Testing Java Components Based on Algebraic Specifications

Bo Yu'", Liang Kong"", Yufeng Zhang'", and Hong Zhu®
(1) Department of Computer Science, National University of Defence Technology, Changsha, China

(2) Department of Computing, School of Technology, Oxford Brookes University
Wheatley Campus, Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

Abstract

This paper presents a method of component testing
based on algebraic specifications. An algorithm for
generating checkable test cases is proposed. A proto-
type testing tool called CASCAT for testing Java En-
terprise Beans is developed. It has the advantages of
high degree of automation, which include test case
generation, test harness construction and test result
checking. It achieves scalability by allowing incre-
mental integration. It also allows testing to focus on a
subset of used functions and key properties, thus suit-
able for component testing. The paper also reports an
experimental evaluation of the method and the tool.

1. Introduction

Component technology has become a key element in the
development of large and complex software systems [1,
2, 3]. It has shifted development focus from design and
coding to requirements analysis, integration and testing
[4, 5, 6, 7]. This paper is concerned with testing com-
ponents.

1.1 Problems in component testing

Component testing imposes challenges to existing
software testing techniques. As reported in [5], a par-
ticular difficulty of component testing is the lack of test
bench on which components can be executed. The de-
velopers thus struggled to test components that have no
user interface such as server side components. Conse-
quently, developers have to spend as much time in
writing test harness as to develop the component itself
[5]. This results in excessive overhead.

From component users’ point of view, component
testing is even more difficult and problematic [8, 9].
Components are usually delivered as executable code
without the source code and design information.
Moreover, the executable code usually contains no
instrumentation [10]. Thus, component users have very
limited ability to control and observe the behaviour of
the component under test [11]. Consequently, white-box
testing techniques are not applicable to users’ testing of
software components. In recent years, techniques and
methods have been advanced for including code in
commercial-off-the-shelf (COTS) components for

self-testing; e.g. [12]. However, they are yet to be
adopted by COTS producers. Therefore, currently users’
component testing has to be specification- based.

1.2 Approach to the problems

In addition to manual component testing methods, re-
searchers on automated testing have explored the uses
of formal specifications such as design-by-contract [13]
and state transition diagrams [14]. These methods are
capable of automatic generation of test cases w.r.t. cer-
tain adequacy criteria. However, they offer little support
to checking the correctness of test results automatically.
As argued in [15], testing based on algebraic specifica-
tions (which is called algebraic testing in the sequel) is
a promising approach.

Algebraic testing techniques were proposed in early
1980s [16]. The theory and method developed from
testing abstract data types in procedural languages [17]
to testing classes and class clusters in object-oriented
software [18,19,20,21,22]. The main advantage of al-
gebraic testing is its full automation of testing process,
including test case generation, test harness construction,
and test result checking. However, although its theo-
retical foundation is applicable to component testing,
the techniques for the implementation of automated
testing tools have to be adapted. For example, in testing
a component that consists of a number of classes and
data types and depends on a number of other compo-
nents, it is not practical to require the availability of
axioms of all these constituent entities. It is often that
only their interfaces are known.

This paper further develops algebraic testing tech-
niques to solve this problem. It also allows testing to
focus on a subset of the properties or functions of the
component under test. This is particularly important
because components are often designed for a broad
applicability, but they are often only used on a subset of
provided functions [13]. The paper presents a prototype
automated testing tool called CASCAT for testing of
Java Enterprise Beans and report the results of experi-
ments in the evaluation of its effectiveness.

The remainder of the paper is organised as follows.
Section 2 describes an algebraic specification language
CASOCC. Section 3 presents the test case generation
algorithm. Section 4 presents the prototype testing tool

CASCAT. Section 5 reports the results of experimental
evaluation of the testing method. Section 6 concludes
the paper by a comparison with the related work and a
discussion of future work.

2. Specification Language CASOCC

Algebraic specification (AS) emerged in the 1970s [23].
In the past three decades, it has developed into a mature
formal method [24]. In general, an AS consists of two
parts <2, E>, where 2'is the signature of the algebra that
defines a collection of sorts and operators; E is a set of
axioms in the form of conditional equations. The axi-
oms define the semantics of the operators.

In the specification of abstract data types, a sort
represents a data type; operators represent the opera-
tions on the data type and constants, which are 0-ary
operators. For OO software, a sort represents a class and
the operators represent methods of the class. The at-
tributes are assumed to be accessed through getter and
setter methods. These interpretations of AS must be
modified in order to test software components. This
section presents a language for algebraic specification
of software components and to support automated
component testing.

2.1 Syntax and overall structure

A software component is a “unit of composition with
contractually specified interfaces and context depend-
encies only. It can be deployed independently and sub-
ject to composition by third parties’ [2]. The interface of
a component typically contains two types of informa-
tion: (a) the functionality that the component provides;
(b) the functionality that the component requires.
Modern component models define the syntax for
specifying such information to enable components re-
used across organisations and created a COTS compo-
nent market. However, industrial standards of compo-
nent models rarely specify the semantics of the func-
tionality provided and required by a component. The
language CASOCC is designed to provide a vehicle to
specify such semantics and at the same time to support
automatic component testing.

The name of the language CASOCC stands for
Common AS of Components and Classes. Here, the
word ‘common’ has two meanings. First, the language
does not distinguish software components from classes
or data types so that it can be applied to all of these types
of software entities, which often occur at the same time
in component-based software. They are all represented
by sorts. Second, the language itself is independent of
the software component models, or the programming
languages used to implement the software entities. In
the implementation of CASOCC language for testing
components of a specific programming language and/or
component model, pre-defined sorts can be introduced

to represent the pre-defined classes/data types.

