈ messages · ∃o ∈ ops · toClass(m) ∈ Leaves ∧m.sig ≈ o ⇒

¬∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig)

Fig. 2. Specification of the Composite Pattern

use of predicate logic makes it easy and we formally define theconformance relation as
follows.

Letm be a model andpr be a predicate. We writem |= pr to denote that predicate
pr is true in modelm. Readers are referred to [21] for the formal definition ofm |= pr.

Definition 2. (Conformance of a design to a pattern)
Let m be a model andP =< V, Prs, P rd > be a formal specification of a design

pattern. The modelm conformsto the design pattern as specified byP if and only if
m |= Spec(P). ⊓⊔

To prove such a conformance we just need to give an assignmentα of variables in
V to elements inm and evaluatePred(P) in the context ofα. If the result istrue, then
the model satisfies the specification. This is formalised in the following lemma.

Lemma 1. (Validity of conformance proofs)
A modelm conforms to a design pattern specified by predicateP if and only if there is
an assignmentα fromV ars(P) to the elements inm such thatEvaα(m,Pred(P)) =
true. ⊓⊔

A software tool has been developed that employs the first order logic theorem prover
SPASS. With it, proofs of conformance can be performed automatically [23, 24].

6 Laws of Pattern Composition

Given a formal specification of a patternP , we can infer the properties of any system
that conforms to it. Using the inference rules of first-orderlogic, we can deduce that
Spec(P) ⇒ q whereq is a formula denoting a property of the model. Intuitively, we
expect that all models that conform to the specification should have this property and
the following lemma formalises this intuition.

Lemma 2. (Validity of property proofs)
LetP be a formal specification of a design pattern.⊢ Spec(P) ⇒ q implies that for

all modelsm such thatm |= Spec(P) we have thatm |= q. ⊓⊔

In other words, every logical consequence of a formal specification is a property of
all the models that conform to the pattern specified.

There are several different kinds of relationships betweenpatterns. Many of them
can be defined as logical relations and proved in first-order logic. Specialisation and
equivalence are examples of them.

Definition 3. (Specialisation relation between patterns)
LetP andQ be design patterns. PatternP is a specialisationof Q, writtenP 4 Q, if
for all modelsm, wheneverm conforms toP , then,m also conforms toQ. ⊓⊔

Definition 4. (Equivalence relation between patterns)
LetP andQ be design patterns. PatternP is equivalenttoQ, writtenP = Q, if P 4 Q
andQ 4 P . ⊓⊔

By Lemma 1, we can use inference in first-order logic to show specialisation.

Lemma 3. (Validity of proofs of specialisation relation)
LetP andQ be two design patterns. Then, we have that

1. P 4 Q, if Spec(P) ⇒ Spec(Q), and
2. P = Q, if Spec(P) ⇔ Spec(Q). ⊓⊔

Furthermore, by Definition 1 and Lemma 3, we can prove specialisation and equiv-
alence relations between patterns by inference on the predicate parts alone if their vari-
able sets are equal.

Lemma 4. (Validity of proofs of predicate relation)
Let P and Q be two design patterns withV ars(P) = V ars(Q). ThenP 4 Q if
Pred(P) ⇒ Pred(Q), andP = Q if Pred(P) ⇔ Pred(Q). ⊓⊔

Specialisation is a pre-order with bottomFALSE and topTRUE defined as fol-
lows.

Definition 5. (TRUE and FALSE patterns)
Pattern TRUE is the pattern such that for all modelsm, m |= TRUE. Pattern
FALSE is the pattern such that for no modelm, m |= FALSE. ⊓⊔

In summary, therefore, and lettingP , Q andR be any given patterns, we have the
following.

P 4 P (2)

(P 4 Q) ∧ (Q 4 R) ⇒ (P 4 R) (3)

FALSE 4 P 4 TRUE (4)

Laws of Pattern Composition 7

3 Operators on Design Patterns

In this section, we review the set of operators on patterns defined in [22]. The restriction
operator was first introduced in [3], where it was called thespecialisationoperator.

Definition 6. (Restriction operator)
LetP be a given pattern andc be a predicate defined on the components ofP . A restric-
tion ofP with constraintc, writtenP [c], is the pattern obtained fromP by imposing
the predicatec as an additional condition of the pattern. Formally,

1. V ars(P [c]) = V ars(P),
2. Pred(P [c]) = (Pred(P) ∧ c). ⊓⊔

For example, the patternComposite1 is the variant of theComposite pattern that
has only one leaf:

Composite1 = Composite[#Leaves = 1].

