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Abstract— Cloud Computing has attracted attention from both 
the research community and the industry. It is highly desirable 
to specify the syntax and semantics of the services precisely 
and accurately without giving away any design and 
implementation details. This challenge is even greater for cloud 
services based on RESTful web services techniques, where the 
invocation is through HTTP queries and there is no agreed 
standard exists for their specifications. In this paper, we 
propose an algebraic approach and apply it, as a case study, to 
the GoGrid Cloud Computing API. Not only does this give a 
formal unambiguous specification that is easy to write and 
understand, but it also identifies and eliminates errors in the 
existing documentation.  

Keywords-cloud computing; formal specification; algebraic 
specification; RESTful Web services, Infrastructure-as-a-Service 

I. INTRODUCTION 

Precise and accurate documentation of software systems 
has long been a challenge to the software engineering 
communities. The advent of cloud computing, and other 
forms of service-oriented computing, has raised the demands 
further, since software engineers, when developing their 
applications, have to depend solely on documents of the 
services provided by the cloud. Moreover, when services are 
dynamically discovered and composed at runtime, the 
specifications of the services must be machine readable, in 
the senses of both syntax and semantics.  

To meet the challenges of software specifications, formal 
methods have been developed in the past forty years and 
have advanced significantly [1]. However, their application 
to services thus far has been limited, restricted to ontology 
definition languages and business process description 
languages, such as the Business Process Execution Language 
BPEL [2].  

A formal specification technique for services must satisfy 
two requirements. First, it must be uniformly applicable to 
each of the various levels of services: Infrastructure, 
Platform and Software as a service. Secondly, it must be 
flexible enough to support dynamic discovery and 
composition of services without revealing vendor-specific 
design and implementation details.  

This paper explores the applicability of algebraic 
specification to RESTful web services [3], which is widely 
employed by cloud service providers.  

A. Related works 
Many cloud services provide an application 

programming interface (API) with which their customers can 
dynamically configure, manage and use their resources 
through a programmatic interface. For Infrastructure-as-a-
Service (IaaS), the resources are hardware entities, such as 
servers and load balancers, etc. For Platform-as-a-Service 
(PaaS), and Software-as-a-Service (SaaS), the resources are 
platform and software entities respectively. Examples 
include virtual machines, network middleware, databases, 
software components, etc.  

The current practice is to define the API informally with 
an open specification. The API is accessed through the 
RESTful web service protocol. In contrast to traditional 
SOAP-based web services [4], no agreed standards exist for 
describing RESTful services, either at the semantic level or 
the syntactic level. Documentation is often in natural 
language, leaving space for ambiguity and for errors in the 
definition of the services. The formal specification of 
RESTful web services is still an open problem. It is highly 
desirable that the API specification is formalized to reduce 
ambiguity, redundancy and inconsistency to the minimum, 
whilst still being easy to understand and requiring minimal 
training.  

Current research on the description of RESTful web 
services is mostly focused on formats for annotating the 
syntax and semantics of RESTful web services. The most 
well-known such efforts include WADL [5], hRESTS/ 
MicroWSMO [6], and SA-REST [7]. They describe the 
syntax and data types of the input and output as well as the 
operations of the WS using a machine readable format in 
XML or HTML. The main problem of these approaches is 
that they rely heavily on the RPC-based operation model, 
which does not align well with the principles of RESTful 
web service. Moreover, the semantics are described at the 
level of ontology, rather than the effect on the states of the 
resources that the services operate on. In [8], Liskin et al. 
proposed an extension to UML state machine diagram to 
describe in graphic notation how RESTful web services 
changes the states of the resources. However, it is open to 
dispute whether graphic notations can capture the full 
complexity of the state changes involved in resources 
managed and manipulated by these services.  

Algebraic specification was first proposed in the 1970s as 
an implementation-independent specification technique for 



abstract data types [9][10]. Since then, it has been extended 
to concurrent systems, state-based systems and software 
components, all by applying theories of behavioural algebras 
[11] and co-algebras [12][13][14][15]. The specifications 
produced are at a high level of abstraction, completely 
independent of any implementation detail. Properties can be 
proven for these specifications, they can be refined to 
implementations, and implementations can be proven correct 
with respect to the specifications [16], etc.  