A specification in CASOCC consists of a number of
modular units. Each unit specifies one software entity.
This entity is represented by a sort, which is called the
unit’s main sort. Each unit defines the signature of the
entity (i.e. the operators), a set of axioms that the op-
erators must satisfy as well as a list of ‘imported’ sorts,
which represent the other software entities that it de-
pends on. The list of imported sorts defines the impor-
tation relation on sorts and thus the dependence struc-
ture of the component-based software. The distinction
between main sorts from imported sorts does not only
decide which axioms are to be checked, but also plays a
significant role in the generation of test cases. It is worth
noting that importation is different from enrichment or
extension operations of AS modules [24]. Instead, im-
portation in CASOCC is equal to the protected impor-
tation operation on modules in CafeOBJ and OBJ3. The
importation relation can also be supported indirectly by
the composition mechanisms of CASL language [25].

The following EBNF formulas define the overall

structure of a specification unit in CASOCC.
<Spec Unit> ::=
Spec < Sort Name > Observable: <Boolean>
[Import: <Import Sort List>]
Operations: <Operation List>
[Var: <Variable Declaration List>]
[Axioms: <List of axioms>]
End

The VAR clause in a specification unit declares a list
of universally quantified variables that occur in the
axioms. Each variable declaration is in the form of
<variable identifier>:<sort name>, where the sort name
is either the main sort, an imported sort or a predefined
sort. In the implementation of CASOCC language for
testing Java Beans, the following pre-defined sorts are
Java’s primitive data types, which include byte, short,
int, long, float, double, char, String and Boolean.

An axiom in CASOCC is a conditional equation in

the following form.
<Axiom> ::= <Label> : <Equation>[, if <Condition>]
<Label>::= <Number> | <ldentifier>
<Equation> ::= <Term> = <Term>
<Condition> ::= <Term of Boolean type>
| <Equation> | <Term> <Relation Operator> <Term>
| <Condition> <Logic Connective> <Condition>

A term can be formed from variables declared in the
VAR clause and constants of predefined sorts by ap-
plying operators defined in the Operator clause and the
operators of the predefined sorts and imported sorts. It is
worth noting that, we use LOBAS’s notation [18] for the
representation of terms in OO style rather than the tra-
ditional functional style. Therefore, a term f{x,y), i.e. an
operator f applied to parameters x and y, is represented
in the form of x.f{y), if x is of the main sort. Details of
the syntax of terms are omitted for the sake of space.
The following is an example of CASOCC specification.
It specifies a stack with bounded depth of 10 elements.

Spec Stack

observable F; import int, String;

operations
creator create: String->Stack;
constructor push: Stack,int->Stack;
transformer pop: Stack->Stack;
observer getld: Stack->String; top: Stack->int;

height: Stack->int;

vars S: Stack; n: int; x: String;
axioms

1: create(x).getld() = x;
: findByPrimaryKey(x).getld() = x;
: create(x).height() = 0;
: S.push(n) = S; if S.height() = 10;
: S.pop() = S; if S.height() = 0;
: S.push(n).pop() = S; if S.height() < 10;
: S.push(n).top() = n; if S.height() < 10;
: S.push(n).height() = S.height()+1; if S.height() < 10;
: S.pop().height() = S.height()-1; if S.height() >0;

O©CoO~NOUIAWN

end

It is worth noting that, a specification in CASOCC is
independent of the way that the entity is implemented. A
unit can be implemented as a component, class or data
type. A system may consist of entities of different kinds.

2.2 Behavioural semantics and observable
sorts

The semantics of CASOCC language is the so called
behavioural semantics [22, 37, 38]. Therefore, the sorts
are classified into observable and non-observable. In
CASOCC, the observability of a sort is explicitly
specified by the Observable clause. To ensure the
soundness of the semantics of an algebraic specification,
if a sort is indicated to be observable, there must be an
equality operator “=="provided by the implementation
of the corresponding software entity. Formally, ob-
servable sorts must satisfy the following syntax and
semantics constraints [22].

Definition 1. (Observable sorf)
In an AS <X, E>, a sort s is an observable sort implies
that there is an operation == : sXs—Bool such that
for all ground terms 7and 7’ of sort s,
E|l-((r==7)=true) & E|-(7=7).
An algebra 4 (i.e. a software entity) is a correct im-
plementation of an observable sort s if for all ground
terms 7and 7 of sort s,
Al=(=7) & AF((r==T7)=true) [
Note that pre-defined sorts of Java primitive classes
and data types are observable.

2.3 Support to automatic testing

As discussed in [22], the information about the sort
observability plays a significant role in the automated
algebraic testing. To further support automated testing,
CASOCC requires operators divided into four types in
their declarations in the Operator clause. These types of
operators are given below.

— Creators create and initialise instances of the software

entity. They must have no parameters of the main sort,
but result in the main sort.

— Constructors construct the data structure by adding
more elements to the data. A constructor must have a
parameter of the main sort and results in the main sort.
They may occur in normal forms.

— Transformers manipulate the data structure without
adding more data. Similar to constructors, a trans-
former must have the main sort as its parameter and
results in the main sort. However, they cannot occur in
any normal forms.

— Observers enable the internal states of the software
entity to be observed from the outside. They must
have a parameter of the main sort but result in an
imported sort.

To enable automated testing of software components,
we require the formal specification is well structured
and matches the structure of program. The following
formally defines the notion of well-structured. These
properties ensure that the test oracles based on obser-
vation contexts are valid in behavioural semantics [22].

Let U be a set of specification units in CASOCC and
S be a set of sorts. For each sort s€ S, there is a unit U
s€ U that specifies the software entity corresponding to
sort s. Let < be the importation relation on S.

Definition 2. (Well founded specifications)

Assorts € Sis well founded if s is observable, or for all s’
in the import list of Uy, s’ is an observable sort, or s’ is
well founded. A specification U is well founded if and
only if the importation relation < is a pre-order on the
set S of sorts, and all sorts se X are well founded. [

Definition 3. (Well structured specifications)
A specification U in CASOCC is well structured if it
satisfies the following conditions.
(1) It is well founded;
(2) For every user defined unit Use U,
(a) there is at least one observer in Us;
(b) for every axiom E in U, if the condition contains
an equation 7 =7', we must haves'< s, where
s’ is the sort of terms 7and 7°. [

A practice implication of the well founded and
well-structured properties is that for all sorts there are
finite lengths of observable contexts. Thus, constructing
test oracles based on observable context is feasible.