Many more examples are given in the case studies reported in [22]. A frequently
occuring use is in expressions of the formP [u = v] for patternP and variablesu and
v of the same type. This is the pattern obtained fromP by unifying componentsu and
v and making them the same element.

The restriction operator does not introduce any new components into the structure
of a pattern, but the following operators do.

Definition 7. (Superposition operator)
Let P andQ be two patterns. Assume that the component variables ofP andQ are
disjoint, i.e.V ars(P) ∩ V ars(Q) = ∅. Thesuperpositionof P andQ, writtenP ∗Q,
is defined as follows.

1. V ars(P ∗Q) = V ars(P) ∪ V ars(Q);
2. Pred(P ∗Q) = Pred(P) ∧ Pred(Q). ⊓⊔

Informally,P ∗ Q is the minimal pattern (i.e. that with the fewest componentsand
weakest conditions) containing bothP andQ without overlap. The definition has the
requirement that component variables be disjoint, but we can always systematically
rename the variables to make them disjoint and the notation with which we will do so
is as follows. Letx ∈ V ars(P) be a component of patternP andx′ /∈ V ars(P). The
systematic renaming ofx to x′ is written asP [x′ := x]. Obviously, for all modelsm,
we have thatm |= P ⇔ m |= P [x′ := x] becauseSpec(P) is a closed formula. In the
sequel, we assume that renaming is made implicitly before two patterns are superposed
when there is a naming conflict between them.

Definition 8. (Extension operator)
Let P be a pattern,V be a set of variable declarations that are disjoint withP ’s
component variables (i.e.V ars(P) ∩ V = ∅), and c be a predicate with variables
in V ars(P)∪V . The extension of patternP with componentsV and linkage condition
c, written asP#(V • c), is defined as follows.

1. V ars(P#(V • c)) = V ars(P) ∪ V ;

8 Laws of Pattern Composition

2. Pred(P#(V • c)) = Pred(P) ∧ c. ⊓⊔

For any predicatep, let p[x\e] denote the result of replacing all free occurrences of
x in p with expressione.

Now we can define the flatten operator as follows.

Definition 9. (Flatten Operator)
LetP be a pattern,xs : P(T) be a variable inV ars(P) andx : T be a variable not
in V ars(P). Then the flattening ofP on variablex, writtenP ⇓ xs\x, is defined as
follows.

1. V ars(P ⇓ xs\x) = (V ars(P)− {xs : P(T)}) ∪ {x : T },
2. Pred(P ⇓ xs\x) = Pred(P)[xs\{x}]. ⊓⊔

Note thatP(T) is the power set ofT , and thus,xs : P(T) means that variablexs is
a set of elements of typeT . For example,Leaves ⊆ classes in the specification of the
Composite pattern is the same asLeaves : P(classes). Applying the flatten operator
onLeaves, theComposite1 pattern can be equivalently expressed as follows.

Composite ⇓ Leaves\Leaf

As an immediate consequence of this definition, we have the following property.
Forx1 6= x2 andx′

1 6= x′

2,

(P ⇓ x1\x
′

1) ⇓ x2\x
′

2 = (P ⇓ x2\x
′

2) ⇓ x1\x
′

1. (5)

Therefore, we can overload the⇓ operator to a set of component variables. Let
X be a subset ofP ’s component variables all of power set type, i.e.X = {x1 :
P(T1), · · · , xn : P(Tn)} ⊆ V ars(P), n ≥ 1 andX ′ = {x′

1 : T1, · · · , x′

n : Tn}
such thatX ′ ∩ V ars(P) = ∅. Then we writeP ⇓ X\X ′ to denoteP ⇓ x1\x′

1 ⇓ · · · ⇓
xn\x′

n.
Note that our pattern specifications are closed formulae, containing no free vari-

ables. Although the names given to component variables greatly improve readability,
they have no effect on semantics so, in the sequel, we will often omit new variable
names and write simplyP ⇓ x to representP ⇓ x\x′. Also, we will use plural forms
for the names of lifted variables, e.g.xs for the lifted form ofx, and similarly for sets
of variables, e.g.XS for the lifted form ofX .

Definition 10. (Generalisation operator)
LetP be a pattern,x : T be a variable inV ars(P) andxs : P(T) be a variable not in
V ars(P). Then thegeneralisationof P on variablex, writtenP ⇑ x\xs, is defined as
follows.

