Applying Algebraic Specification To Cloud Computing

-- A Case Study of Infrastructure-as-a-Service GoGrid

Dongmei Liu
School of Computer Science and Technology
Nanjing University of Science and Technology
Nanjing, 210094, P.R. China
Email:dmliukz@njust.edu.cn

Abstract— Cloud Computing has attracted attention from both
the research community and the industry. It is highly desirable
to specify the syntax and semantics of the services precisely
and accurately without giving away any design and
implementation details. This challenge is even greater for cloud
services based on RESTful web services techniques, where the
invocation is through HTTP queries and there is no agreed
standard exists for their specifications. In this paper, we
propose an algebraic approach and apply it, as a case study, to
the GoGrid Cloud Computing API. Not only does this give a
formal unambiguous specification that is easy to write and
understand, but it also identifies and eliminates errors in the
existing documentation.

Keywords-cloud computing; formal specification; algebraic
specification; RESTful Web services, Infrastructure-as-a-Service

[. INTRODUCTION

Precise and accurate documentation of software systems
has long been a challenge to the software engineering
communities. The advent of cloud computing, and other
forms of service-oriented computing, has raised the demands
further, since software engineers, when developing their
applications, have to depend solely on documents of the
services provided by the cloud. Moreover, when services are
dynamically discovered and composed at runtime, the
specifications of the services must be machine readable, in
the senses of both syntax and semantics.

To meet the challenges of software specifications, formal
methods have been developed in the past forty years and
have advanced significantly [1]. However, their application
to services thus far has been limited, restricted to ontology
definition languages and business process description
languages, such as the Business Process Execution Language
BPEL [2].

A formal specification technique for services must satisfy
two requirements. First, it must be uniformly applicable to
each of the various levels of services: Infrastructure,
Platform and Software as a service. Secondly, it must be
flexible enough to support dynamic discovery and
composition of services without revealing vendor-specific
design and implementation details.

This paper explores the applicability of algebraic
specification to RESTful web services [3], which is widely
employed by cloud service providers.

Hong Zhu and Ian Bayley

Dept of Computing and Communication Technologies
Oxford Brookes University
Oxford, OX33 1HX, UK
Email:hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

A. Related works

Many cloud services provide an application
programming interface (API) with which their customers can
dynamically configure, manage and use their resources
through a programmatic interface. For Infrastructure-as-a-
Service (IaaS), the resources are hardware entities, such as
servers and load balancers, etc. For Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS), the resources are
platform and software entities respectively. Examples
include virtual machines, network middleware, databases,
software components, etc.

The current practice is to define the API informally with
an open specification. The API is accessed through the
RESTful web service protocol. In contrast to traditional
SOAP-based web services [4], no agreed standards exist for
describing RESTful services, either at the semantic level or
the syntactic level. Documentation is often in natural
language, leaving space for ambiguity and for errors in the
definition of the services. The formal specification of
RESTful web services is still an open problem. It is highly
desirable that the API specification is formalized to reduce
ambiguity, redundancy and inconsistency to the minimum,
whilst still being easy to understand and requiring minimal
training.

Current research on the description of RESTful web
services is mostly focused on formats for annotating the
syntax and semantics of RESTful web services. The most
well-known such efforts include WADL [5], hRESTS/
MicroWSMO [6], and SA-REST [7]. They describe the
syntax and data types of the input and output as well as the
operations of the WS using a machine readable format in
XML or HTML. The main problem of these approaches is
that they rely heavily on the RPC-based operation model,
which does not align well with the principles of RESTful
web service. Moreover, the semantics are described at the
level of ontology, rather than the effect on the states of the
resources that the services operate on. In [8], Liskin et al.
proposed an extension to UML state machine diagram to
describe in graphic notation how RESTful web services
changes the states of the resources. However, it is open to
dispute whether graphic notations can capture the full
complexity of the state changes involved in resources
managed and manipulated by these services.

Algebraic specification was first proposed in the 1970s as
an implementation-independent specification technique for

abstract data types [9][10]. Since then, it has been extended
to concurrent systems, state-based systems and software
components, all by applying theories of behavioural algebras
[11] and co-algebras [12][13][14][15]. The specifications
produced are at a high level of abstraction, completely
independent of any implementation detail. Properties can be
proven for these specifications, they can be refined to
implementations, and implementations can be proven correct
with respect to the specifications [16], etc.