3. Generation of Checkable Test Cases

This section first reviews the notions of observation
contexts and checkable test cases. Then, we present the
algorithm of test case generation.

3.1 Observation context

The notion of observation context can be formally de-
fined as follows [17, 20, 22].

Definition 1. (Observation context)

A context of a sort ¢ is a term C with one occurrence of a
special variable o of sort ¢. The value of a term ¢ of sort
c in the context of C, written as C[¢], is the term obtained
by substituting ¢ into the special variable o. An obser-
vation context oc of sort ¢ is a context of sort ¢ and the
sort of the term oc iss < ¢ . To be consistent on nota-

tions, we write .oc: c—s to denote an observation
context oc. An observation context is primitive if s is an
observable sort. In such cases, we also say that the ob-
servation context is observable and call the context
observable context for short. [

The general form of an observation context oc is:

NG LGS 0bs(L)

where f1, ..., fi are transformers of sort s., obs is an ob-
server of sort ¢, and f{(...), ..., f; (...) are ground terms. A
sequence of observation contexts oc;, ocy, ..., 0c, ,
where _.ocy: ¢—s;, _.oc; si—s;, i =2,...,n, can be
composed into an observation context _.oc;.0c;.0C,.
In [20], such compositions of observation contexts are
called observation context sequences. In this paper, we
do not distinguish them.

A primitive observation context (i.e. an observable
context) produces a value in an observable sort. For
example, consider the specification of Stack given in the
previous section. The following are observation con-
texts. Because the predefined sort Integer is observable,
these observation contexts are primitive.

_top(), _.pop().top(), _.pop().pop().top(),

_.height(), _.pop().height(), _.pop().pop().height().

There are usually an infinite number of different
observation contexts for a given AS. We define the
complexity of an observation context
NG LGS 0bs(.L) as the number & of trans-
formers. For example, the complexity of observation
context _.top() is 0, and the complexity of
_.pop()-pop().height() is 2. Given an upper bound k£ on
complexity, the set of all observation contexts with
complexity less than or equal to k£ can be mechanically
generated from the signatures of the sorts.

3.2 Checkable test cases

The basic idea of algebraic testing is to use algebraic
specification to generate two ground terms that are
supposed to be equal according to the axioms. Each
term can be interpreted as a sequence of proce-
dure/method calls. The results of the sequences are then
checked for their equivalence. Ifnot, errors are detected.
However, a sort may represent a structured data, a
class even a component. The equivalence between the
results is not always directly checkable. For example, in
the Stack example, Create('st’).Push(1).Pop and Create(‘st’)
should be equivalent, because both result in an empty
stack called ‘st’. However, stacks are structured data.
They cannot be directly compared for equivalence.

One approach to this problem is to generate test cases
regardless whether the equivalence of the results can be
checked directly or not; see e.g. [17, 20]. If the results
cannot be checked directly, a set of observation contexts
are applied to both results to reduce the equivalence
problem into a set of sub-problems of equivalency,
which could be further reduced if necessary. For exam-
ple, to test the equivalence between terms Create(‘st’) and
Create(‘st’).Push(1).Pop, the observer height can be applied
to both to obtain two integer values, which can be com-
pared directly. However, this approach does not work
well for component testing. An alternative approach is
to generate test cases that are observable, i.e. the equal-
ity of the terms can be observed; see, for example, [26,
27] for theoretical study of the approach.

Existing techniques for class testing will generate
two instances of a class for each test case; one repre-
sents the result of one sequence of method calls. This
technique is not applicable to components because a
component can only have one instance [2]. In almost all
component models, such as in EJB and CCM (CORBA
Component Model), the result of the first sequence of
method calls cannot always be copied and saved for
comparison with the second result. Therefore, in addi-
tion to requiring the terms in a test case are ground, we
also require the results to be recordable and comparable,
thus the notion of checkable test cases.

In general, a test case is a triple <T, 7>, C>, where T;
and 7 are ground terms and C is an optional condition,
which is a ground term of Boolean sort. It means that
values of 7| and T, should be equivalent if C evaluates
to True. For the sake of readability, in the sequel we
write a test case in the form of 7,=1>, [if C].

Definition 2. (Checkable test cases)

A test case T\=1>, [if C] is directly checkable (or simply
checkable), if and only if

a. the sort of terms 7 and 7> is observable, and

b. the sort of equations in C is observable, if any. [

For example, in the following, test case (a) is not
checkable, but test case (b) is checkable.

Create('st’).Push(1).Pop = Create('st’) (a)
Create('st’).Push(1).Pop.Height = Create(‘st’).Height (b)

3.3 Test case generation

In addition to the checkability problem, there is another
problem for the generation of component test cases.

As discussed above, existing test case generation
methods are essentially to substitute ground terms into
variables of two terms that are supposed to be equiva-
lent according to the axioms, such as the two sides of an
axiom, or one is the normal form of the other [18].
However, there are some subtle differences in what are
substituted into the variables in different techniques.
DAISTS substitutes user-defined terms [16]. In [17], all
ground terms of certain complexity are used. TACCLE

[20] only uses ground terms in normal forms. A problem
with these approaches is that when operators have pa-
rameters of predefined data types, such as integers,
using ground terms is not effective and practical. For
example, in the form of normal form, the integer value 3
is represented as succ(succ(succ(0))). An integer value
2000 would be impossible to be used in a test case. Chen
et al.’s solution to this problem [20, 21] is to apply
white-box testing techniques to select values that cover
all paths in the software under test. Unfortunately, this is
not applicable to component testing because the source
code is not always available. Therefore, we combine
random testing with algebraic testing by selecting the
values for variables of predefined data types at random.
The following is the test generation algorithm.