1. V ars(P ⇑ x\xs) = (V ars(P)− {x : T }) ∪ {xs : P(T)},
2. Pred(P ⇑ x\xs) = ∀x ∈ xs · Pred(P). ⊓⊔

We will use the same syntactic sugar for⇑ as we do for⇓. In other words, we
will often omit the new variable name and writeP ⇑ x, and thanks to an analogue of
Equation 5, we can and will promote the operator⇑ to sets.

Laws of Pattern Composition 9

For example, by applying the generalisation operator toComposite1 on the com-
ponentLeaf , we can obtain the patternComposite. Formally,

Composite = Composite1 ⇑ Leaf\Leaves.

The lift operator was first introduced in our previous work [3], but in [22] it is
revised so that it only allows lifting class components. LetCV ars(P) be the set of
variables of patternsP that range over classes, andOPred(P) be the predicate obtained
fromPred(P) by the existentially quantifying at the outermost the remaining variables
not inCV ars(P), i.e. those inV ars(P) − CV ars(P), which are the declarations of
the operations. Then, we can define lifting as follows.

Definition 11. (Lift Operator)
Let P be a pattern andCV ars(P) = {x1 : T1, · · · , xn : Tn}, n > 0. Let X =
{x1, · · · , xk}, 1 ≤ k < n, be a subset of the variables in the pattern. The lifting ofP
with X as the key, writtenP ↑ X , is the pattern defined as follows.

1. V ars(P ↑ X) = {xs1 : PT1, · · · , xsn : PTn},
2. Pred(P ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn ·

OPred(P). ⊓⊔

When the key set is singleton, we omit the set brackets for simplicity, so we writeP ↑ x
instead ofP ↑ {x}.

For example,Adapter ↑ Target is the following pattern.

V ars(Adapter ↑ Target) = {Targets, Adapters, Adaptees ⊆ classes}

Pred(Adapter ↑ Target) = ∀Target ∈ Targets · ∃Adapter ∈ Adapter ·

∃Adaptee ∈ Adaptees ·OPred(Adapter).

Fig. 3 spells out the components and predicates of the pattern.

Specification 3 (Lifted Object Adapters Pattern)
Components

1. Targets,Adapters,Adaptees ⊆ classes,

Conditions

1. ∀Adaptee ∈ Adaptees · ∃specreqs ∈ Adaptee.opers,
2. ∀Target ∈ Targets · ∃requests ∈ Target.opers,
3. ∀Target ∈ Targets · CDR(Target),
4. ∀Target ∈ Targets · ∃Adapter ∈ Adapters,Adaptee ∈ Adaptees·

(a) Adapter−−⊲ Target,
(b) Adapter −→ Adaptee,
(c) ∀o ∈ Target.requests · ∃o′ ∈ Adaptee.specreqs · (calls(o, o′)))

Fig. 3. Specification of Lifted Object Adapter Pattern

10 Laws of Pattern Composition

Informally, lifting a patternP results in a patternP ′ that contains a number of
instances ofP . For example,Adapter ↑ Target is the pattern that contains a number of
Targets of adapted classes. Each of these has a dependentAdapter andAdaptee class
configured as in the originalAdapter pattern. In other words, the componentTarget
in the lifted pattern plays a role similar to theprimary keyin a relational database.

4 Algebraic Laws of the Operations

This section studies the algebraic laws that the operators obey. For the sake of space,
we only give some proofs in the appendix.

4.1 Laws of restriction

Let vars(p) denote the set of free variables in a predicatep. For all predicatesc, c1, c2
such thatvars(c), vars(c1) andvars(c2) ⊆ V ars(P), the following equalities hold.

P [c1] 4 P [c2], if c1 ⇒ c2 (6)

P [c] 4 P [true] (7)

P [c][c] = P [c] (8)

P [c1][c2] = P [c2][c1] (9)

P [c1][c2] = P [c1 ∧ c2] (10)

P [true] = P (11)

P [false] = FALSE (12)

4.2 Laws of superposition

For all patternsP andQ, we have the following equations.

P ∗Q 4 P (13)

Q 4 P ⇒ P ∗Q = Q (14)

From this and reflexivity of4, it follows that superposition is idempotent.