A particularly attractive feature of algebraic 
specifications is that they can be used directly by automated 
software testing tools [17][18]. This is particularly important 
when services bind dynamically since testing must be done 
on-the-fly.  

B. Main Contributions of the paper 
This paper reports a case study of an algebraic 

specification of GoGrid [19], a real industrial-strength 
system that provides infrastructure-as-a-service. GoGrid 
provides an API, defined by an open specification [21] and 
accessed through a RESTful interface. The specification 
language used in the case study is CASOCC-WS, which we 
proposed in [20] for the specification of SOAP-based web 
services. By successfully specifying every operation of the 
GoGrid API, we demonstrate that CASOCC-WS can be used 
for RESTful Web services too.  

During the formalization, we detected non-trivial errors 
in GoGrid’s documentation. These errors included 
ambiguity, inconsistency and also incompleteness. This case 
study shows, therefore, that formal specification can improve 
the precision and accuracy of service documentation.  

It shows too that algebraic specifications can be abstract 
and implementation independent, since the GoGrid API, like 
many other RESTful web services, supports multiple 
programming languages, such as Java, Ruby, Python, C#, as 
well as shell script languages such as Bash.  

Finally, our case study also demonstrates that algebraic 
specifications can be easy to understand with minimal 
training, confirming the findings in [22]. 

To our knowledge, there is no similar work in the 
literature on the algebraic specification of web services, nor 
on RESTful web services in particular. 

C. Organisation of the paper 
The remainder of this paper is organized as follows. 

Section II briefly outlines the algebraic specification 
language CASOCC-WS. In Section III, we use GoGrid API 
as a case study to demonstrate how the algebraic approach 
can be used to specify cloud computing interface. Section IV 
discusses some of the benefits of applying algebraic 
approach on cloud computing interface. Section V concludes 
the paper and discusses possible future work.   

II. ALGEBRAIC SPECIFICATION LANGUAGE CASOCC-WS 

The CASOCC-WS language is an extension of the 
CASOCC language [17][18]. The specifications in 
CASOCC-WS are modular. A specification is built from a 
number of units, one for each software entity in the system. 
A software entity can be an abstract data type, a class, a 

component, a web service, and so on. A specification has the 
following syntactic form, in a variant of BNF: 

<Specification> ::= {<Spec Unit>} 
<Spec Unit> ::= 
    Spec <Sort Name> [<Observability>];   <Signature> [<Axioms>] 
    End 
<Sort Name> ::= <Identifier> 
<Observability> ::= 
    is observable by <Operator ID> | is unobservable 
<Operator ID> ::= <Identifier> 

Each specification unit contains two main parts: a 
signature and a set of axioms. The <Sort Name> is an 
identifier that names the main sort of the unit. Observability 
is an important property of software entities. A software 
entity is directly observable if its state or value can be tested 
for equality; otherwise, its state or value has to be checked 
by other means, e.g. through observers. The operator for an 
observable entity must be a Boolean function. 

A. Signature 
The signature specifies the syntactic aspect of the 

software entity. A signature has the following syntactic form: 

<Signature> ::=  [<Imported Sorts>;] <Operations> 
<Imported Sorts> ::= Sort <Imported Sort List> 
<Imported Sort List> ::=  <Sort Name>[, <Imported Sort List>] 
<Operations> ::=  
  Operators:   [<Creators>;][<Transformers>;][<Observers>;] 
<Creators> ::= Creator: <OpList> 
<Transformers> ::= Transformer: <OpList> 
<Observers> ::= Observer: <OpList> 
<OpList> ::= <Operation> [; <OpList>] 
<Operation> ::= <Operator ID> :['['<Context Sort>']'] 
      [<Domain Type>] ‐> <Co‐domain Type> 
<Context Sort> ::= <Sort Name> 
<Domain Type> ::= <Type> | VOID 
<Co‐domain Type> ::= <Type> | VOID 
<Type> ::= <Sort Name> [, <Type>] 

The Imported Sorts clause is a comma-separated list of 
the sorts upon which the sort currently being specified 
depends. The operators defined for a sort are classified into 
creator, transformer and observer. Take STACK for example, 
its signature is as follows. 

