
 

 

Testing Java Components Based on Algebraic Specifications 

 Bo Yu(1), Liang Kong(1), Yufeng Zhang(1), and Hong Zhu(2) 
(1) Department of Computer Science, National University of Defence Technology, Changsha, China 

 (2) Department of Computing, School of Technology, Oxford Brookes University 
Wheatley Campus, Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk 

 
Abstract 

This paper presents a method of component testing 
based on algebraic specifications. An algorithm for 
generating checkable test cases is proposed. A proto-
type testing tool called CASCAT for testing Java En-
terprise Beans is developed. It has the advantages of 
high degree of automation, which include test case 
generation, test harness construction and test result 
checking. It achieves scalability by allowing incre-
mental integration. It also allows testing to focus on a 
subset of used functions and key properties, thus suit-
able for component testing. The paper also reports an 
experimental evaluation of the method and the tool. 

1. Introduction 
Component technology has become a key element in the 
development of large and complex software systems [1, 
2, 3]. It has shifted development focus from design and 
coding to requirements analysis, integration and testing 
[4, 5, 6, 7]. This paper is concerned with testing com-
ponents.  

1.1 Problems in component testing 
Component testing imposes challenges to existing 
software testing techniques. As reported in [5], a par-
ticular difficulty of component testing is the lack of test 
bench on which components can be executed. The de-
velopers thus struggled to test components that have no 
user interface such as server side components. Conse-
quently, developers have to spend as much time in 
writing test harness as to develop the component itself 
[5]. This results in excessive overhead.  

From component users’ point of view, component 
testing is even more difficult and problematic [8, 9]. 
Components are usually delivered as executable code 
without the source code and design information. 
Moreover, the executable code usually contains no 
instrumentation [10]. Thus, component users have very 
limited ability to control and observe the behaviour of 
the component under test [11]. Consequently, white-box 
testing techniques are not applicable to users’ testing of 
software components. In recent years, techniques and 
methods have been advanced for including code in 
commercial-off-the-shelf (COTS) components for 

self-testing; e.g. [12 ]. However, they are yet to be 
adopted by COTS producers. Therefore, currently users’ 
component testing has to be specification- based.   

1.2 Approach to the problems 
In addition to manual component testing methods, re-
searchers on automated testing have explored the uses 
of formal specifications such as design-by-contract [13] 
and state transition diagrams [14]. These methods are 
capable of automatic generation of test cases w.r.t. cer-
tain adequacy criteria. However, they offer little support 
to checking the correctness of test results automatically. 
As argued in [15], testing based on algebraic specifica-
tions (which is called algebraic testing in the sequel) is 
a promising approach.  

Algebraic testing techniques were proposed in early 
1980s [16]. The theory and method developed from 
testing abstract data types in procedural languages [17] 
to testing classes and class clusters in object-oriented 
software [18,19,20,21,22]. The main advantage of al-
gebraic testing is its full automation of testing process, 
including test case generation, test harness construction, 
and test result checking. However, although its theo-
retical foundation is applicable to component testing, 
the techniques for the implementation of automated 
testing tools have to be adapted. For example, in testing 
a component that consists of a number of classes and 
data types and depends on a number of other compo-
nents, it is not practical to require the availability of 
axioms of all these constituent entities. It is often that 
only their interfaces are known.  

This paper further develops algebraic testing tech-
niques to solve this problem. It also allows testing to 
focus on a subset of the properties or functions of the 
component under test. This is particularly important 
because components are often designed for a broad 
applicability, but they are often only used on a subset of 
provided functions [13]. The paper presents a prototype 
automated testing tool called CASCAT for testing of 
Java Enterprise Beans and report the results of experi-
ments in the evaluation of its effectiveness.  

The remainder of the paper is organised as follows. 
Section 2 describes an algebraic specification language 
CASOCC. Section 3 presents the test case generation 
algorithm. Section 4 presents the prototype testing tool 



 

 

CASCAT. Section 5 reports the results of experimental 
evaluation of the testing method. Section 6 concludes 
the paper by a comparison with the related work and a 
discussion of future work.  

2. Specification Language CASOCC 
Algebraic specification (AS) emerged in the 1970s [23]. 
In the past three decades, it has developed into a mature 
formal method [24]. In general, an AS consists of two 
parts <Σ, E>, where Σ is the signature of the algebra that 
defines a collection of sorts and operators; E is a set of 
axioms in the form of conditional equations. The axi-
oms define the semantics of the operators.  