P ∗ P = P (15)

It also follows from (14) thatTRUE is the unit of superposition since it is the top
in 4. Similarly,FALSE is the zero of superposition since it is the bottom in4.

P ∗ TRUE = TRUE ∗ P = P (16)

P ∗ FALSE = FALSE ∗ P = FALSE (17)

Superposition is also commutative and associative.

P ∗Q = Q ∗ P (18)

(P ∗Q) ∗R = P ∗ (Q ∗R) (19)

Laws of Pattern Composition 11

4.3 Laws of extension

The extension operation has the following properties.
Let U be any set of component variables that is disjoint toV ars(P), andc1, c2

be any given predicates such thatvars(ci) ⊆ V ars(P) ∪ U , i = 1, 2. We have the
following inequalities.

P#(U • c1) 4 P#(U • c2), if c1 ⇒ c2 (20)

P#(U • c1) 4 P (21)

Let U andV be any sets of component variables that are disjoint toV ars(P) and to
each other,c1 andc2 be any given predicates such thatvars(c1) ⊆ V ars(P) ∪ U and
vars(c2) ⊆ V ars(P) ∪ V . We have equalities.

P#(U • c1)#(V • c2) = P#(U ∪ V • c1 ∧ c2) (22)

P#(U • c1)#(V • c2) = P#(V • c2)#(U • c1) (23)

4.4 Laws of flattening and generalisation

LetX,Y ⊆ V ars(P) andX ∩ Y = ∅.

(P ⇓ X) ⇓ Y = P ⇓ (X ∪ Y) (24)

(P ⇑ X) ⇑ Y = P ⇑ (X ∪ Y) (25)

4.5 Laws connecting several operators

For all predicatesc such thatvars(c) ⊆ V ars(P), we have that

P [c] ∗Q = (P ∗Q)[c]. (26)

For allX ⊆ V ars(P), we have that

(P ⇑ X) ∗Q = (P ∗Q) ⇑ X, (27)

(P ⇓ X) ∗Q = (P ∗Q) ⇓ X. (28)

LetX ⊆ V ars(P) ∪ V ars(Q). From (24), (27) and (28), we can prove that

(P ∗Q) ⇑ X = (P ⇑ XP) ∗ (Q ⇑ XQ), (29)

(P ∗Q) ⇓ X = (P ⇓ XP) ∗ (Q ⇓ XQ), (30)

whereXP = X ∩ V ars(P), XQ = X ∩ V ars(Q).
For all sets of variablesX such thatX ∩vars(P) = ∅ and all predicatesc such that

V ars(c) ⊆ (V ars(P) ∪X), we have that

P#(X • c) = P#(X • True)[c]. (31)

P#(X • c) = P [∃X · c], (32)

12 Laws of Pattern Composition

where∃X · c = ∃x1 : T1 · · · ∃xk : Tk · c, if X = {x1 : T1, · · · , xk : Tk}.
For allx ∈ V ars(P) such thatx : P(T), we have that

P ⇓ (x\x′) = P#({x′ : T } • (x = {x′}). (33)

For allX ⊆ V ars(P) andX ′ ∩ V ars(P) = ∅, we have that

P ⇑ X\X ′ = (P ↑ X\X ′) ⇓ (V −X ′), (34)

(P ⇑ X\X ′) ⇓ (X ′\X) = P. (35)

whereV = V ars(P ↑ X).
From (34) and (35), we can prove that for allx ∈ V ars(P),

(P ↑ x) ⇓ V = P, (36)

whereV = V ars(P ↑ x).
LetX ⊆ V ars(P), we have that

(P ↑ X) ∗Q = ((P ∗Q) ↑ X) ⇓ V ars(Q). (37)

Let c be a predicate thatvars(c) ⊆ X ∪ V ⊆ V ars(P), we have that

((P [c] ↑ X) ⇓ V S) = ((P ↑ X) ⇓ V S)[c′], (38)

wherec′ = ∀x1 : xs1, · · · , ∀xk : xsk · c, {x1, · · · , xk} = vars(c) ∩X .

5 Examples

In this section, we demonstrate the uses of the laws to prove the equivalence of pattern
compositions.