A particularly attractive feature of algebraic
specifications is that they can be used directly by automated
software testing tools [17][18]. This is particularly important
when services bind dynamically since testing must be done
on-the-fly.

B. Main Contributions of the paper

This paper reports a case study of an algebraic
specification of GoGrid [19], a real industrial-strength
system that provides infrastructure-as-a-service. GoGrid
provides an API, defined by an open specification [21] and
accessed through a RESTful interface. The specification
language used in the case study is CASOCC-WS, which we
proposed in [20] for the specification of SOAP-based web
services. By successfully specifying every operation of the
GoGrid API, we demonstrate that CASOCC-WS can be used
for RESTful Web services too.

During the formalization, we detected non-trivial errors
in GoGrid’s documentation. These errors included
ambiguity, inconsistency and also incompleteness. This case
study shows, therefore, that formal specification can improve
the precision and accuracy of service documentation.

It shows too that algebraic specifications can be abstract
and implementation independent, since the GoGrid API, like
many other RESTful web services, supports multiple
programming languages, such as Java, Ruby, Python, C#, as
well as shell script languages such as Bash.

Finally, our case study also demonstrates that algebraic
specifications can be easy to understand with minimal
training, confirming the findings in [22].

To our knowledge, there is no similar work in the
literature on the algebraic specification of web services, nor
on RESTful web services in particular.

C. Organisation of the paper

The remainder of this paper is organized as follows.
Section II briefly outlines the algebraic specification
language CASOCC-WS. In Section III, we use GoGrid API
as a case study to demonstrate how the algebraic approach
can be used to specify cloud computing interface. Section IV
discusses some of the benefits of applying algebraic
approach on cloud computing interface. Section V concludes
the paper and discusses possible future work.

II. ALGEBRAIC SPECIFICATION LANGUAGE CASOCC-WS

The CASOCC-WS language is an extension of the
CASOCC language [17][18]. The specifications in
CASOCC-WS are modular. A specification is built from a
number of units, one for each software entity in the system.
A software entity can be an abstract data type, a class, a

component, a web service, and so on. A specification has the
following syntactic form, in a variant of BNF:

<Specification> ::= {<Spec Unit>}

<Spec Unit> ::=
Spec <Sort Name> [<Observability>]; <Signature> [<Axioms>]
End

<Sort Name> ::= <ldentifier>

<Observability> ::=
is observable by <Operator ID> | is unobservable

<Operator ID> ::= <Identifier>

Each specification unit contains two main parts: a
signature and a set of axioms. The <Sort Name> is an
identifier that names the main sort of the unit. Observability
is an important property of software entities. A software
entity is directly observable if its state or value can be tested
for equality; otherwise, its state or value has to be checked
by other means, e.g. through observers. The operator for an
observable entity must be a Boolean function.

A. Signature

The signature specifies the syntactic aspect of the
software entity. A signature has the following syntactic form:

<Signature> ::= [<Imported Sorts>;] <Operations>

<Imported Sorts> ::= Sort <Imported Sort List>

<Imported Sort List> ::= <Sort Name>[, <Imported Sort List>]

<Operations> ::=

Operators: [<Creators>;][<Transformers>;][<Observers>;]

<Creators> ::= Creator: <OplList>

<Transformers> ::= Transformer: <OpList>

<Observers> ::= Observer: <OplList>

<OplList> ::= <Operation> [; <OplList>]

<Operation> ::= <Operator ID> :['['<Context Sort>']"]
[<Domain Type>] -> <Co-domain Type>

<Context Sort> ::= <Sort Name>

<Domain Type> ::= <Type> | VOID

<Co-domain Type> ::= <Type> | VOID

<Type> ::= <Sort Name> [, <Type>]

The Imported Sorts clause is a comma-separated list of
the sorts upon which the sort currently being specified
depends. The operators defined for a sort are classified into
creator, transformer and observer. Take STACK for example,
its signature is as follows.

Spec STACK;
Sort BOOL, NAT;
Operators:
Creator: newStack: -> STACK;
Transformer: push: STACK, NAT -> STACK;
pop: STACK -> STACK;
Observer: isNewStack: STACK -> BOOL;
top: STACK -> NAT;
End

This means that STACK depends on BOOL for Boolean
values and NAT for natural numbers. newStack is a creator,
push and pop are transformers, isNewStack and top are

observers.