In the specification of abstract data types, a sort 
represents a data type; operators represent the opera-
tions on the data type and constants, which are 0-ary 
operators. For OO software, a sort represents a class and 
the operators represent methods of the class. The at-
tributes are assumed to be accessed through getter and 
setter methods. These interpretations of AS must be 
modified in order to test software components. This 
section presents a language for algebraic specification 
of software components and to support automated 
component testing.  

2.1 Syntax and overall structure  
A software component is a ‘unit of composition with 
contractually specified interfaces and context depend-
encies only. It can be deployed independently and sub-
ject to composition by third parties’ [2]. The interface of 
a component typically contains two types of informa-
tion: (a) the functionality that the component provides; 
(b) the functionality that the component requires. 
Modern component models define the syntax for 
specifying such information to enable components re-
used across organisations and created a COTS compo-
nent market. However, industrial standards of compo-
nent models rarely specify the semantics of the func-
tionality provided and required by a component. The 
language CASOCC is designed to provide a vehicle to 
specify such semantics and at the same time to support 
automatic component testing.  

The name of the language CASOCC stands for 
Common AS of Components and Classes. Here, the 
word ‘common’ has two meanings. First, the language 
does not distinguish software components from classes 
or data types so that it can be applied to all of these types 
of software entities, which often occur at the same time 
in component-based software. They are all represented 
by sorts. Second, the language itself is independent of 
the software component models, or the programming 
languages used to implement the software entities. In 
the implementation of CASOCC language for testing 
components of a specific programming language and/or 
component model, pre-defined sorts can be introduced 

to represent the pre-defined classes/data types.  
A specification in CASOCC consists of a number of 

modular units. Each unit specifies one software entity. 
This entity is represented by a sort, which is called the 
unit’s main sort. Each unit defines the signature of the 
entity (i.e. the operators), a set of axioms that the op-
erators must satisfy as well as a list of ‘imported’ sorts, 
which represent the other software entities that it de-
pends on. The list of imported sorts defines the impor-
tation relation on sorts and thus the dependence struc-
ture of the component-based software. The distinction 
between main sorts from imported sorts does not only 
decide which axioms are to be checked, but also plays a 
significant role in the generation of test cases. It is worth 
noting that importation is different from enrichment or 
extension operations of AS modules [24]. Instead, im-
portation in CASOCC is equal to the protected impor-
tation operation on modules in CafeOBJ and OBJ3. The 
importation relation can also be supported indirectly by 
the composition mechanisms of CASL language [25].  

The following EBNF formulas define the overall 
structure of a specification unit in CASOCC. 
<Spec Unit> ::=  
Spec < Sort Name > Observable: <Boolean> 

 [Import: <Import Sort List>] 
 Operations: <Operation List> 
 [Var:  <Variable Declaration List>] 
 [Axioms: <List of axioms>] 
End 

The VAR clause in a specification unit declares a list 
of universally quantified variables that occur in the 
axioms. Each variable declaration is in the form of 
<variable identifier>:<sort name>, where the sort name 
is either the main sort, an imported sort or a predefined 
sort. In the implementation of CASOCC language for 
testing Java Beans, the following pre-defined sorts are 
Java’s primitive data types, which include byte, short, 
int, long, float, double, char, String and Boolean.  

An axiom in CASOCC is a conditional equation in 
the following form. 
<Axiom> ::= <Label> : <Equation>[, if  <Condition>] 
<Label>::= <Number> | <Identifier> 
<Equation> ::= <Term> = <Term> 
<Condition> ::=  <Term of Boolean type> 
 | <Equation> | <Term> <Relation Operator> <Term> 
 | <Condition> <Logic Connective> <Condition> 

A term can be formed from variables declared in the 
VAR clause and constants of predefined sorts by ap-
plying operators defined in the Operator clause and the 
operators of the predefined sorts and imported sorts. It is 
worth noting that, we use LOBAS’s notation [18] for the 
representation of terms in OO style rather than the tra-
ditional functional style. Therefore, a term f(x,y), i.e. an 
operator f applied to parameters x and y, is represented 
in the form of x.f(y), if x is of the main sort. Details of 
the syntax of terms are omitted for the sake of space. 
The following is an example of CASOCC specification. 
It specifies a stack with bounded depth of 10 elements.  