We first consider the composition ofComposite andAdapter in such a way that
one of theLeaves in theComposite pattern is theTarget in theAdapter pattern.
This leaf is renamed as theAdaptedLeaf . The definition for the composition using the
operators is as follows:

OneAdaptedLeaf ,

(Adapter ∗ Composite)[Target ∈ Leaves][AdaptedLeaf := Target]

Then, we lifted the adapted leaf to enable several of theseLeaves to be adapted. That
is, we lift theOneAdaptedLeaf pattern withAdaptedLeaf as the key and then flat-
ten those components in the composite part of the pattern (i.e. the components in the
Composite pattern remain unchanged). Formally, this is defined as follows.

(OneAdaptedLeaf ↑ (AdaptedLeaf\AdaptedLeaves))

⇓ {Composites, Components, Leaveses} (39)

By the definitions of the operators, we derive the predicatesof the pattern in Specifica-
tion 4 after some simplification in the first order logic.

Laws of Pattern Composition 13

Specification 4 (ManyAdaptedLeaves)
Components

1. Component, Composite ∈ classes,
2. Leaves,AdaptedLeaves,Adapters,Adaptees ⊆ classes,
3. ops ⊆ Component.opers

Static Conditions

1. ops 6= ∅
2. ∀o ∈ ops.isAbstract(o),
3. ∀l ∈ Leaves.(l −−⊲+ Component ∧ ¬(l ⋄−→+ Component))
4. ∀l ∈ AdaptedLeaves.(l−−⊲+ Component ∧ ¬(l ⋄−→+ Component))
5. isInterface(Component),
6. Composite−−⊲+ Component

7. Composite ⋄−→∗ Component

8. CDR(Component)
9. ∀Adaptee ∈ Adaptees · (∃specreqs ∈ Adaptee.opers,

10. ∀AdLeaf ∈ AdaptedLeaves · ∃requests ∈ AdLeaf.opers,

Dynamic Conditions

1. any call toComposite causes follow-up calls

∀m ∈ messages · ∃o ∈ ops · (toClass(m) = Composite ∧m.sig ≈ o ⇒

∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig)

2. any call to a leaf or an adapted leaf does not

∀m ∈ messages · (∃o ∈ ops · (toClass(m) ∈ Leaves ∪ AdaptedLeaves∧

m.sig ≈ o) ⇒ ¬∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig))

3. ∀AdLeaf ∈ AdaptedLeaves · ∃Adapter ∈ Adapters,Adaptee ∈ Adaptees·
(a) Adapter−−⊲ AdLeaf ,
(b) Adapter −→ Adaptee,
(c) ∀o ∈ AdLeaf.requests · ∃o′ ∈ Adaptee.specreqs · (calls(o, o′)))

An alternative way of expressing the composition is first to lift the Adapter with
target as the key and then to superposition it to theComposite patterns so that many
leaves can be adapted. Formally,

ManyAdaptedLeaves ,

(((Adapter ↑ (Target\Targets)) ∗ Composite)[Targets ⊆ Leaves]

[AdaptedLeaves := Targets]

We now apply the algebraic laws to prove that expression Equ.(39) is equivalent to the
definition ofManyAdaptedLeaves.

First, by (37), we can rewriteManyAdaptedLeaves to the following expression,
whereVC = {Composites, Components, Leaveses}.

((Adapter ∗ Composite) ↑ (Target\Targets) ⇓ VC

[Targets ⊆ Leaves] [Adaptedleaves := Targets] (40)

14 Laws of Pattern Composition

BecauseLeavses is in VC andTargets ⊆ Leaves is equivalent to

∀Target ∈ Targets · (Target ∈ Leaves),

by (38), we have that

((Adapter ∗ Composite) ↑ (Target\Targets) ⇓ VC) [Targets ⊆ Leaves] (41)

= ((Adapter ∗ Composite)[Target ∈ Leaves]) ↑ (Target\Targets) ⇓ VC

Now, renamingTarget to AdaptedLeaf andTargets to AdaptedLeaves in ex-
pression on the right-hand-side of (41), we have the following.

((Adapter ∗ Composite)[Target ∈ Leaves][AdaptedLeaf := Target])

↑ (AdaptedLeaf\AdaptedLeaves) ⇓ VC (42)

By substituting the definition ofOneAdaptedLeaf into Equ. (42), we obtain (39).