Algorithm 1.
Input:
Spec s: CASOCC specification unit of the main sort;
Sigs s1, s2, ..., si. The signature of imported sorts;
TC: A subset of axioms in s (* the axioms to be tested *);
ve: Integer (*complexity upper bound of variables*);
oc: Integer (*complexity upper bound of observation contexts*) ;
re: Integer (* the number of random values to be assigned to
variables of primitive sorts*)
Output: ts: The set of test cases;
Begin
(* Step 1: Initialisation *)
pv:=the set of variables in spec s of observable sorts.
sv:=the set of variables in spec s of non-observable sorts.
(* Step 2: generate normal form terms for non-primitive variables*)
for each variable ve sv do
{T(v) := NormalForms(v:s,, vc);
for each variable v’ in 7T(v) do
if v’ is of observable sort
then add v’ to pv else add v’ to sv; };
(* Step 3: generate random values for primitive variables *)
for each ve pv do Generate a set RV(v) of rc random values;
(* Step 4: Substitute normal forms into axioms *)
for each 1c e TC do
{for each variable v esv that occurs in 7c do
for each term gt e T(v) do TC:= TC +tc[vigt];
Remove t« from TC;}
(* Step 5: Substitute random values into test cases *)
for each 1c € TC do
{for each variable v epv that occurs in 7c do
for each u e RV(v) do TC:= TC+tc[vlul;
Remove « from TC;}
(* Step 6: Compose test case with observation context *)
for each tc=<t1=t,; if c> € TC do
{TCO = &,
if #4 and #, are not primitive
then {OC:= PObsContexts(t1:s, oc);
for each obc in OC do TCO:= TCO+<obc.t1=obc.ty;if ¢>;
if ¢ is not primitive then POC :=PObsContexts(c:s, oc),
for each tc=<t1=to; if c>¢ TCO do
TCO:=TCO+<t,=ty; if {POC.c}>
if 7CO #& then {TC:=TC U TCO; Remove tc from TC;} } };
(* Step 7: output test set *)
ts .= TG,
End [
In the above algorithm, NormalForms(v:s,, vc) is the set
of normal forms of the sort s, of v with complexity from

0 to ve. It is generated from the signatures of the creators

and constructors of the sorts. PObsContexts(t,:s, oc) is
the set of primitive observation contexts of sort s with
complexity from 0 to oc. It can be generated from the
signatures of the transformers and observers of the sorts.
The term ¢c[v/gt] is obtained by systematically replacing
v with term gf in tc. The term A{POC.c} = pi.c A py.c
A . APiC, if POC={py, ps, ..., Pi}.

The algorithm has the following properties. Their
proofs are omitted for the sake of space.

Theorem 1. The test case generation algorithm will
always terminate if the specification is well founded. 0

Theorem 2. The test cases generated are checkable, i.e.
for all test cases <t;=t,; if ¢> generated by the algorithm,
t1, t, and ¢ are of primitive or observable sorts. [

The following theorem about the correctness of the
algorithm can be derived from the theorems proven in
[22]. Here, the software under test is assumed to be
deterministic.

Theorem 3. The test cases are valid. That is, if the
specification is well-structured and the observable sorts
satisfy the constraints in Definition 1, we have the fol-
lowing properties.
(a) The program correctly implements the specification
with respect to the behavioural semantics of algebraic
specifications implies that the evaluation of # and t,
using the program give equivalent results provided that
c is evaluated to be true.
(b) If the evaluation of # and #, gives non-equivalent
values in an implementation when c is evaluated to true,
then there are faults in the program. ()

The following gives some examples of the test cases

for the Stack example generated by the CASCAT tool.
create(String:[gfn2785]).height() = int:[0];
create(String:[Rm8]).push(int:[961467407]).pop().top()
= create(String:[Rm8]).top();
if create(String:[Rm8]).height()<int:[10];
create(String:[Rm8]).push(int:[961467407]).pop().height()
= create(String:[Rm8]).height();
if create(String:[Rm8]).height()<int:[10];

4. Testing Tool CASCAT

Figure 1 shows the structure of prototype testing tool
CASCAT (Common AS-based Component Automatic
Testing) for testing Enterprise Java Beans (EJB) on the
JBoss platform. It contains four main parts. Specifica-
tion Parser parses the AS in CASOCC, and checks the
well-formedness of the specification and the type cor-
rectness of equations in the axioms. Test Case Genera-
tor takes two parameters from the user and generates a
set of test cases. The parameters are the upper bounds of
the complexities of the observation contexts and the
values substituted into the variables. Test Driver exe-
cutes the component on each test case and records the
test results. 7est Result Evaluator checks the correctness
of the results and reports to the user.

Component Spec J2EE Component Test
in CASOCC Deployed on JBoss Report
Platform {}
\/ \V4 [
CASOCC Spec Test Test Result
Parser Driver ::> Evaluator

v i

Test Case Test
> \CaS}J CASCAT Tool

Generator
Figure 1. Overall Structure of CASCAT Tool

The inputs to the automated test process are a speci-
fication of the component, the component location de-
ployed to JBoss platform, the location of the JBoss
server, and the complexities of the observation contexts
and the ground terms to be substituted into variables in
the axioms. CASCAT also allows the user to select a
subset of axioms for testing, thus to focus on a subset of
functions and properties of the component. In such
cases, test cases are generated from these selected
axioms only. Figure 2 shows the interface of the tool.