 

 

Spec Stack   
observable F;       import int, String; 

    operations 
        creator   create: String->Stack; 
        constructor  push: Stack,int->Stack; 
        transformer  pop: Stack->Stack; 
        observer   getId: Stack->String; top: Stack->int;  
               height: Stack->int; 
    vars  S: Stack; n: int;  x: String; 
    axioms 
   1: create(x).getId() = x; 
        2: findByPrimaryKey(x).getId() = x; 
        3: create(x).height() = 0; 
        4: S.push(n) = S; if S.height() = 10; 
        5: S.pop() = S; if S.height() = 0; 
        6: S.push(n).pop() = S; if S.height() < 10; 
        7: S.push(n).top() = n; if S.height() < 10; 
        8: S.push(n).height() = S.height()+1; if S.height() < 10; 
        9: S.pop().height() = S.height()-1; if S.height() >0; 
end  

It is worth noting that, a specification in CASOCC is 
independent of the way that the entity is implemented. A 
unit can be implemented as a component, class or data 
type. A system may consist of entities of different kinds.  

2.2 Behavioural semantics and observable 
sorts 

The semantics of CASOCC language is the so called 
behavioural semantics [22, 37, 38]. Therefore, the sorts 
are classified into observable and non-observable. In 
CASOCC, the observability of a sort is explicitly 
specified by the Observable clause. To ensure the 
soundness of the semantics of an algebraic specification, 
if a sort is indicated to be observable, there must be an 
equality operator “==” provided by the implementation 
of the corresponding software entity. Formally, ob-
servable sorts must satisfy the following syntax and 
semantics constraints [22].  
Definition 1. (Observable sort) 
In an AS <Σ, E>, a sort s is an observable sort implies 
that there is an operation _ == _ : s×s→Bool such that 
for all ground terms τ and τ’ of sort s, 

E |−( (τ == τ’) = true)    ⇔    E |− ( τ=τ’ ).  
An algebra A (i.e. a software entity) is a correct im-
plementation of an observable sort s if for all ground 
terms τ and τ’ of sort s, 

A |= (τ=τ’)   ⇔     A|= ( (τ == τ’) = true)    
Note that pre-defined sorts of Java primitive classes 

and data types are observable.  

2.3 Support to automatic testing  
As discussed in [22], the information about the sort 
observability plays a significant role in the automated 
algebraic testing. To further support automated testing, 
CASOCC requires operators divided into four types in 
their declarations in the Operator clause. These types of 
operators are given below.  
− Creators create and initialise instances of the software 

entity. They must have no parameters of the main sort, 
but result in the main sort.  

− Constructors construct the data structure by adding 
more elements to the data. A constructor must have a 
parameter of the main sort and results in the main sort. 
They may occur in normal forms.  

− Transformers manipulate the data structure without 
adding more data. Similar to constructors, a trans-
former must have the main sort as its parameter and 
results in the main sort. However, they cannot occur in 
any normal forms.  

− Observers enable the internal states of the software 
entity to be observed from the outside. They must 
have a parameter of the main sort but result in an 
imported sort.  
To enable automated testing of software components, 

we require the formal specification is well structured 
and matches the structure of program. The following 
formally defines the notion of well-structured. These 
properties ensure that the test oracles based on obser-
vation contexts are valid in behavioural semantics [22]. 

Let U be a set of specification units in CASOCC and 
S be a set of sorts. For each sort s∈S, there is a unit U 

s∈U that specifies the software entity corresponding to 
sort s. Let ≺  be the importation relation on S.  
Definition 2. (Well founded specifications) 
A sort s ∈ S is well founded if s is observable, or for all s’ 
in the import list of U s, s’ is an observable sort, or s’ is 
well founded. A specification U is well founded if and 
only if the importation relation ≺  is a pre-order on the 
set S of sorts, and all sorts s∈Σ are well founded.  
Definition 3. (Well structured specifications) 
A specification U in CASOCC is well structured if it 
satisfies the following conditions. 
(1) It is well founded; 
(2) For every user defined unit Us∈ U, 

(a) there is at least one observer in Us; 
(b) for every axiom E in Us, if the condition contains 

an equation 'τ τ= , we must have 's s≺ , where 
s’ is the sort of terms τ and τ’.  