Note that, in a traditional algebraic specification
language, the co-domain of an operator must be a singleton.
Such a signature is called algebraic; STACK has such a
signature. More recent languages, based on co-algebras,
require instead the domain to be singleton; such signatures
are called co-algebraic, and can be used.

CASOCC-WS extends the algebraic and co-algebraic
approaches by allowing both the domain and the co-domain
of an operator to be non-singleton at the same time. This
makes it possible to specify stateful services naturally. For
example, infinite streams of natural numbers are specified as
follows. Each application of the operator next to a stream
will give a natural number and change the state of the stream.

Spec STREAM is unobservable;
Sort NAT;
Operators:
Transformer: next: STREAM -> STREAM, NAT;

End

In general, when the main sort of the unit occurs in both
the domain and the co-domain of an operator, we call it the
context sort of the operator. In such a case, CASOCC-WS
use the following format to indicate the context sort, while
omitting it from the domain and co-domain.

Op:[s]styeeesSy—>8", 000y 8
where s is the context sort.

If the main sort is the only sort in an operator's domain or
co-domain, we write VOID for the type of the latter. For
example, the signature of the operator push of STACK and the
operator next of STREAM can now be specified respectively as
follows.

push: [STACK] NAT -> VOID;
next: [STREAM] VOID -> NAT;

B. Axiom

Each specification unit consists of logical axioms
describing the properties that functions are required to
satisfy. An axiom consists of a variable declarations block
and a list of conditional equations.

<Axioms> ::= Axiom: <Axiom List>

<Axiom List> ::= <Axiom> [<Axiom List>]
<Axiom> ::= <Var Declarations> <Equations> End
<Equations> ::= <Equation> [<Equations>]

1) Variable declarations

Variable declarations declare a list of variables and their
types. Variables are declared "globally" to all equations in
the axiom using "For all" keywords.

<Var Declarations> ::= For all <Var-Sort Pairs> that

<Var-Sort Pairs> ::= <Var IDs> : <Sort Name> [, <Var-Sort Pairs>]
<Var IDs> ::= <Var ID> [, <Var IDs>]

<Var ID> ::= <Identifier>

where the sort name can only be the main sort or a sort listed
in the imported sorts clause. The variable identifiers must be
unique: they must not clash with sort names, operator names
nor with any such names in any sorts imported and other
variables in this axiom.
2) Equation

Equations declare a list of conditional equations. The

syntax rule of an equation is as follows.

<Equation> ::= [<Label ID>:] <Condition> [, if <Conditions>];

| Let <Var Definitions> in <Equations> End
<Label ID> ::= <Identifier>
<Conditions> ::= <Condition> [(, | or) <Conditions>]
<Condition> ::= <Bool Term> | <Term> <Relation OP> <Term>
<Bool Term> ::= True | False
<Relation OP> ::= "==" | "<>" | ">" | "< | M= | M=t
<Var Definitions> ::= <Var Assignment> [, <Var Definitions>]
<Var Assignment> ::= <Var ID> = <Term>

The most basic form of an equation is thus #, == t,. Here
is an example of sort STACK, assuming that sort BOOL is
predefined.

For all s: STACK, n: NAT that
isNewStack(push(s,n)) == False;
pop(push(s, n)) ==s;
top(push(s, n)) ==n;

End

The second syntax rule for equations is designed to allow
local variable definitions in the form

Let x;, =1y, ...,X,=1T,in equs End
where xi, ..., x, are local variables, limited in scope to equs,
and Ty, ..., T, are terms denoting the values that are assigned
to the variables. Local variables must have unique names,
not clashing with other variables in this equation and any
other names, just as with global variables. The above
example can be specified as follows.

For all s: STACK, n: NAT that
Let s1 = push(s,n) in
isNewStack(s1) == False;

pop(sl) ==s;
top(sl) ==n;
End
End
3) Term

A term is constructed from constants and variables by the
application of operators. All names used in terms may be
qualified with the intended type and the intended sort of the
term may be specified. In particular, a term is called ground
term if it contains no variable. The syntax rules for term are
as follows.