(e Deslmentsiand SetiingsiiNDeskiopiReop EikonuILaneASCONMTROGIL0NM= [B]X]
B|e Exit
Spes Stack [+
observable F; T
import int, String; | Anafyze Spec
operations
creator
ggzsﬁsf‘y‘;‘w) Sl Soloctasioms toyeneratotos casos
constructor > ::' .
‘push:Stack int->Stack; Omfoms: ||
transformer ComplesityLimit: |3 |
popiStack->Stack; —
observer Transformer Counts: 3
geild Stack-» String. e =
top: Stack->mt, ‘ Gonerate Test Casos ‘
height Stack->inf;
vars
SStack;
nint, Location of the client jar file of CUT:
oy sisereridefautdeplonStackjor .|
= String, :

Ao, Location of the server:
Tcreate(x) getld() =%,

2 findByPrimaryK e(s) getld() = x,
Fcreate() height() = 0;

Aereate (x) pop() = create(s);

55 pushin) pop() = S, i S height() < 10;
6:5 pushin) top() =n; f S height() < 10,

Figure 2. Interface of The CASCAT Tool

iocatnaet |

‘ Start Test exocutions ‘

5. Evaluation of effectiveness

To evaluate the effectiveness of the testing method, we
have carried out an experiment using the prototype tool.
This section reports the experiment results.

5.1 The experiment process

The main goal of the experiment is to find out the fault
detecting ability of the testing method. The experiment
consists of the following activities.

—Selection of subject components. A number of soft-
ware components from well established public
sources were selected.

— Development of formal specification. For each subject
component, a formal specification in CASOCC is
developed based on the document and source code.

— Test case generation. A number of test sets are gener-
ated by the CASCAT tool from the specification.

— Validation of formal specification. The subject com-
ponent is checked against its formal specification by
executing the components on the test cases using the
CASCAT tool. If any axiom not satisfied or the com-
ponent terminates abnormally on a test case, the
specification is considered as containing errors and
revised. Then, the test cases are re-generated. The it-
eration continues until all axioms are satisfied.

— Fault injection. The mutation operators were applied
to the source codes to insert the faults into the com-
ponents. MulJava [28] is used to generate mutants as
the faulty components.

— Eliminate equivalent mutants. Each mutant is manu-
ally examined to determine if it is equivalent to the
original. Equivalent ones are removed.

— Test execution. Each test set is applied to each faulty
component using the CASCAT tool. A component is
classified as fault detected if at least on of the axioms
of the component is violated or the execution is ter-
minated abnormally. Note that this differs from clas-
sifying whether a mutant is killed according to
whether produced the same output as the original.

5.2 The subjects

The subjects used in the experiments were retrieved

from sources available to the public, such as the official

guide to JBoss [29], J2EE [30], textbooks for profes-

sionals [31, 32, 33] and research papers [34].

We selected ten subjects that consist of a total of 20
components. They were selected for two reasons. First,
they represent correct uses of the component technology
as they are from the developers of the EJB technology.
Therefore, the results of the case study can represent the
best practice in component development rather than ad
hoc uses of the technology. Second, the examples are
selected for variety, i.e. to cover a wide range of appli-
cation domains, of various complexities and to cover all
types of components. Some examples contain only one
component, some consist of several components. These
subjects are briefly described below.

—Bank: It is a session bean that keeps records on the
changes of balances of bank accounts [30].

—College: 1t is for applications in the context of uni-
versity information systems, which keeps records
about the students and the courses that they take. It
consists of two components: Course and Student [30].

—Order: It is an entity bean in the context of online
shopping applications [30].

—Sales: It consists of components SalesRep and Cus-
tomer for applications in business management [30].
—Stock: It is an entity bean in the context of the stock

market information systems [32].

— Warehouse: 1t consists of two components for ware-

house applications. Storage models storage spaces.

Widget models the widgets stored in the spaces [30].

—Gangster: 1t is for a crime watch web portal applica-
tion. It consists of two components. The gangster bean
manages information about gangsters. The readahead
creates html files to display the information [30].

—Product: The Product bean manages the information
about products including the unique product ID, the
name, description and base price of the product [33].

—SafeDriver: 1t is a set of components in the portal
solutions of safedrive.com. It consists of four com-
ponents. The RateTable entity bean deals with the rate
of driver assurance. The Generalinfo session bean fa-
cilitates the clients to call register function. The
RateQuote session bean calculates the premium value.
The Register entity bean registers user details [31].

—Cart: 1t is a session bean that represents a shopping
cart in an online bookstore [30].

— Count: It is a component for counting the number of
events in a period of time [33].

—LinkedList: This session bean implements the opera-
tions on linked lists. The implementation is from a
Java textbook. Its algebraic specification is from [34].

— Math:This session bean implements the basic mathe-
matical functions in java.lang. Math of IDK 1.5.0.6.

Table 1 shows the scales of the components. The
column #C gives the number of classes in the compo-
nent. The column #M gives the number of methods in
the component’s interface. The column #L gives the
total number of lines in the source code including the
comments. The table also shows where the component
comes from in the column Src.

Table 1. Subject components used in the experiment
Subject/Component [#C [#M | #L | Src [Type
Single Component Subjects
Bank 4 4 322 | [28] | Stateful
Stock 3 5 250 | [30] BMP
Product 5 15 278 | [31] CMP
Cart 5 6 226 | [28] | Stateful
Count 3 2 101 [31] | Stateful
LinkedList 4 8 155 [32] | Stateful
Math 3 7 142 [34] | Stateless
Multiple Components Subjects
College Course 3 5 367 | [28] BMP

Student 3 5 330 | [28] BMP
Customer 3 7 350 | [28] BMP
Sales Order 5 7 1082 | [28] BMP
SalesRep 3 5 375 [28] BMP
StorageBin 3 5 360 [28] BMP
Warchouse 1750t 3 | 4 | 291 |[28]] BMP
Gangster Gangster 6 27 214 [27] CMP
ReadAhead 4 7 234 [27] | Stateless
RateTable 3 16 292 | [29] CMP
i Register* 4 19 293 [29] CMP
SafeDriver g eQuote 3 | 5 | 341 |[29] | Stateful
GeneralInfo* 4 2 290 [29] | Stateless
Average 3.7 | 8.6 315 - -
Std Dev 0. 6.3 | 1964 -

There are three types of EJB. A session bean per-
forms a task for a client and implements the business

logic. An entity bean represents a business entity object
that exists in persistent storage. A message-driven bean
acts as a listener for the Java message service API and
processes messages asynchronously [30]. An entity
bean can be implemented in one of two ways: as a Bean
Managed Persistence (BMP) entity bean, or as a Con-
tainer Managed Persistence (CMP) entity bean. Session
beans can also be classified into stateful session beans
and stateless session beans. The components used in the
experiment cover all these types of Java components
except message-driven beans. The type of each com-
ponent is also given in Table 1 in the column Tipe.