A practice implication of the well founded and 
well-structured properties is that for all sorts there are 
finite lengths of observable contexts. Thus, constructing 
test oracles based on observable context is feasible.  

3. Generation of Checkable Test Cases 
This section first reviews the notions of observation 
contexts and checkable test cases. Then, we present the 
algorithm of test case generation.  

3.1 Observation context 
The notion of observation context can be formally de-
fined as follows [17, 20, 22].  



 

 

Definition 1. (Observation context) 
A context of a sort c is a term C with one occurrence of a 
special variable ,  of sort c. The value of a term t of sort 
c in the context of C, written as C[t], is the term obtained 
by substituting t into the special variable , . An obser-
vation context oc of sort c is a context of sort c and the 
sort of the term oc is s c≺ . To be consistent on nota-
tions, we write _.oc: c→s to denote an observation 
context oc. An observation context is primitive if s is an 
observable sort. In such cases, we also say that the ob-
servation context is observable and call the context 
observable context for short.  

The general form of an observation context oc is: 
_.f1(...).f2(...).....fk(...).obs(...) 

where f1, ..., fk are transformers of sort sc, obs is an ob-
server of sort c, and f1(...), ..., fk (...) are ground terms.  A 
sequence of observation contexts oc1, oc2, …, ocn , 
where _.oc1: c→s1, _.oci: si−1→si, i =2,…,n, can be 
composed into an observation context _.oc1.oc2. ….ocn. 
In [20], such compositions of observation contexts are 
called observation context sequences. In this paper, we 
do not distinguish them.  

A primitive observation context (i.e. an observable 
context) produces a value in an observable sort. For 
example, consider the specification of Stack given in the 
previous section. The following are observation con-
texts. Because the predefined sort Integer is observable, 
these observation contexts are primitive.  
 _.top(),    _.pop().top(),     _.pop().pop().top(),    
 _.height(),   _.pop().height (),     _.pop().pop().height().  

There are usually an infinite number of different 
observation contexts for a given AS. We define the 
complexity of an observation context 
_.f1(...).f2(...).....fk(...).obs(...) as the number k of trans-
formers. For example, the complexity of observation 
context _.top()  is 0, and the complexity of 
_.pop().pop().height() is 2. Given an upper bound k on 
complexity, the set of all observation contexts with 
complexity less than or equal to k can be mechanically 
generated from the signatures of the sorts.  

3.2 Checkable test cases 
The basic idea of algebraic testing is to use algebraic 
specification to generate two ground terms that are 
supposed to be equal according to the axioms. Each 
term can be interpreted as a sequence of proce-
dure/method calls. The results of the sequences are then 
checked for their equivalence. If not, errors are detected.  

However, a sort may represent a structured data, a 
class even a component. The equivalence between the 
results is not always directly checkable. For example, in 
the Stack example, Create(‘st’).Push(1).Pop and Create(‘st’) 
should be equivalent, because both result in an empty 
stack called ‘st’. However, stacks are structured data. 
They cannot be directly compared for equivalence.  

One approach to this problem is to generate test cases 
regardless whether the equivalence of the results can be 
checked directly or not; see e.g. [17, 20]. If the results 
cannot be checked directly, a set of observation contexts 
are applied to both results to reduce the equivalence 
problem into a set of sub-problems of equivalency, 
which could be further reduced if necessary. For exam-
ple, to test the equivalence between terms Create(‘st’) and 
Create(‘st’).Push(1).Pop, the observer height can be applied 
to both to obtain two integer values, which can be com-
pared directly. However, this approach does not work 
well for component testing. An alternative approach is 
to generate test cases that are observable, i.e. the equal-
ity of the terms can be observed; see, for example, [26, 
27] for theoretical study of the approach.  

Existing techniques for class testing will generate 
two instances of a class for each test case; one repre-
sents the result of one sequence of method calls. This 
technique is not applicable to components because a 
component can only have one instance [2]. In almost all 
component models, such as in EJB and CCM (CORBA 
Component Model), the result of the first sequence of 
method calls cannot always be copied and saved for 
comparison with the second result. Therefore, in addi-
tion to requiring the terms in a test case are ground, we 
also require the results to be recordable and comparable, 
thus the notion of checkable test cases.  