Spec STACK; 
   Sort BOOL, NAT; 
      Operators: 
          Creator:      newStack:  ‐> STACK; 
          Transformer:   push: STACK, NAT ‐> STACK; 
                   pop: STACK ‐> STACK; 
          Observer:         isNewStack: STACK ‐> BOOL; 
                   top: STACK ‐> NAT; 
End 

This means that STACK depends on BOOL for Boolean 
values and NAT for natural numbers. newStack is a creator, 
push and pop are transformers, isNewStack and top are 



observers. 
Note that, in a traditional algebraic specification 

language, the co-domain of an operator must be a singleton. 
Such a signature is called algebraic; STACK has such a 
signature. More recent languages, based on co-algebras, 
require instead the domain to be singleton; such signatures 
are called co-algebraic, and can be used. 

CASOCC-WS extends the algebraic and co-algebraic 
approaches by allowing both the domain and the co-domain 
of an operator to be non-singleton at the same time. This 
makes it possible to specify stateful services naturally. For 
example, infinite streams of natural numbers are specified as 
follows. Each application of the operator next to a stream 
will give a natural number and change the state of the stream. 

Spec STREAM is unobservable; 
   Sort NAT; 
      Operators: 
          Transformer:  next: STREAM ‐> STREAM, NAT; 
End 

In general, when the main sort of the unit occurs in both 
the domain and the co-domain of an operator, we call it the 
context sort of the operator. In such a case, CASOCC-WS 
use the following format to indicate the context sort, while 
omitting it from the domain and co-domain. 

Op : [s] s1, … , sn → s'1, … , s'k,  
where s is the context sort. 

If the main sort is the only sort in an operator's domain or 
co-domain, we write VOID for the type of the latter. For 
example, the signature of the operator push of STACK and the 
operator next of STREAM can now be specified respectively as 
follows. 

  push: [STACK] NAT ‐> VOID; 
  next: [STREAM] VOID ‐> NAT; 

B. Axiom 
Each specification unit consists of logical axioms 

describing the properties that functions are required to 
satisfy. An axiom consists of a variable declarations block 
and a list of conditional equations. 

<Axioms> ::= Axiom: <Axiom List> 
<Axiom List> ::= <Axiom> [<Axiom List>] 
<Axiom> ::= <Var Declarations> <Equations> End 
<Equations> ::= <Equation> [<Equations>] 

1) Variable declarations 

Variable declarations declare a list of variables and their 
types. Variables are declared "globally" to all equations in 
the axiom using "For all" keywords. 

<Var Declarations> ::= For all <Var‐Sort Pairs> that 
<Var‐Sort Pairs> ::=  <Var IDs> : <Sort Name> [, <Var‐Sort Pairs>] 
<Var IDs> ::= <Var ID> [, <Var IDs>] 
<Var ID> ::= <Identifier> 

where the sort name can only be the main sort or a sort listed 
in the imported sorts clause. The variable identifiers must be 
unique: they must not clash with sort names, operator names 
nor with any such names in any sorts imported and other 
variables in this axiom. 

2) Equation 
Equations declare a list of conditional equations. The 

syntax rule of an equation is as follows. 

<Equation> ::=  [<Label ID>:] <Condition> [, if <Conditions>]; 
          | Let <Var Definitions> in <Equations> End 
<Label ID> ::= <Identifier> 
<Conditions> ::= <Condition> [(, | or) <Conditions>] 
<Condition> ::=  <Bool Term> | <Term> <Relation OP> <Term> 
<Bool Term> ::= True | False 
<Relation OP> ::=   "==" | "<>" | ">" | "<" | ">=" | "<=" 
<Var Definitions> ::=   <Var Assignment> [, <Var Definitions>] 
<Var Assignment> ::= <Var ID> = <Term> 

The most basic form of an equation is thus t1 == t2. Here 
is an example of sort STACK, assuming that sort BOOL is 
predefined. 

For all s: STACK, n: NAT that 
    isNewStack(push(s,n)) == False; 
    pop(push(s, n)) == s; 
    top(push(s, n)) == n; 
End 

The second syntax rule for equations is designed to allow 
local variable definitions in the form 

 Let  x1 = τ1, …, xn = τn in equs End 
where x1, …, xn are local variables, limited in scope to equs, 
and τ1, …, τn are terms denoting the values that are assigned 
to the variables. Local variables must have unique names, 
not clashing with other variables in this equation and any 
other names, just as with global variables. The above 
example can be specified as follows. 