<Term>:= <VarID> | "(" <Term>")" | "<" <Term List>">"
| <Operator ID> ["(" [<Parameters>] ")"]
| "[" <Term> "]" | <Term>"." <Term> | NULL

| <Term>"#" <Term> | <numeric_expression>

| <string_expression> | <literal_expression>
<Parameters> ::= <Term List>
<Term List> ::= <Term> [, <Term List>]
<numeric_expression> ::= <Term> <Algorithm OP> <Term>
<string_expression> ::= <Term> ("+"|"+=") <Term>
<literal_expression> ::= <integer_literal> | <float_literal>

| <string_literal> | <character_literal>
<Algorithm OP> m:="4" | "-" | " | /"

Any operator in a term must either be declared in the
signature part of the sort being specified or in the signature
of an imported sort. For example, if s is a variable of the
STACK sort, and m and n are variables of the NAT sort, then the
following are STACK-terms of the STACK sort.

push(s, n)

push(push(s,n),m)
pop(push(push(s,n),m))
pop(push(pop(push(s,n)),m))

Note that when an operator ¢ is declared in the form ¢:
[s]s1 — s, using a sort s as the context, the type of a term like
(1) is s, rather than (s, s,). The new context state in the sort
s after applying the operator ¢ to 7 is given by the expression
[o(7)]. For example, let NatSt: STREAM be an infinite stream
of natural numbers. Then NatSt.next is the natural number at
the front of the stream and [NatSt.next] is state of the stream
after the next operation; i.e., the stream after taken the front
number away.

III. CASE STUDY

In this section, we specify GoGrid API in CASOCC-WS
as a case study.

GoGrid is the world's largest pure-play Infrastructure-as-
a-Service (IaaS) provider specializing in Cloud infrastructure
solutions. It provides an API, defined by an open
specification, with which its customers can deploy and
manage their applications and workloads through a
programmatic interface.

A. GoGrid API

The GoGrid API is a REST-like query interface.
RESTful web services, unlike SOAP/WSDL, are based on
the HTTP protocol, so each GoGrid API call is an individual
HTTP query. For HTTP GET calls, the input data are passed
via the query string. For HTTP POST calls, the input data are
passed in the request body, which is URL-encoded. Only
GET and POST are used in GoGrid API. The server
responds to each request by changing the internal state of the
service if need be and by returning a message to the service
requester.

The latest version of GoGrid API (version 1.8) has 11
different types of objects and 5 types of common operators.
Some of the operators are not applicable to some types of
objects. There are 3 types of objects that are only used as
parameters of the operators, so no operators are applicable on
them, while some objects have special operators. TABLE 1
gives the applicable operators for each type of object.

TABLE 1. APPLICABLE OPERATORS ON OBJECTS

Object List Get Add Delete | Edit | Other Ops
Server Yes Yes Yes Yes Yes Power
Server Yes Yes Yes Yes Save,
image Restore
Load Yes Yes Yes Yes Yes

Balancer

Job Yes Yes

1P Yes

Password | Yes Yes

Billing Yes

Option Yes

It is worth noting that some operators have different
meanings for different types of object, so in our specification
of GoGrid, the definitions were grouped by object rather than
by operator. For each object, we start by specifying the
requests and responses of the operations, defining their
structures and the constraints on the values of the elements.

The requests (or responses) for one operator are specified
in one specification unit. But, there may be a number of
other specification units that specify the elements in the
structure of the requests (or responses). Then, we specify the
semantics of the operators on the type of objects by defining
the relationships between the requests and the responses.
Note that, the internal states of an object that the operator
changes cannot be observed directly. They can only be
observed by applying observers, which are API requests, too.
The set of operators for one type of object is specified in one
specification unit, but there may be auxiliary specification
units, such as for lists of objects, as found in the responses to
some operators.

Here, we only give the details of the specification of the
operators applicable to the object type Server. This is the
most important object of the system and also the most
complicated to specify. Other operators are similar but less
complex.

B. Requests and Responses

1) Common query parameters in requests
There are four query parameters common to all GoGrid
API calls, and they are specified as follows:

Spec CommonQueryParameter ;
Operators:
Observer:
api_key, sig, v, format:
CommonQueryParameter -> string;
Axiom:
For all CQP: CommonQueryParameter that
CQP.api_key <> NULL;
CQP.sig <> NULL;
CQP.v <> NULL;
End
End

where api_key is a key generated by GoGrid for security in
the access of resources, sig is an MD5 [23] signature of the
API request data, v is the version id of the API, and format is

an optional field to indicate the response format required.
NULL is a value that represents no information. The signature
can be generated by an MDS5 hash from the api_key, which is
obtained before API calls can be made, the user's shared
secret, which is a string of characters set by the user and
known only by the GoGrid server, and a Unix timestamp,
which is the number of seconds since the Unix Epoch of the
time when the request was made. The api_key and shared
secret act as an authentication mechanism.