5.3 Development of algebraic specifications

In the experiment, we developed algebraic specifica-
tions based on the documents and source codes of the
components, except the linked list.

Generally speaking, the development of an algebraic
specification consists of two main tasks: (a) the de-
scription of the signature of the sorts and the classifica-
tion of operators; (b) the determination of the axioms.
The former involves the analysis of the interfaces of the
components, the identification of the operations and the
classification of operations into creators, constructors,
transformers and observers. The first two steps are
usually straightforward. The signature of the operations
can be derived from the type definitions of the methods
in Java classes. The classification of these methods
requires understanding the semantics of the methods,
but it is usually fairly easy in our case study.

The development of axioms was less difficult than
we expected although it requires a deeper understanding
of the semantics of the components. In our experiment,
we noticed that there is a simple pattern of axioms for
entity beans despite their differences in semantics.

In general, the operations of entity beans usually
consist of a collection of setters and getters. For each
setter setX(v) for setting the value of attribute X to be v,
we often can define an axiom in the following form to
specify that after executing the setter operation, the
value of X is indeed v.

Vs,v. (s.setX(v).getX =v),
where getX is the getter method of attribute X. We can
also to define axioms in the following form to specify
that the setter does not change the values of other at-
tributes, if there is no side-effect expected.

Vs,v. (s.setX(v).getY = s.getY),
where getY is a getter method for another attribute Y.

For session beans, the semantics of a component
represents the component’s business logic in its appli-
cation domain. Thus, it often requires more semantic
analysis to gain a deeper understanding of their mean-
ings. However, once understood the semantics of the
operations, the specification of the meanings in
CASOCC has not been a difficulty. Most predicates

specifying the pre/post-conditions of a component in
design-by-contract approach can be straightforwardly
translated into algebraic specifications. For example,
the property of increase-by-one operation can be speci-
fied as follows in algebraic specification.

Vs. (s.Increase A.getA = s.getA+1).

Table 2 summarises the AS of the components. The
number of creators is in column #Crts. The number of
constructors and transformers is in column #Con/Trans,
the number of observers in column #Obs; and the
number of axioms in column #4xioms. The total amount
of human effort spent on the development of specifica-
tions for each component is also given in the table in the
column 7ime. The average time of writing the algebraic
specification for a component is about 82 minutes.

5.4 Main findings

The main results of the experiments are shown in Table
3. Column #M gives the total number of mutants gen-
erated by the Mulava tool including method mutants
and class mutants. Column #NEM is the total number of
non-equivalent mutants. Column #D gives the number
of mutants that the CASCAT tool detected being faulty,
that is, the number of the mutants that do not satisfy the
axioms. The column Rate gives fault detecting rate, i.e.
the percentage of non-equivalent mutants that the
CASCAT tool detected faults. The fotal fault detecting
rate is calculated as the total number of detected mu-
tants in all examples divided by the total number of
non-equivalent mutants of all components. The average
fault detecting rate is the division of the sum of the fault
detecting rates of the components by the number of the
components. The standard deviations are with respect to
the averages. The experiment shows that according to
both measures of total and average fault detecting rates,
on average the fault detecting ability is around 80%.
The experiment results are consistent with our pre-
liminary experiments reported in [15].

Note that, Register and Generallnfo components are
abstract. MuJava does not generate mutants for abstract
methods. But, CASCAT can still generate and execute
test cases for them because abstract methods are im-
plemented by the JBoss platform automatically when
they are deployed. However, the fault detecting rates for
such components do not truly reflect the effectiveness of
the testing method. Therefore, they are excluded from
statistical analysis of fault detecting ability.

One of the main findings is that the fault detecting
ability is not sensitive to the scale of the subject under
test. As shown in Figure 3, when the number of mutants
increases, the average fault detecting rates stays at the
same level. Statistical analysis of the correlation be-
tween the number of non-equivalent mutants and fault
detecting rate shows that the Pearson product-moment
correlation coefficient between the parameters is 0.20.

Therefore, it is confident to state that fault detecting rate
is independent of the complexity of the component.

Table 2. Summary of the algebraic specifications

Component | #Crts | #Con/Trans | #Obs | #Axioms | Time
Bank 1 1 2 6 60m
Cart 2 2 2 4 50m
Count 1 0 1 1 35m
Course 2 1 2 6 50m
Customer 2 2 3 4 60m
Gangster 2 5 20 19 90m
GeneralInfo 1 0 1 1 30m
LinkedList 1 2 5 16 100m
Math 1 1 5 9 60m
Order 2 0 5 5 60m
Product 2 3 10 14 70m
RateQuote 1 0 4 4 50m
RateTable 2 7 7 14 80m
ReadAhead 1 0 6 6 75m
Register 2 8 9 17 90m
SalesRep 2 1 2 3 40m
Stock 2 1 2 5 65m
StorageBin 3 0 2 4 40m
Student 2 1 2 4 40m
Widget 2 0 2 4 50m
Average 1.75 1.75 4.60 6.85 82.25m
Table 3. Results of experiments
Subject/Component | #M [#NEM | #D [Rate
Single component subjects
Bank 42 37 23| 622
Stock 23 22 13| 59.1
Product 18 14 14| 100.0
Cart 8 8 7] 8715
Count 13 9 8] 889
LinkedList 33 33 32| 97.0
Math 98 73 73| 100.0
Multiple component subjects
College Course 24 24 14] 583
Student 25 25 15| 60.0
Customer 40 40 27] 675
Sales Order 57 53 34] 642
SalesRep 24 24 14] 583
StorageBin 46 44 27| 614
Warchouse 14730t 34 28 200 714
Gangster Gangster 9 8 8| 100.0
ReadAhead 35 33 31| 939
SafeDriver RateTable 48 36 36| 100.0
RateQuote 272 220 202 91.8
Total 849 731 598| 81.8
Average 47.2 40.6 33.2] 79.0
Std Dev 59.9 471.7 449| 17.6
30
—e—#Mutants r
20 [
—=8—Awragerate /
MW —a—Rate