In general, a test case is a triple <T1, T2, C>, where T1 
and T2 are ground terms and C is an optional condition, 
which is a ground term of Boolean sort. It means that 
values of T1 and T2 should be equivalent if C evaluates 
to True. For the sake of readability, in the sequel we 
write a test case in the form of T1=T2, [if C].  
Definition 2. (Checkable test cases) 
A test case T1=T2, [if C] is directly checkable (or simply 
checkable), if and only if  
a. the sort of terms T1 and T2 is observable, and  
b. the sort of equations in C is observable, if any.  

For example, in the following, test case (a) is not 
checkable, but test case (b) is checkable.  

Create(‘st’).Push(1).Pop = Create(‘st’)             (a) 
Create(‘st’).Push(1).Pop.Height = Create(‘st’).Height   (b) 

3.3 Test case generation 
In addition to the checkability problem, there is another 
problem for the generation of component test cases.  

As discussed above, existing test case generation 
methods are essentially to substitute ground terms into 
variables of two terms that are supposed to be equiva-
lent according to the axioms, such as the two sides of an 
axiom, or one is the normal form of the other [18]. 
However, there are some subtle differences in what are 
substituted into the variables in different techniques. 
DAISTS substitutes user-defined terms [16]. In [17], all 
ground terms of certain complexity are used. TACCLE 



 

 

[20] only uses ground terms in normal forms. A problem 
with these approaches is that when operators have pa-
rameters of predefined data types, such as integers, 
using ground terms is not effective and practical. For 
example, in the form of normal form, the integer value 3 
is represented as succ(succ(succ(0))). An integer value 
2000 would be impossible to be used in a test case. Chen 
et al.’s solution to this problem [20, 21] is to apply 
white-box testing techniques to select values that cover 
all paths in the software under test. Unfortunately, this is 
not applicable to component testing because the source 
code is not always available. Therefore, we combine 
random testing with algebraic testing by selecting the 
values for variables of predefined data types at random. 
The following is the test generation algorithm.  
Algorithm 1.   
Input:  
 Spec s: CASOCC specification unit of the main sort; 
 Sigs s1, s2, …, sk: The signature of imported sorts;  
 TC: A subset of axioms in s (* the axioms to be tested *); 

 vc: Integer (*complexity upper bound of variables*); 
 oc: Integer (*complexity upper bound of observation contexts*) ; 
 rc: Integer (* the number of random values to be assigned to 

variables of primitive sorts*) 
Output:  ts: The set of test cases; 
Begin 
(* Step 1: Initialisation *) 
 pv:= the set of variables in spec s of observable sorts.  
   sv:= the set of variables in spec s of non-observable sorts. 
(* Step 2: generate normal form terms for non-primitive variables*) 
   for each variable v∈sv do 
  {T(v) := NormalForms(v:sv, vc); 
   for each variable v’ in T(v) do 
    if v’ is of observable sort  
    then add v’ to pv else add v’ to sv; }; 
(* Step 3: generate random values for primitive variables *) 
   for each v∈pv do Generate a set RV(v) of rc random values; 
(* Step 4: Substitute normal forms into axioms *) 
 for each tc ∈TC do 
  {for each variable v ∈sv that occurs in tc do 
   for each term gt ∈T(v) do TC:= TC +tc[v/gt]; 
   Remove tc from TC;} 
(* Step 5: Substitute random values into test cases *) 
 for each tc ∈TC do  
 {for each variable v ∈pv that occurs in tc do 
  for each u ∈RV(v) do TC:= TC+tc[v/u]; 
  Remove tc from TC;} 
(* Step 6: Compose test case with observation context *) 
 for each tc=<t1=t2; if c> ∈ TC do 
 { TCO := ∅; 
  if t1 and t2 are not primitive  
  then {OC:= PObsContexts(t1:s, oc);  
   for each obc in OC do TCO:= TCO+<obc.t1=obc.t2;if c>; 
   if c is not primitive then POC :=PObsContexts(c:s, oc);  
   for each tc=<t1=t2; if c>∈TCO do 
    TCO:=TCO+<t1=t2; if ∧{POC.c}> 
  if  TCO ≠∅ then {TC:=TC ∪ TCO; Remove tc from TC;} } }; 
(* Step 7: output test set *) 
 ts := TC;  
End  
In the above algorithm, NormalForms(v:sv, vc) is the set 
of normal forms of the sort sv of v with complexity from 
0 to vc. It is generated from the signatures of the creators 

and constructors of the sorts. PObsContexts(t1:s, oc) is 
the set of primitive observation contexts of sort s with 
complexity from 0 to oc. It can be generated from the 
signatures of the transformers and observers of the sorts. 
The term tc[v/gt] is obtained by systematically replacing 
v with term gt in tc. The term ∧{POC.c} ≅ p1.c ∧ p2.c 
∧ …∧pk.c, if POC={p1, p2, …, pk}.  