For all s: STACK, n: NAT that 
    Let s1 = push(s,n)  in 
        isNewStack(s1) == False; 
         pop(s1) == s; 
        top(s1) == n; 
    End 
End 

3) Term 
A term is constructed from constants and variables by the 

application of operators. All names used in terms may be 
qualified with the intended type and the intended sort of the 
term may be specified. In particular, a term is called ground 
term if it contains no variable. The syntax rules for term are 
as follows. 

<Term> ::=    <Var ID> | "(" <Term> ")" | "<" <Term List> ">" 
    | <Operator ID> ["(" [<Parameters>] ")"] 
    | "[" <Term>  "]" | <Term> "." <Term>  | NULL 
    | <Term> "#" <Term> | <numeric_expression> 



    | <string_expression> | <literal_expression> 
<Parameters> ::= <Term List> 
<Term List> ::= <Term> [, <Term List>] 
<numeric_expression> ::= <Term> <Algorithm OP> <Term> 
<string_expression> ::= <Term> ("+"|"+=") <Term> 
<literal_expression> ::= <integer_literal>  | <float_literal> 
    | <string_literal> | <character_literal> 
<Algorithm OP> ::= "+" | "‐" | "*" |  "/" 

Any operator in a term must either be declared in the 
signature part of the sort being specified or in the signature 
of an imported sort. For example, if s is a variable of the 
STACK sort, and m and n are variables of the NAT sort, then the 
following are STACK-terms of the STACK sort. 

    push(s, n)            
    push(push(s,n),m) 
    pop(push(push(s,n),m)) 
    pop(push(pop(push(s,n)),m)) 

Note that when an operator ϕ is declared in the form ϕ: 
[s]s1 → s2 using a sort s as the context, the type of a term like 
ϕ(τ) is s2, rather than (s, s2). The new context state in the sort 
s after applying the operator ϕ to τ is given by the expression 
[ϕ(τ)]. For example, let NatSt: STREAM be an infinite stream 
of natural numbers. Then NatSt.next is the natural number at 
the front of the stream and [NatSt.next] is state of the stream 
after the next operation; i.e., the stream after taken the front 
number away. 

III. CASE STUDY 

In this section, we specify GoGrid API in CASOCC-WS 
as a case study. 

GoGrid is the world's largest pure-play Infrastructure-as-
a-Service (IaaS) provider specializing in Cloud infrastructure 
solutions. It provides an API, defined by an open 
specification, with which its customers can deploy and 
manage their applications and workloads through a 
programmatic interface. 

A. GoGrid API 
The GoGrid API is a REST-like query interface. 

RESTful web services, unlike SOAP/WSDL, are based on 
the HTTP protocol, so each GoGrid API call is an individual 
HTTP query. For HTTP GET calls, the input data are passed 
via the query string. For HTTP POST calls, the input data are 
passed in the request body, which is URL-encoded. Only 
GET and POST are used in GoGrid API. The server 
responds to each request by changing the internal state of the 
service if need be and by returning a message to the service 
requester. 

The latest version of GoGrid API (version 1.8) has 11 
different types of objects and 5 types of common operators. 
Some of the operators are not applicable to some types of 
objects. There are 3 types of objects that are only used as 
parameters of the operators, so no operators are applicable on 
them, while some objects have special operators. TABLE 1 
gives the applicable operators for each type of object. 

TABLE 1. APPLICABLE OPERATORS ON OBJECTS 

Object List Get Add   Delete  Edit  Other Ops
Server Yes Yes Yes Yes  Yes  Power
Server 
image 

Yes Yes Yes  Yes  Save, 
Restore

Load 
Balancer 

Yes Yes Yes Yes  Yes  

Job Yes Yes   
IP Yes     
Password Yes Yes   
Billing Yes   
Option Yes   

It is worth noting that some operators have different 
meanings for different types of object, so in our specification 
of GoGrid, the definitions were grouped by object rather than 
by operator. For each object, we start by specifying the 
requests and responses of the operations, defining their 
structures and the constraints on the values of the elements.  