However, because the signature is time-dependent, and
therefore, also dependent on the context, the relationship
between these query parameters cannot be specified without
the context of the request. So, the axiom part of the
specification states only that these parts cannot be omitted.
We specify the authentication mechanism later in the
systematic specification.

2) Request of the List operator

In addition to the parameters common to all requests,
each type of request also contains variable parts. Below, we
only give the specification of the requests of the List
operation as an example. A server list call returns a list of
server objects of a certain type in the cloud.

Spec ServerListRequest;
Sort CommonQueryParameter, ListofString;
Operators:
Observer:
para: ServerListRequest -> CommonQueryParameter;
num_items, page, timestamp: ServerListRequest -> int;
server_type, datacenter: ServerListRequest -> string;
isSandbox: ServerListRequest -> boolean;
Axiom:
For all SLR: ServerListRequest that
SLR.num_items >=0;
SLR.page >=0, if SLR.num_items > 0;
End
End

where para is the common query parameters defined above.
num_items is the number of items to return. Its value is used
to paginate the results into a number of pages so that each
page contains num_items number of items. page is the index
of the page to be returned when the results are paginated.
The index starts from 0. This parameter is ignored if
num_items 1is not specified. server_type, isSandbox, and
datacenter are used to filter server objects. timestamp is used
in authentication.

3) Responses to the List Operation

The GoGrid API responses can be in three different
formats: JSON (JavaScript Object Notation), XML, and CSV
(Comma Separated Values). The default format, used when
the optional format parameter is omitted, is JSON. However,
one benefit of using algebraic specification is that we need
only one formal specification for all output formats.

The response to a list call contains the response status,
request method, summary of the list and a list of returned
objects. The summary part of the responses can be specified
as follows:

Spec ListResSummary;
Operators:
Observer:
Total, start,
returned, numpages:
ListResSummary -> int;
Axiom:
For all LRS: ListResSummary that
LRS.total >=0;
LRS.start >=0;
LRS.returned >=0;
LRS.numpages >=0;
End
End

where total is the total number of objects in the list; start is
the current start index for this list of objects; returned is the
number of objects returned in this list; and numpages is the
total number of pages available given the num-items value in
the request.

The structure of the responses of the list operator when
applied to server object can be specified as follows.

Spec ServerListResponse;
Sort ListofServer, ListResSummary, ListofString;
Operators:
Observer:
Status, request_method: ServerListResponse -> string;
summary: ServerListResponse -> ListResSummary;
objects: ServerListResponse -> ListofServer;
statusCode: ServerListResponse -> int;
Axiom:
For all SLR: ServerListResponse that
SLR.request_method == "/grid/server/list";
End
For all SLR: ServerListResponse, i, j: int that
SLR.objects.items(i).id <> SLR.objects.items(j).id,
if status=="success",i<>],
0<=1i, i <= SLR.summary.returned,
0<=j, j <= SLR.summary.returned;
End
For all SLR: ServerListResponse, i: int,
X: ServerListRequest that
search(X.datacenter,SLR.objects.items(i).datacenter.name)
==True,
if status =="success",
0<=1i, i <= SLR.summary.returned,
X.datacenter.length > 0;
SLR.objects.items(i).type.name == X.server_type,
if status =="success",
0<=1i, i <= SLR.summary.returned,
X.server_type <> NULL;
SLR.objects.items(i).isSandbox == X.isSandbox,
if status =="success",
0<=1i, i <= SLR.summary.returned,
X.isSandbox <> NULL;
End
End

where search is an auxiliary function of the type ListofString,
string -> Boolean.

In addition to status, request method, summary of the list
and a list of returned objects, each response will contain a
status code: 200 means that the call is successful, and 4xx
means there is an error in the client's request, of which 400
means the argument is illegal, 401 means unauthorised, 403
means authentication failed, and 404 means not found. A
status code of 5xx means that a server error occurred.

C. Semantics of the operations

For each type of request, we define an operator that takes
common query parameters and various typed parts as input
and produces a response as the output. All such operators
have GoGrid as the context. Some are transformers, such as
Add, Delete and Edit; some are observers, such as List and
Get. We also need to know the clock time on the grid and
also the shared secret chosen by each user for checking the
authentication of access. Also we define some auxiliary
functions. Thus, we have the following signature for the sort
ServerGoGrid, which represents the Server web service of
GoGrid cloud computing system.