The algorithm has the following properties. Their 
proofs are omitted for the sake of space.  
Theorem 1. The test case generation algorithm will 
always terminate if the specification is well founded.  
Theorem 2. The test cases generated are checkable, i.e. 
for all test cases <t1=t2; if c> generated by the algorithm, 
t1, t2 and c are of primitive or observable sorts.  

The following theorem about the correctness of the 
algorithm can be derived from the theorems proven in 
[22]. Here, the software under test is assumed to be 
deterministic.  
Theorem 3. The test cases are valid. That is, if the 
specification is well-structured and the observable sorts 
satisfy the constraints in Definition 1, we have the fol-
lowing properties.  
(a) The program correctly implements the specification 
with respect to the behavioural semantics of algebraic 
specifications implies that the evaluation of t1 and t2 
using the program give equivalent results provided that 
c is evaluated to be true.  
(b) If the evaluation of t1 and t2 gives non-equivalent 
values in an implementation when c is evaluated to true, 
then there are faults in the program.  

The following gives some examples of the test cases 
for the Stack example generated by the CASCAT tool.  
 create(String:[gfn2785]).height() = int:[0]; 
 create(String:[Rm8]).push(int:[961467407]).pop().top()  
 = create(String:[Rm8]).top();  
  if create(String:[Rm8]).height()<int:[10]; 
 create(String:[Rm8]).push(int:[961467407]).pop().height()  
 = create(String:[Rm8]).height();  
  if create(String:[Rm8]).height()<int:[10]; 

4. Testing Tool CASCAT 
Figure 1 shows the structure of prototype testing tool 
CASCAT (Common AS-based Component Automatic 
Testing) for testing Enterprise Java Beans (EJB) on the 
JBoss platform. It contains four main parts. Specifica-
tion Parser parses the AS in CASOCC, and checks the 
well-formedness of the specification and the type cor-
rectness of equations in the axioms. Test Case Genera-
tor takes two parameters from the user and generates a 
set of test cases. The parameters are the upper bounds of 
the complexities of the observation contexts and the 
values substituted into the variables. Test Driver exe-
cutes the component on each test case and records the 
test results. Test Result Evaluator checks the correctness 
of the results and reports to the user.  



 

 

 
 
 
 
 
 
 
 
 

 
Figure 1. Overall Structure of CASCAT Tool 

The inputs to the automated test process are a speci-
fication of the component, the component location de-
ployed to JBoss platform, the location of the JBoss 
server, and the complexities of the observation contexts 
and the ground terms to be substituted into variables in 
the axioms. CASCAT also allows the user to select a 
subset of axioms for testing, thus to focus on a subset of 
functions and properties of the component. In such 
cases, test cases are generated from these selected 
axioms only. Figure 2 shows the interface of the tool.  

 
Figure 2. Interface of The CASCAT Tool 

5. Evaluation of effectiveness 
To evaluate the effectiveness of the testing method, we 
have carried out an experiment using the prototype tool. 
This section reports the experiment results.  

5.1 The experiment process 
The main goal of the experiment is to find out the fault 
detecting ability of the testing method. The experiment 
consists of the following activities. 
− Selection of subject components. A number of soft-

ware components from well established public 
sources were selected.  

− Development of formal specification. For each subject 
component, a formal specification in CASOCC is 
developed based on the document and source code.  

− Test case generation. A number of test sets are gener-
ated by the CASCAT tool from the specification.  

− Validation of formal specification. The subject com-
ponent is checked against its formal specification by 
executing the components on the test cases using the 
CASCAT tool. If any axiom not satisfied or the com-
ponent terminates abnormally on a test case, the 
specification is considered as containing errors and 
revised. Then, the test cases are re-generated. The it-
eration continues until all axioms are satisfied.  

− Fault injection.  The mutation operators were applied 
to the source codes to insert the faults into the com-
ponents. MuJava [28] is used to generate mutants as 
the faulty components.  

− Eliminate equivalent mutants. Each mutant is manu-
ally examined to determine if it is equivalent to the 
original. Equivalent ones are removed.  