The requests (or responses) for one operator are specified 
in one specification unit. But, there may be a number of 
other specification units that specify the elements in the 
structure of the requests (or responses). Then, we specify the 
semantics of the operators on the type of objects by defining 
the relationships between the requests and the responses. 
Note that, the internal states of an object that the operator 
changes cannot be observed directly. They can only be 
observed by applying observers, which are API requests, too. 
The set of operators for one type of object is specified in one 
specification unit, but there may be auxiliary specification 
units, such as for lists of objects, as found in the responses to 
some operators. 

Here, we only give the details of the specification of the 
operators applicable to the object type Server. This is the 
most important object of the system and also the most 
complicated to specify. Other operators are similar but less 
complex.  

B. Requests and Responses 

1) Common query parameters in requests 
There are four query parameters common to all GoGrid 

API calls, and they are specified as follows: 

Spec CommonQueryParameter ; 
   Operators: 
      Observer: 
         api_key, sig, v, format:  
        CommonQueryParameter ‐> string;  
   Axiom: 
      For all CQP: CommonQueryParameter that 
         CQP.api_key <> NULL; 
         CQP.sig <> NULL; 
         CQP.v <> NULL; 
      End 
End 

where api_key is a key generated by GoGrid for security in 
the access of resources, sig is an MD5 [23] signature of the 
API request data, v is the version id of the API, and format is 



an optional field to indicate the response format required. 
NULL is a value that represents no information. The signature 
can be generated by an MD5 hash from the api_key, which is 
obtained before API calls can be made, the user's shared 
secret, which is a string of characters set by the user and 
known only by the GoGrid server, and a Unix  timestamp, 
which is the number of seconds since the Unix Epoch of the 
time when the request was made. The api_key and shared 
secret act as an authentication mechanism. 

However, because the signature is time-dependent, and 
therefore, also dependent on the context, the relationship 
between these query parameters cannot be specified without 
the context of the request. So, the axiom part of the 
specification states only that these parts cannot be omitted. 
We specify the authentication mechanism later in the 
systematic specification. 

2) Request of the List operator 
In addition to the parameters common to all requests, 

each type of request also contains variable parts. Below, we 
only give the specification of the requests of the List 
operation as an example. A server list call returns a list of 
server objects of a certain type in the cloud.  
 
Spec ServerListRequest; 
   Sort CommonQueryParameter, ListofString; 
    Operators: 
       Observer: 
          para: ServerListRequest ‐> CommonQueryParameter; 
          num_items, page, timestamp: ServerListRequest ‐> int; 
          server_type, datacenter: ServerListRequest ‐> string; 
          isSandbox: ServerListRequest ‐> boolean; 
  Axiom: 
      For all SLR: ServerListRequest that 
         SLR.num_items >=0; 
         SLR.page >=0, if SLR.num_items > 0; 
      End 
End 

where para is the common query parameters defined above. 
num_items is the number of items to return. Its value is used 
to paginate the results into a number of pages so that each 
page contains num_items number of items. page is the index 
of the page to be returned when the results are paginated. 
The index starts from 0. This parameter is ignored if 
num_items is not specified. server_type, isSandbox, and 
datacenter are used to filter server objects. timestamp is used 
in authentication. 

3) Responses to the List Operation 
The GoGrid API responses can be in three different 

formats: JSON (JavaScript Object Notation), XML, and CSV 
(Comma Separated Values). The default format, used when 
the optional format parameter is omitted, is JSON. However, 
one benefit of using algebraic specification is that we need 
only one formal specification for all output formats. 

The response to a list call contains the response  status, 
request  method, summary of the list and a list  of  returned 
objects. The summary part of the responses can be specified 
as follows: 

Spec ListResSummary; 
   Operators: 
      Observer: 
         Total, start,  
returned, numpages:  
        ListResSummary ‐> int; 
   Axiom: 
      For all LRS: ListResSummary that 
         LRS.total >= 0; 
         LRS.start >= 0; 
         LRS.returned >= 0; 
       LRS.numpages >= 0; 
    End 
End 

where total is the total number of objects in the list; start is 
the current start index for this list of objects; returned is the 
number of objects returned in this list; and numpages is the 
total number of pages available given the num‐items value in 
the request. 