P SR S S S & S e & & e
C &S Q@bs = Qc\‘é \@&&5\\‘@ m@k& & %@6‘% < & PRSI
& 5 \§¥ RS N Q,,,\Q' Qr§2)

&

Figure 3. Complexity vs fault detecting rate

Figure 4 shows how the tests of single component
subjects are compared with the tests of multiple com-
ponent subjects. As one would expect, fault detecting
ability seems decreasing when testing multiple com-
ponent subjects. However, statistical analysis of the
above statement was not conclusive, thus more research

on this is necessary.
100
867
90 800

0 Single component

@ Multiple compoentns

Total Average Detecting Rate Sdt Dev
Figure 4. Single component vs multiple components

100
90

80
70 £4.02

O BMP Entity Beans 86.71

B Session Beans

60
50
40
30
20
10

0

Total Average

Figure S. BMP Entity Beans vs Session Beans

A surprising finding is that the method consistently
detects significantly more faults in session beans than in
BMP entities beans despite that entity beans are usually
much less complex than session beans, as shown in
Figure 5. A statistical analysis using t-test shows that
with probability less than 0.003 the above statement is
false. One of the possible reasons is that the generated
mutants better represent the type of errors that devel-
opers are likely to make in writing session beans than in
writing entity beans. For example, the mutants represent
commission errors are generated to setters and getters
methods of entity beans. Specification-based testing
methods are less capable of detecting them, but such
faults are less likely to occur in practice.

6. Conclusion

This paper developed a technique of automated com-
ponent testing based on algebraic specifications. A
specification language CASOCC is designed to support
testing software components. An algorithm is devel-
oped to generate checkable test cases. An automated
prototype testing tool CASCAT is implemented for
testing EJB components. The approach has the follow-
ing advantages. First, AS are independent of the im-
plementation details, thus suitable for software com-
ponents. Second, as shown by the CASCAT testing tool,
algebraic testing of components can achieve a very high
degree of automation, which include test case genera-
tion, test driver construction and test result checking.

Third, it does not require the availability and uses of the
full set of axioms of all constituent and dependent enti-
ties. Thus, it is scalable and practically usable. More-
over, it allows software testers to focus on a subset of
functions and properties of the component under test.
Finally, the method can achieve a high fault detecting
ability as shown by our experiment.

6.1 Related work

The most closely related work includes the research on
algebraic testing and component testing.

In the area of algebraic testing, there are DAISTS in
early 1980s [16] and Gaudel et al. s work in late 1980s
[17] on testing abstract data types, Frankl and Doong’s
LOBAS language and ASTOOT system [18], Hughes
and Stotts’ Daistish [19] for testing classes of OO pro-
grams, and more recently, Chen, ef al.’s TACCLE [20,
21] for testing clusters of classes. Algebraic testing has
not been applied to component testing before. Existing
techniques of algebraic testing are not readily applicable
to component testing as discussed in the paper. In [26,
27], the notion of checkable test cases (called observ-
able test cases) is studied theoretically. Testing based on
structured algebraic specifications in CASL has also
been investigated theoretically by Machado et al [35,
36]. There are no implementations or empirical studies
for testing components to our knowledge. Table 4
compares our technique with existing test tools that are
based on algebraic specifications.

Table 4. Comparison with existing works

Work |Entities . Result
Test case generation

/System | tested checking
DAISTS Manually scripted ground terms ~ [Manual
ADT . . .
[16] substituted into axioms rogram
|A1l ground terms up to certain Observa-

complexity substituted to axioms; |tion con-
random values assigned to vari- [texts
lables of predefined sorts.

LOFT [17]| ADT

ASTOOT/ Rewriting ground terms into their [Manual

LOBAS[18] Class normal forms using the axioms rogram
Daistish [19]| Class Manqally sqlpted ‘ground terms [Manual
substituted into axioms [program

TACCLE | Class, |Ground normal forms substituted |Observa-

5 uster |in axioms + path coverage ion contex
20,21] | Clust + path g t text
ADT IComposition of observation con- |Direct
’ [texts and axioms with ground checking
CASOCC/ | CI . . .
Class, normal forms substituted into since test

CASCAT | Com- L .
non-primitive variables and ran- |cases are

onent o .
P [dom values for primitive variables |checkable

The speciality of testing component-based systems is
that when a component is integrated into a system, its
specification should not be effected by the context in
which the component is used. This is exactly what the
protected importation mechanism is as a specification
composition mechanism. Other specification composi-
tion mechanisms such as unprotected importation, un-
ion, renaming and translation mechanisms in CASL that
are useful for software architectural specifications seem

less useful in the context of component-based devel-
opment and testing. Thus, the importation relation is
used in CASOCC language.

Comparing with other specification-based compo-
nent testing methods such as those based on de-
sign-by-contract [13] and finite state machines [14], our
method has the advantage of high degree of automation.
In comparison with self-testing techniques such as [12],
specification-based testing methods do not introduce
additional complexity into the code.

6.2 Future work

We are planning more experiments with software that
contains multiple components. Our tool is implemented
for testing EJB 2.0 component. It does not directly
support message driven components defined in EJB 3.0.
Therefore, the case study does not include message
driven components. We are extending the implementa-
tion of the tool to enable direct testing of such compo-
nents. We are also interested in extending the technique
for testing other types of systems such as web services
and concurrent systems. As stated in [37, 38], the theo-
ries of behavioural algebraic specifications can be ap-
plied to a wider range of software systems including
concurrent and non-deterministic systems.