− Test execution. Each test set is applied to each faulty 
component using the CASCAT tool. A component is 
classified as fault detected if at least on of the axioms 
of the component is violated or the execution is ter-
minated abnormally. Note that this differs from clas-
sifying whether a mutant is killed according to 
whether produced the same output as the original.  

5.2 The subjects 
The subjects used in the experiments were retrieved 
from sources available to the public, such as the official 
guide to JBoss [29], J2EE [30], textbooks for profes-
sionals [31, 32, 33] and research papers [34]. 

We selected ten subjects that consist of a total of 20 
components. They were selected for two reasons. First, 
they represent correct uses of the component technology 
as they are from the developers of the EJB technology. 
Therefore, the results of the case study can represent the 
best practice in component development rather than ad 
hoc uses of the technology. Second, the examples are 
selected for variety, i.e. to cover a wide range of appli-
cation domains, of various complexities and to cover all 
types of components. Some examples contain only one 
component, some consist of several components. These 
subjects are briefly described below.  
− Bank: It is a session bean that keeps records on the 

changes of balances of bank accounts [30]. 
− College: It is for applications in the context of uni-

versity information systems, which keeps records 
about the students and the courses that they take. It 
consists of two components: Course and Student [30]. 

− Order: It is an entity bean in the context of online 
shopping applications [30]. 

− Sales: It consists of components SalesRep and Cus-
tomer for applications in business management [30]. 

− Stock: It is an entity bean in the context of the stock 
market information systems [32]. 

− Warehouse: It consists of two components for ware-
house applications. Storage models storage spaces. 
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Widget models the widgets stored in the spaces [30]. 
− Gangster: It is for a crime watch web portal applica-

tion. It consists of two components. The gangster bean 
manages information about gangsters. The readahead 
creates html files to display the information [30]. 

− Product: The Product bean manages the information 
about products including the unique product ID, the 
name, description and base price of the product [33]. 

− SafeDriver: It is a set of components in the portal 
solutions of safedrive.com. It consists of four com-
ponents. The RateTable entity bean deals with the rate 
of driver assurance. The Generalinfo session bean fa-
cilitates the clients to call register function. The 
RateQuote session bean calculates the premium value. 
The Register entity bean registers user details [31].  

− Cart: It is a session bean that represents a shopping 
cart in an online bookstore [30]. 

− Count: It is a component for counting the number of 
events in a period of time [33].  

− LinkedList: This session bean implements the opera-
tions on linked lists. The implementation is from a 
Java textbook. Its algebraic specification is from [34]. 

− Math:This session bean implements the basic mathe-
matical functions in java.lang.Math of JDK 1.5.0.6.  
Table 1 shows the scales of the components. The 

column #C gives the number of classes in the compo-
nent. The column #M gives the number of methods in 
the component’s interface. The column #L gives the 
total number of lines in the source code including the 
comments. The table also shows where the component 
comes from in the column Src.  
Table 1. Subject components used in the experiment 

Subject/Component #C #M #L Src Type 
Single Component Subjects 
Bank 4 4 322 [28] Stateful 
Stock 3 5 250 [30] BMP 
Product 5 15 278 [31] CMP 
Cart 5 6 226 [28] Stateful 
Count 3 2 101 [31] Stateful 
LinkedList 4 8 155 [32] Stateful 
Math 3 7 142 [34] Stateless
Multiple Components Subjects 

Course 3 5 367 [28] BMP College Student 3 5 330 [28] BMP 
Customer 3 7   350 [28] BMP 
Order 5 7 1082 [28] BMP Sales 
SalesRep 3 5 375 [28] BMP 
StorageBin 3 5 360 [28] BMP Warehouse Widget 3 4 291 [28] BMP 
Gangster 6 27 214 [27] CMP Gangster ReadAhead 4 7 234 [27] Stateless
RateTable 3 16 292 [29] CMP 
Register* 4 19 293 [29] CMP 
RateQuote 3 5 341 [29] Stateful SafeDriver 

GeneralInfo* 4 2 290 [29] Stateless
Average 3.7 8.6 315 -- -- 
Std Dev  0.9 6.3 196.4 -- -- 

There are three types of EJB. A session bean per-
forms a task for a client and implements the business 

logic. An entity bean represents a business entity object 
that exists in persistent storage. A message-driven bean 
acts as a listener for the Java message service API and 
processes messages asynchronously [30]. An entity 
bean can be implemented in one of two ways: as a Bean 
Managed Persistence (BMP) entity bean, or as a Con-
tainer Managed Persistence (CMP) entity bean. Session 
beans can also be classified into stateful session beans 
and stateless session beans. The components used in the 
experiment cover all these types of Java components 
except message-driven beans. The type of each com-
ponent is also given in Table 1 in the column Type.  