The structure of the responses of the list operator when 
applied to server object can be specified as follows. 

Spec ServerListResponse; 
   Sort ListofServer, ListResSummary, ListofString; 
    Operators: 
       Observer: 
          Status, request_method: ServerListResponse ‐> string; 
          summary: ServerListResponse ‐> ListResSummary; 
          objects: ServerListResponse ‐> ListofServer; 
          statusCode: ServerListResponse ‐> int; 
  Axiom: 
      For all SLR: ServerListResponse that 
         SLR.request_method == "/grid/server/list"; 
      End 
      For all SLR: ServerListResponse, i, j: int that 
         SLR.objects.items(i).id <> SLR.objects.items(j).id, 
           if   status == "success", i <> j, 
               0<= i, i <= SLR.summary.returned, 
               0<= j, j <= SLR.summary.returned; 
      End 
      For all SLR: ServerListResponse, i: int, 
              X: ServerListRequest that 
     search(X.datacenter,SLR.objects.items(i).datacenter.name) 
    == True, 
           if   status == "success", 
               0<= i, i <= SLR.summary.returned, 
               X.datacenter.length > 0; 
         SLR.objects.items(i).type.name == X.server_type, 
           if   status == "success", 
               0<= i, i <= SLR.summary.returned, 
               X.server_type <> NULL; 
         SLR.objects.items(i).isSandbox == X.isSandbox, 
           if   status == "success", 
               0<= i, i <= SLR.summary.returned, 
               X.isSandbox <> NULL; 
      End 
End 

where search  is an auxiliary function of the type ListofString, 
string ‐> Boolean.  



In addition to status, request method, summary of the list 
and a list  of  returned  objects, each response will contain a 
status code: 200 means that the call is successful, and 4xx 
means there is an error in the client's request, of which 400 
means the argument is illegal, 401 means unauthorised, 403 
means authentication failed, and 404 means not found. A 
status code of 5xx means that a server error occurred. 

C. Semantics of the operations 
For each type of request, we define an operator that takes 

common query parameters and various typed parts as input 
and produces a response as the output. All such operators 
have GoGrid as the context. Some are transformers, such as 
Add, Delete and Edit; some are observers, such as List and 
Get. We also need to know the clock time on the grid and 
also the shared secret chosen by each user for checking the 
authentication of access. Also we define some auxiliary 
functions. Thus, we have the following signature for the sort 
ServerGoGrid, which represents the Server web service of 
GoGrid cloud computing system. 

Spec ServerGoGrid; 
   Sort   Server, ListofServer, 
           ServerListRequest, ServerListResponse,  
      ServerAddRequest, ServerAddResponse, … 
    Operators: 
       Observer: 
          clockTime: ‐> int; 
          sharedSecret: string ‐> string; 
         List: [ServerGoGrid] 
             ServerListRequest ‐> ServerListResponse; 
          Get: [ServerGoGrid] 
             ServerGetRequest ‐> ServerGetResponse; 
       Transformer: 
          Add: [ServerGoGrid] 
             ServerAddRequest ‐> ServerAddResponse; 
          Delete: [ServerGoGrid] 
             ServerDeleteRequest ‐> ServerDeleteResponse; 
          Edit: [ServerGoGrid] 
             ServerEditRequest ‐> ServerEditResponse; 
          Power: [ServerGrid] 
             ServerPowerRequest ‐> ServerPowerResponse; 
 
  Axiom 
  … 
End 

where the following auxiliary functions are used.  

        MD5: string, string, int ‐> string ; 
        abs: int ‐> int; 
        insert: [ListofServer]ListofServer ‐> VOID; 
        remove: [ListofServer]ListofServer ‐> VOID; 
        update: [ListofServer]ServerPowerRequest ‐> VOID; 

For each operator, its semantics can be characterised by a 
set of axioms.  For the sake of space, here we only give the 
axioms that define the semantics of the list operator.  