Spec ServerGoGrid;
Sort Server, ListofServer,
ServerListRequest, ServerListResponse,
ServerAddRequest, ServerAddResponse, ...
Operators:
Observer:
clockTime: -> int;
sharedSecret: string -> string;
List: [ServerGoGrid]
ServerListRequest -> ServerListResponse;
Get: [ServerGoGrid]
ServerGetRequest -> ServerGetResponse;
Transformer:
Add: [ServerGoGrid]
ServerAddRequest -> ServerAddResponse;
Delete: [ServerGoGrid]
ServerDeleteRequest -> ServerDeleteResponse;
Edit: [ServerGoGrid]
ServerEditRequest -> ServerEditResponse;
Power: [ServerGrid]
ServerPowerRequest -> ServerPowerResponse;

Axiom

End
where the following auxiliary functions are used.

MDS5: string, string, int -> string ;

abs: int -> int;

insert: [ListofServer]ListofServer -> VOID;

remove: [ListofServer]ListofServer -> VOID;

update: [ListofServer]ServerPowerRequest -> VOID;

For each operator, its semantics can be characterised by a
set of axioms. For the sake of space, here we only give the
axioms that define the semantics of the list operator.

First of all, GoGrid checks the authentication of each API
call using the MDS5 function to reconstruct the signature from

the api-key, the user's shared secret and the time stamp. It
then compares this to the signature contained in the request
parameter. It also checks the time stamp with its server clock
time, allowing a discrepancy of up to 10 minutes. This
authentication rule can be specified as follows.

Axiom <Authentication>:
For all G: ServerGoGrid, X: ServerListRequest that
Let key = X.para.api_key,
sig_Re = MD5(key, G.sharedSecret(key), X.timeStamp)
in G.List(X).statusCode == 403,
If X.para.sig <>sig_Re
or abs(X.timeStamp - G.clockTime) > 600;
End
End

The second axiom is about the semantics of the List
operation. It states that if the number of items per page
required by the request is greater than 0 (i.e., Ny pege > 0) and
the call is successful, then, in the response summary, the
number N, of pages, total number Ny, of items and the
number Ny, pqe Of items on each page has the following
relationship:

Npages = r]\[items /N, per page—L

Axiom <list.pagination1>:
For all G: ServerGoGrid, X: ServerListRequest that
Let res = G.List(X),
sCode = G.List(X).statusCode,
itemsPerPage = X.num_items
in
res.summary.numpages == res.summary.total/itemsPerPage,
if sCode ==200, itemsPerPage > 0;
End
End

The third axiom of the List operator states that, when
each page contains N items, the 7'th item on page k& must be
the same as the j'th item when there is no pagination, where

j=kxN+i

Axiom <list.pagination2>:
Forall G: ServerGoGrid, i, j: int,
X, X1: ServerListRequest that
Let
res = G.List(X), sCode = G.List(X).statusCode,
resl = G.List(X1), sCodel = G.List(X1).statusCode,
n =X.num_items, nl=Xl.num_items

k = X.page,
in
res.objects.items(i) == resl.objects.items(j),
if sCode == 200, sCodel == 200,
n>0, nl==0,
j==k*n +i,
0<=1i,i<res.summary.returned;
End
End

The fourth axiom states that when the number of items

per page is specified, the list of objects in a page either
contains exactly the number of objects if the page is not the
last, or at most that number if the page is the last. Moreover,
the number of items in the result must equal the value of
parameter returned in the result summary.

Axiom <list.pagination3>:
Forall G: ServerGoGrid, i, j: int,
X: ServerListRequest that
Let
result = G.List(X).objects,
sCode = G.List(X).statusCode,
n = X.num_items,
nr = G.List(X).summary.returned,
numpPages = G.List(X).summary.numpages,
Ipage = X.page

result.length == nr, if sCode ==200, n > 0;
nr==n, if sCode == 200, n >0, Ipage < numPages;
nr<=n, if sCode == 200, n >0, Ipage == numPages;
End
End

An important property of the List operator is that, being
an observer, it will not change the state of the system to
which it is applied. This can be stated in the following
axiom, though this need not be included in the specification
because we have already declared the operator as an
observer.