7. References

[1] Hopkins,J., Component primer, C.ACM 43(10), 27-30.-

[2] Szyperski,C., Component Software: Beyond Object Ori-
ented Programming, 2" Edition, Addison Wesley, 2002.

[3] D'Souza, D. and Wills,A.C., Objects, Components and
Frameworks with UML, Addison Wesley, 1999.

[4] Gao,J., Tsao,J., & Wu, Y., Testing and Quality Assurance
for Component-Based Software, Artech House, 2003.

[5] Sparling,M., Lessons learned through six years of com-
ponent-based development, C.ACM 43(10), 2000, 47-53.

[6] Crnkovic,I., Larsson,M., A case study: demands on
component-based development, ICSE'2000, 22-30.

[7] Morisio, M., et al., Investigating and improving a COTS-
based software development, ICSE'00, 32-41.

[8] Beydeda S. & Gruhn, V. (eds), Testing Commercial-
Off-The-Shelf Components and Systems, Springer, 2005.

[9] Zhu, H. and He, X., A Methodology of Component Inte-
gration Testing, in [8], Springer, 2005, 239-269.

[10]-Beydeda, S. & Gruhn, V., State of art in testing com-
ponents, QSIC’03, 146-153.

[11] Zhu, H. and He, X., An Observational Theory of Inte-
gration Testing for Component-Based Software Devel-
opment, COMPSAC’01, 2001.

[12] Beydeda, S., Self-Metamorphic-Testing Components,
Proc. COMPSAC'06, 2006, 265-272

[13] Briand, L. C., Labiche, Y., Séwka, M. M., Automated,
Contract-based User Testing of Commercial-Off-The-
Shelf Components, ICSE’06, 92-101.

[14] Gallagher, L. and Offutt, J., Automatically testing in-
teracting software components, AST’06, 57-63.

[15] Kong,L., Zhu,H. & Zhou,B., Automated Testing EJB

Components Based on Algebraic
COMPSAC’07, Vol. 2, 717-722.

[16] Gonnon, J., McMullin, P. and Hamlet, R,
Data-Abstraction Implementation, Specification and
Testing, ACM TOPLAS 3(3), 1981, 211-223.

[17] Bernot, G., Gaudel, M. C., and Marre, B., Software
testing based on formal specifications: a theory and a tool,
Software Engineering Journal, Nov. 1991, 387- 405.

[18]Doong,K.&Frankl,P., The ASTOOT approach to testing
object-oriented programs,ACM TSEM3(2),1994, 101-130

[19] Hughes, M. and Stotts, D., Daistish: systematic alge-
braic testing for OO programs in the presence of
side-effects. ISSTA’96, 53-61.

[20] Chen,H.Y., Tse,T.H. & Chen,T.Y., TACCLE: a meth-
odology for object-oriented software testing at the class
and cluster levels, ACM TSEM 10(1), 2001, 56-109.

[21] Chen, H.Y., et al., In black and white: an integrated
approach to class-level testing of object-oriented pro-
grams, ACM TSEM 7(3), 1998, 250-295.

[22] Zhu, H., A Note on Test Oracles and Semantics of Al-
gebraic Specifications, QSIC'03, 91-99.

[23] Goguen, J. A., et al. Initial Algebra Semantics and Con-
tinuous Algebras, J. ACM 24(1), 1977, 68 —95.

[24] Sannella, D. and Tarlecki, A., Algebraic methods for
specification and formal development of programs, ACM
Computing Surveys 31(3es), Article 10, Sept. 1999.

[25] Bidoit,M., Sannella,D. & Tarlecki,A., Architectural
Specifications in CASL, Formal Aspects of Computing 13,
2002, 252-273.

[26] Le Gall, P. and Arnould, A., Formal specification and
test: correctness and oracle, 11" WADT/9"™ COMPASS
Workshop, LNCS 1130, Springer 1996, 342-358

[27] Machado, P, On oracles for interpreting test results
against algebraic specifications, AMAST'98, LNCS 1548,
Springer, 1998, 502-518.

[28] Ma,Y-S., Offutt,J. & Kwon,Y-R., MuJava: An Auto-
mated Class Mutation System, STVR,15(2):97-133, 2005.

[29] Fleury, M., Stark, S., and Richards, N., JBoss 4.0 -- The
official Guide, Pearson Education, 2005.

[30] Bodoft,S..et al.,The J2EE Tutorial,2" Edt.,Pearson 2004.

[31] Kumar, B. V., Sangeetha, S., Subrahmanya, S. V., J2EE
Architecture, Apress 2003

[32] Mukhar,K.,Zelenak,C.,Weaver,J. L.Crume,J., Beginning
Java EE 5 From Novice to Professional, Apress, 2005.

[33] Srignaesh, R. P., Brose, G., Silverman, M., Mastering
Enterprise Java Beans 3.0, Wiley Publishing, Inc., 2006.

[34] Henkel, J., Discovering and Debugging Algebraic
Specifications for Java Classes, PhD thesis, University of
Colorado at Boulder, USA, 2004.

[35] Machado,P., Testing from Structured Algebraic Specifi-
cations, AMAST2000,LNCS1816,Springer,2000,529-544

[36] Machado,P. and Sannella,D., Unit Testing for CASL
Architectural Specifications, Mathematical Foundations
of Computer Science, LNCS 2420,Springer, 2002,506-518

[37] Goguen,J. and Malcolm,G., A hidden agenda, Theoretical
Computer Science 245(1), 2000, 55-101.

[38] Sannellla,D., Tarlecki,A., On observational equivalence
and algebraic specification, J. Computer & Systems Sci-
ence 34, 1987, 150-178.

Specifications,