First of all, GoGrid checks the authentication of each API 
call using the MD5 function to reconstruct the signature from 

the api-key, the user's shared secret and the time stamp. It 
then compares this to the signature contained in the request 
parameter. It also checks the time stamp with its server clock 
time, allowing a discrepancy of up to 10 minutes. This 
authentication rule can be specified as follows. 

Axiom <Authentication>: 
  For all G: ServerGoGrid, X: ServerListRequest that 
     Let  key = X.para.api_key, 
        sig_Re = MD5(key, G.sharedSecret(key), X.timeStamp) 
     in   G.List(X).statusCode == 403, 
          If   X.para.sig <> sig_Re 
               or abs(X.timeStamp ‐ G.clockTime) > 600; 
     End 
  End 

The second axiom is about the semantics of the List 
operation. It states that if the number of items per page 
required by the request is greater than 0 (i.e., Nper page > 0) and 
the call is successful, then, in the response summary, the 
number Npages of pages, total number Nitems of items and the 
number Nper page of items on each page has the following 
relationship: 

Npages =  ⎡Nitems / Nper page⎤, 
 
Axiom <list.pagination1>: 
  For all G: ServerGoGrid, X: ServerListRequest that 
     Let  res = G.List(X), 
        sCode = G.List(X).statusCode, 
       itemsPerPage = X.num_items 
     in 
    res.summary.numpages == res.summary.total/itemsPerPage, 
      if   sCode == 200, itemsPerPage > 0; 
     End 
  End 

The third axiom of the List operator states that, when 
each page contains N items, the i'th item on page k must be 
the same as the j'th item when there is no pagination, where  

j = k × N + i 

Axiom <list.pagination2>: 
For all   G: ServerGoGrid, i, j: int, 
          X, X1: ServerListRequest that 
   Let 
      res  = G.List(X),    sCode   = G.List(X).statusCode, 
     res1 =   G.List(X1),   sCode1 = G.List(X1).statusCode,   
    n = X.num_items,   n1= X1.num_items 
    k = X.page, 
   in 
      res.objects.items(i) == res1.objects.items(j), 
        if   sCode == 200, sCode1 == 200, 
             n > 0,   n1== 0, 
             j == k*n + i, 
             0 <= i, i < res.summary.returned; 
   End 
End 

The fourth axiom states that when the number of items 



per page is specified, the list of objects in a page either 
contains exactly the number of objects if the page is not the 
last, or at most that number if the page is the last. Moreover, 
the number of items in the result must equal the value of 
parameter returned in the result summary. 

Axiom <list.pagination3>: 
  For all   G: ServerGoGrid, i, j: int, 
            X: ServerListRequest that 
     Let 
        result = G.List(X).objects, 
        sCode = G.List(X).statusCode, 
        n = X.num_items, 
        nr = G.List(X).summary.returned, 
        numPages = G.List(X).summary.numpages, 
        lpage = X.page 
     in 
        result.length == nr,  if  sCode == 200, n > 0; 
        nr == n,  if  sCode == 200, n > 0, lpage < numPages; 
        nr <= n,  if sCode == 200, n > 0, lpage == numPages; 
   End 
End 

An important property of the List operator is that, being 
an observer, it will not change the state of the system to 
which it is applied. This can be stated in the following 
axiom, though this need not be included in the specification 
because we have already declared the operator as an 
observer.  

Axiom <List‐Op>: 
  For all   G: ServerGoGrid, X: ServerListRequest, 
            X1: ServerXOpRequest that 
     [G.List(X)].XOp(X1) == G.XOp(X1); 
End 

where XOp can be any of the operators List, Get, Add, Edit, 
Delete, etc. 

Finally, when an operation does changes the state of the 
system, the List operator should be able to observe the 
difference accordingly. For example, the following axioms 
state the effect of Add when observed by the List operator.  

Axiom <Add‐List>: 
  For all   G: ServerGoGrid, X1: ServerAddRequest, 
            X2: ServerListRequest that 
     [G.Add(X1)].List(X2).objects == 
         insert(G.List(X2).objects, G.Add(X1).objects), 
         If   X2.num_items == 0, X2.server_type == NULL, 
              X2.isSandbox == NULL, X2.datacenter == NULL, 
              G.Add(X1).statusCode == 200, 
              G.List(X2).statusCode == 200; 
  End 

The corresponding axioms for other operators are similar and 
are omitted to save space. 