Axiom <List-Op>:
For all G: ServerGoGrid, X: ServerListRequest,
X1: ServerXOpRequest that
[G.List(X)].XOp(X1) == G.XOp(X1);
End

where XOp can be any of the operators List, Get, Add, Edit,
Delete, etc.

Finally, when an operation does changes the state of the
system, the List operator should be able to observe the
difference accordingly. For example, the following axioms
state the effect of Add when observed by the List operator.

Axiom <Add-List>:
Forall G: ServerGoGrid, X1: ServerAddRequest,
X2: ServerListRequest that
[G.Add(X1)].List(X2).objects ==
insert(G.List(X2).objects, G.Add(X1).objects),
If X2.num_items == 0, X2.server_type == NULL,
X2.isSandbox == NULL, X2.datacenter == NULL,
G.Add(X1).statusCode == 200,
G.List(X2).statusCode == 200;
End

The corresponding axioms for other operators are similar and
are omitted to save space.
1V. DiscussIioN

In this section, we report the main findings of the case

study.

A. Improving Document Preciseness

As one may expect, the ambiguity in the original
documentation of the GoGrid API [21] was detected in the
process of formalization. This documentation [21] specifies
the data types of the API request parameters and their
corresponding responses, and describes the meaning of each
in normative text. Sample requests and responses are also
given to explain the semantics and usage of the API.

In most cases, the meanings of the operations are left to
the reader to interpret, according to his understanding. For
example, in the description of the results of the List operator,
the meaning of pagination according to num-items is not
formally defined. We, however, specified it exactly to ensure
that there is only one interpretation.

B. Detecting Incompleteness

Ambiguity in natural language documents is often caused
when the specification is incomplete, meaning that some
information is missing. The GoGrid documentation has this
problem too. For example, in some cases, it is unclear about
the range of values for a parameter and what will happen
when the value is out of the range. An example of this is the
num_jtems parameter, for the number of items in a page in a
List request, which must be greater than 0, with no
alternative behaviour specified for when it is not. Error codes
are another example. It is unclear when each code will be
returned. Both this and the num_items issue have been left
unresolved because we do not have the relevant information.

There are two more serious cases of incompleteness,
however. The List operation can list all the jobs in the system
for a specified range of dates, but it can also list all the jobs
for a specified object type, of a certain state or belonging to a
certain owner. There is no documentation of these additional
features. Another example concerns the relationship between
requests and responses. The id parameter occurs in both the
request and the response for the Get operator on Job objects.
There is no statement explaining what the id parameter is for
and the two occurrences are different in the samples given in
the document, again with no explanation. Writing the formal
specification has forced us to be precise and complete,
making this incompleteness immediately apparent.

C. Checking Consistency

Cloud Computing is a relatively young field; so, some
evolution in cloud software is inevitable. New API versions
may emerge frequently. This often causes a mismatch
between the software and its documentation. We detected
many such cases for GoGrid. Here are three examples:

1. from version 1.5, GoGrid added a new general attribute
called datacenter as a request query parameter but in the
documentation of the Job object, there is no mention of
this attribute.

2. similarly, there is no description of the attribute
numpages in the documentation of the Get, Edit, and
Delete operators even though it appears in the sample
responses for these operators.

3. moreover, the parameter port in the Edit operation on

LoadBalancer objects must satisfy port >=0 but the
condition is port >0 for the other operations.

D. Reducing Redundancy

In an unstructured document, redundancy is also a
common problem. The same information may arise in
several different places with different descriptions although
the meanings are the same. This often causes confusion.
Take error code for example. There is a detailed description
of error code in the chapter Anatomy of a GoGrid API Call
but this is duplicated in the documentation for every API
call. Another example is the three different response formats
associated with each operation. These descriptions are
duplications and occupy most of the space. The algebraic
specification that we presented in the paper uses
specification units to organize the document structure.
Consequently, the redundancy is reduced.

E. Understandability of Document

An advantage of natural language documentation is its
understandability. It is widely perceived by industry that
formal methods are difficult to learn and expensive to apply.
However, our case study demonstrates that without much
training ordinary software developers can write algebraic
specification, even for real industrial strength software
systems like GoGrid. This confirms the discovery reported in
[20]; that algebraic specification is easy to write and easy to
understand. It can be part of the job of any ordinary software
developer.

V. CONCLUSION AND FUTURE WORKS

In this paper, we applied the CASOCC-WS specification
language to cloud computing interface with a case study on
the GoGrid system. This demonstrated the value of algebraic
specification for RESTful web services.