6 Conclusion

In this paper, we proved a set of algebraic laws that the operators on design patterns
obey and we demonstrated their use in proving the equivalence of pattern compositions.
These operators and algebraic laws form a formal calculus ofdesign patterns that enable
us to reasoning about pattern compositions. Although the calculus is developed in our
own formalisation framework, we believe that they can be easily adapted to others,
such as that of Eden’s approach, which also uses first-order logic but no specification
of behavioural features [10], that of Taibi’s approach, which is a mixture of first-order
logic and temporal logic [19], and that of [12], etc. as well as the approaches based on
graphic meta-modelling languages, such as RBML [8] and DPML[14]. However, the
definitions of the operators and proofs of the laws are more concise and readable in our
formalism.

For future work, we are investigating the uses of theorem provers for automated
reasoning about the compositions of design patterns based on the theory developed in
this paper. We are also investigating the completeness of the algebraic laws.

References

1. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall, 2nd edn. (June 2003)

2. Bayley, I., Zhu, H.: Formalising design patterns in predicate logic. In: Proc. of SEFM’07. pp.
25–36. IEEE Computer Society, (Sept 2007)

3. Bayley, I., Zhu, H.: On the composition of design patterns. In: Proc. of QSIC 2008. pp.
27–36. IEEE Computer Society, (Aug 2008)

4. Bayley, I., Zhu, H.: Specifying behavioural features of design patterns in first order logic. In:
Proc. of COMPSAC’08. pp. 203–210. IEEE Computer Society, (Aug 2008)

5. Bayley, I., Zhu, H.: Formal specification of the variants and behavioural features of design
patterns. Journal of Systems and Software 83(2), 209–221 (Feb 2010)

Laws of Pattern Composition 15

6. Buschmann, F., Henney, K., Schmidt, D.C.: Past, present,and future trends in software pat-
terns. IEEE Software 24(4), 31–37 (2007)

7. Eden, A.H.: Formal specification of object-oriented design. In: International Conference on
Multidisciplinary Design in Engineering, Montreal, Canada (November 2001)

8. France, R.B., Kim, D.K., Ghosh, S., Song, E.: A UML-based pattern specification technique.
IEEE Trans. Softw. Eng. 30(3), 193–206 (2004)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

10. Gasparis, E., Nicholson, J., Eden, A.H.: LePUS3: An object-oriented design description lan-
guage. In: Proc. of Diagrams’08. Lecture Notes in Computer Science, vol. 5223, pp. 364–
367. Springer (September 2008)

11. Hou, D., Hoover, H.J.: Using SCL to specify and check design intent in source code. IEEE
Trans. Softw. Eng. 32(6), 404–423 (June 2006)

12. Lano, K., Bicarregui, J.C., Goldsack, S.: Formalising design patterns. In: BCS-FACS North-
ern Formal Methods Workshop, Ilkley, UK (September 1996)

13. Lauder, A., Kent, S.: Precise visual specification of design patterns. In: Proc. of ECOOP’98
Lecture Notes in Computer Science Vol. 1445. pp. 114–134, Springer (1998)

14. Mapelsden, D., Hosking, J., Grundy, J.: Design pattern modelling and instantiation using
DPML. In: Proc. of CRPIT ’02. pp. 3–11. Australian Computer Society, Inc. (2002)

15. Mikkonen, T.: Formalizing design patterns. In: Proc. ofICSE’98. pp. 115–124. IEEE CS
(April 1998)

16. Nija Shi, N., Olsson, R.: Reverse engineering of design patterns from Java source code. In:
Proc. of ASE’06. pp. 123–134 (September 2006)

17. Riehle, D.: Composite design patterns. In: Proc. of OOPSLA’97. pp. 218–228 (1997)
18. Taibi, T.: Formalising design patterns composition. Software, IEE Proceedings 153(3), 126–

153 (June 2006)
19. Taibi, T., Check, D., Ngo, L.: Formal specification of design patterns-a balanced approach.

Journal of Object Technology 2(4) (July-August 2003)
20. Zhu, H., Shan, L.: Well-formedness, consistency and completeness of graphic models. In:

Proc. of UKSIM’06. pp. 47–53 (April 2006)
21. Zhu, H.: On the theoretical foundation of meta-modelling in graphically extended BNF and

first order logic. In: Proc. of TASE 2010. IEEE CS Press, Taipei, Taiwan (August 2010).
22. Zhu, H., Bayley, I.: A formal language of pattern composition. In: Proc. of PATTERNS 2010.