IV. DISCUSSION 

In this section, we report the main findings of the case 

study. 

A. Improving Document Preciseness 
As one may expect, the ambiguity in the original 

documentation of the GoGrid API [21] was detected in the 
process of formalization. This documentation [21] specifies 
the data types of the API request parameters and their 
corresponding responses, and describes the meaning of each 
in normative text. Sample requests and responses are also 
given to explain the semantics and usage of the API.  

In most cases, the meanings of the operations are left to 
the reader to interpret, according to his understanding. For 
example, in the description of the results of the List operator, 
the meaning of pagination according to num-items is not 
formally defined. We, however, specified it exactly to ensure 
that there is only one interpretation.  

B. Detecting Incompleteness 
Ambiguity in natural language documents is often caused 

when the specification is incomplete, meaning that some 
information is missing. The GoGrid documentation has this 
problem too. For example, in some cases, it is unclear about 
the range of values for a parameter and what will happen 
when the value is out of the range. An example of this is the 
num_items parameter, for the number of items in a page in a 
List request, which must be greater than 0, with no 
alternative behaviour specified for when it is not. Error codes 
are another example. It is unclear when each code will be 
returned. Both this and the num_items issue have been left 
unresolved because we do not have the relevant information. 

There are two more serious cases of incompleteness, 
however. The List operation can list all the jobs in the system 
for a specified range of dates, but it can also list all the jobs 
for a specified object type, of a certain state or belonging to a 
certain owner. There is no documentation of these additional 
features. Another example concerns the relationship between 
requests and responses. The id parameter occurs in both the 
request and the response for the Get operator on Job objects. 
There is no statement explaining what the id parameter is for 
and the two occurrences are different in the samples given in 
the document, again with no explanation. Writing the formal 
specification has forced us to be precise and complete, 
making this incompleteness immediately apparent.  

C. Checking Consistency  
Cloud Computing is a relatively young field; so, some 

evolution in cloud software is inevitable. New API versions 
may emerge frequently. This often causes a mismatch 
between the software and its documentation. We detected 
many such cases for GoGrid. Here are three examples:  

1. from version 1.5, GoGrid added a new general attribute 
called datacenter as a request query parameter but in the 
documentation of the Job object, there is no mention of 
this attribute. 

2. similarly, there is no description of the attribute 
numpages in the documentation of the Get, Edit, and 
Delete operators even though it appears in the sample 
responses for these operators.  

3. moreover, the parameter port in the Edit operation on 



LoadBalancer objects must satisfy port >=0 but the 
condition is port >0 for the other operations. 

D. Reducing Redundancy 
In an unstructured document, redundancy is also a 

common problem. The same information may arise in 
several different places with different descriptions although 
the meanings are the same. This often causes confusion. 
Take error code for example. There is a detailed description 
of error code in the chapter Anatomy of a GoGrid API Call 
but this is duplicated in the documentation for  every API 
call. Another example is the three different response formats 
associated with each operation. These descriptions are 
duplications and occupy most of the space. The algebraic 
specification that we presented in the paper uses 
specification units to organize the document structure. 
Consequently, the redundancy is reduced.  

 

E. Understandability of Document 
An advantage of natural language documentation is its 

understandability. It is widely perceived by industry that 
formal methods are difficult to learn and expensive to apply. 
However, our case study demonstrates that without much 
training ordinary software developers can write algebraic 
specification, even for real industrial strength software 
systems like GoGrid. This confirms the discovery reported in 
[20]; that algebraic specification is easy to write and easy to 
understand. It can be part of the job of any ordinary software 
developer. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we applied the CASOCC-WS specification 
language to cloud computing interface with a case study on 
the GoGrid system. This demonstrated the value of algebraic 
specification for RESTful web services. 

We are currently extending the algebraic specification 
language and studying its theoretical foundation. We are also 
developing a tool that uses the language as input to support 
automated testing of a cloud computing interface. The case 
study reported in this paper specifies only the functions of 
resource management that the GoGrid API original 
document specifies. However, the specification of the 
properties and dynamic behaviours of the resources are left 
as an open problem. Further case studies of the formal 
specification of PaaS and SaaS will also be conducted.  
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