We are currently extending the algebraic specification
language and studying its theoretical foundation. We are also
developing a tool that uses the language as input to support
automated testing of a cloud computing interface. The case
study reported in this paper specifies only the functions of
resource management that the GoGrid API original
document specifies. However, the specification of the
properties and dynamic behaviours of the resources are left
as an open problem. Further case studies of the formal
specification of PaaS and SaaS will also be conducted.

ACKNOWLEDGEMENT

The work reported in this paper is partially supported by
EU FP7 project MONICA on Mobile Cloud Computing
(Grant No.: PIRSES-GA-2011-295222) and National Natural
Science Foundation of Jiangsu Province, China (Grant No.
BK2011022).

(1]
(2]
(3]
(4]
[3]
(6]

(7]

(8]

]

[10]

(1]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

REFERENCES

A. van Lamsweerde, Formal specification: a roadmap, in Proc. of
ICSE 2000 - Future of SE Track, 2000, pp. 147--159.

M. Juric, B. Mathew and P. Sarang, Business Process Execution
Language for Web Services, 2nd ed., Packt Publishing, Jan 2006.

L. Richardson and S. Ruby, RESTful web services, O'Reilly,
2007.

M. Papazoglou, Web services & SOA: principles and technology,
Prentice Hall, 2012

M. J. Hadley, Web Application Description Language (WADL), Sun
Microsystems Inc., CA, USA, SMLI TR-2006-153, March 2006.

J. Kopecky, K. Gomadam, and T. Vitvar, hRESTS: An HTML
microformat for describing RESTful web services. In: Proc. of WI-
TAT’08, Dec 2008, Sydney, Australia, [IEEE/WIC/ACM.

J. Lathem, K. Gomadam and A. P. Sheth, SA-REST and (S)mashups:
Adding Semantics to RESTful Services, in Proc. of ICSC’07, 2007,
pp469-476.

O. Liskin, L. Singer, K. Schneider, Welcome to the Real World: A
Notation for Modeling REST Services, IEEE Internet Computing, pp.
36-44, July-Aug., 2012.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, Initial
algebra semantics and continuous algebras, Journal of ACM, vol. 24,
no. 1, pp. 68-95, 1977.

H.-D. Ehrich, On the theory of specification, implementation, and
parametrization of abstract data types, Journal of ACM, vol. 29, no. 1,
pp. 206-227, 1982.

J. A. Goguen and G. Malcolm, A hidden agenda, Theoretical
Computer Science, vol. 245, no. 1, pp. 55-101, 2000.

C. Cirstea, Coalgebra semantics for hidden algebra: Parameterised
objects an inheritance, in Proc. of WADT'97, 1997, pp. 174-189.

J. M. Rutten, Universal coalgebra: a theory of systems, Theoretical
Computer Science, vol. 249, no. 1, pp. 3-80, 2000.

C. Cirstea, A coalgebraic equational approach to specifying
observational structures, Theoretical Computer Science, vol. 280, no.
1-2, pp. 35—68, 2002.

F. Bonchi and U. Montanari, A coalgebraic theory of reactive
systems, Electr. Notes Theor. Comput. Sci., vol.209, pp.201-215,
2008.

D. Sannella and A. Tarlecki, Algebraic methods for specification and
formal development of programs, ACM Computing Surveys, vol. 31,
no. 3es, p. 10, 1999.

L. Kong, H. Zhu, and B. Zhou, Automated testing EJB components
based on algebraic specifications, in Proc. of COMPSAC'07, vol.2,
2007, pp. 717-722.

B. Yu, L. Kong, Y. Zhang, and H. Zhu, Testing Java components
based on algebraic specifications, in Proc. of ICST'08, 2008, pp. 190-
199.

GoGrid.com, http://www.gogrid.com, last access: July 10, 2012.

H. Zhu and B. Yu, Algebraic specification of web services, in Proc.
of QSIC'10, 2010, pp. 457-464.

GoGrid.com, GoGrid wiki,https://wiki.gogrid.com/wiki/index.php
last access: July 10, 2012.

H. Zhu and B. Yu, An experiment with algebraic specifications of
software components, in Proc. of QSIC'10, 2010, pp. 190-199.

T. A., Berson, Differential Cryptanalysis Mod 2°? with Applications
to MD5. Proc. of EUROCRYPT’92. pp. 71-80, 1992.