Lisbon, Portugal (November 2010) (In Press)
23. Zhu, H., Bayley, I., Shan, L., Amphlett, R.: Tool supportfor design pattern recognition at

model level. In: Proc. of COMPSAC’09. pp. 228–233. IEEE CS (July 2009)
24. Zhu, H., Shan, L., Bayley, I., Amphlett, R.: A formal descriptive semantics of UML and its

applications. In: Lano, K. (ed.) UML 2 Semantics and Applications. John Wiley & Sons, Inc.
(November 2009)

Appendix. Proofs of the Algebraic Laws

In this appendix, we give some proofs of the algebraic laws.
Proof of Laws of Restriction:

For Law (6), letP be any given pattern, andc1, c2 be any predicates such that
vars(ci) ⊆ V ars(P), i = 1, 2. By Definition 6, we haveV ars(P [ci]) = V ars(P),
andPred(P [ci]) = Pred(P) ∧ ci, for i = 1, 2. Assume thatc1 ⇒ c2. Then, we have
thatPred(P [c1]) = Pred(P) ∧ c1 ⇒ Pred(P) ∧ c2 ≡ Pred(P [c2]). So by Lemma
4, we have thatP [c1] 4 P [c2].

16 Laws of Pattern Composition

Similarly, we can prove thatPred(P [true]) ≡ Pred(P) andPred(P [c1][c2]) ≡
Pred(P [c1 ∧ c2], thus, Law (10) and (11) are true by Lemma 4.

Law (7) is the special case of (6) wherec2 is true. For (8), we have thatc ∧ c ≡ c.
Thus, it follows from (10).

Law (12) holds becausePred(P [false]) cannot be satisfied by any models. ⊓⊔
For the majority of laws, the variable sets on the two sides ofthe law can be proven

to be equal. Therefore, by Lemma 4, the proof of the law reduces to the proof of the
equivalence or implication between the predicates. However, for some laws, these vari-
able sets are not equal. In such cases, we use Lemma 3. The following is an example of
such a proof.
Proof of Law(13):

LetP andQ be patterns with

V ars(P) = {x1, . . . , xm}, V ars(Q) = {y1, . . . , yn}.

Assume that
V ars(P) ∩ V ars(Q) = ∅. (43)

Spec(P ∗Q)
= ∃x1, . . . xm, y1 . . . yn · Pred(P) ∧ Pred(Q), < Def. 1 >
≡ ∃x1, . . . , xm · Pred(P) ∧ ∃y1 . . . yn · Pred(Q), < (43) >
⇒ ∃x1, . . . , xm · Pred(P), < FOL >
= Spec(P), < Def. 1 >

Thus, by Lemma 3, we have that(P ∗Q) 4 P . ⊓⊔
The following of the proof of Law (38), which involves three operators.

Proof of Law(38):
First, we prove that the variable sets on the two sides of the equation are equal.
Let Y = V ars(P) − (X ∪ V). Then, we have thatV ars(P) = X ∪ Y ∪ V . By

definition of the operators, it is easy to see that

V ars(lhs) = (((XS ∪ Y S ∪ V S)− V S) ∪ V) = (XS ∪ Y S ∪ V) = V ars(rhs).

Thus, we only need to prove the predicates of the two sides areequivalent. LetX =
{x1, · · · , xk}, Y = {y1, · · · , yn} andV = {v1, · · · , vm}.

By the definitions of the operators, we have thatPred(lhs) is

∀x1 ∈ xs1 . . . xk ∈ xsk · ∃y1 ∈ ys1 . . . yn ∈ ysn ·

∃v1 ∈ vs1 . . . vm ∈ vsm · (Pred(P) ∧ c)[vs1\{v1}] . . . [vsm\{vm}]

≡ ∀x1 ∈ xs1 . . . xk ∈ xsk · ∃y1 ∈ ys1 . . . yn ∈ ysn ·

∃v1 ∈ vs1 . . . vm ∈ vsm · (Pred(P)[vs1\{v1}] . . . [vsm\{vm}]

∧ c[vs1\{v1}] . . . [vsm\{vm}])

≡ ∀x1 ∈ xs1 . . . xk ∈ xsk · ∃y1 ∈ ys1 . . . yn ∈ ysn · (Pred(P) ∧ c)

Becausevars(c) ∩ Y = ∅, the above is equivalent to the following.

∀x1 ∈ xs1 . . . xk ∈ xsk · ∃y1 ∈ ys1 . . . yn ∈ ysn · Pred(P)

∧ ∀x1 ∈ xs1 . . . xk ∈ xsk · c

This isPred(rhs). By Lemma 4, the law holds. ⊓⊔