5.3 Development of algebraic specifications 
In the experiment, we developed algebraic specifica-
tions based on the documents and source codes of the 
components, except the linked list.  

Generally speaking, the development of an algebraic 
specification consists of two main tasks: (a) the de-
scription of the signature of the sorts and the classifica-
tion of operators; (b) the determination of the axioms. 
The former involves the analysis of the interfaces of the 
components, the identification of the operations and the 
classification of operations into creators, constructors, 
transformers and observers. The first two steps are 
usually straightforward. The signature of the operations 
can be derived from the type definitions of the methods 
in Java classes. The classification of these methods 
requires understanding the semantics of the methods, 
but it is usually fairly easy in our case study.  

The development of axioms was less difficult than 
we expected although it requires a deeper understanding 
of the semantics of the components. In our experiment, 
we noticed that there is a simple pattern of axioms for 
entity beans despite their differences in semantics.  

In general, the operations of entity beans usually 
consist of a collection of setters and getters. For each 
setter setX(v) for setting the value of attribute X to be v, 
we often can define an axiom in the following form to 
specify that after executing the setter operation, the 
value of X is indeed v. 

∀s,v. (s.setX(v).getX = v),  
where getX is the getter method of attribute X.  We can 
also to define axioms in the following form to specify 
that the setter does not change the values of other at-
tributes, if there is no side-effect expected.  

∀s,v. (s.setX(v).getY = s.getY),  
where getY is a getter method for another attribute Y.  

For session beans, the semantics of a component 
represents the component’s business logic in its appli-
cation domain. Thus, it often requires more semantic 
analysis to gain a deeper understanding of their mean-
ings. However, once understood the semantics of the 
operations, the specification of the meanings in 
CASOCC has not been a difficulty. Most predicates 



 

 

specifying the pre/post-conditions of a component in 
design-by-contract approach can be straightforwardly 
translated into algebraic specifications. For example, 
the property of increase-by-one operation can be speci-
fied as follows in algebraic specification. 

∀s. (s.Increase A.getA = s.getA+1).  
Table 2 summarises the AS of the components. The 

number of creators is in column #Crts. The number of 
constructors and transformers is in column #Con/Trans; 
the number of observers in column #Obs; and the 
number of axioms in column #Axioms. The total amount 
of human effort spent on the development of specifica-
tions for each component is also given in the table in the 
column Time. The average time of writing the algebraic 
specification for a component is about 82 minutes.  

5.4 Main findings  
The main results of the experiments are shown in Table 
3. Column #M gives the total number of mutants gen-
erated by the MuJava tool including method mutants 
and class mutants. Column #NEM is the total number of 
non-equivalent mutants. Column #D gives the number 
of mutants that the CASCAT tool detected being faulty, 
that is, the number of the mutants that do not satisfy the 
axioms. The column Rate gives fault detecting rate, i.e. 
the percentage of non-equivalent mutants that the 
CASCAT tool detected faults. The total fault detecting 
rate is calculated as the total number of detected mu-
tants in all examples divided by the total number of 
non-equivalent mutants of all components. The average 
fault detecting rate is the division of the sum of the fault 
detecting rates of the components by the number of the 
components. The standard deviations are with respect to 
the averages. The experiment shows that according to 
both measures of total and average fault detecting rates, 
on average the fault detecting ability is around 80%. 
The experiment results are consistent with our pre-
liminary experiments reported in [15].  

Note that, Register and GeneralInfo components are 
abstract. MuJava does not generate mutants for abstract 
methods. But, CASCAT can still generate and execute 
test cases for them because abstract methods are im-
plemented by the JBoss platform automatically when 
they are deployed. However, the fault detecting rates for 
such components do not truly reflect the effectiveness of 
the testing method. Therefore, they are excluded from 
statistical analysis of fault detecting ability.  

One of the main findings is that the fault detecting 
ability is not sensitive to the scale of the subject under 
test. As shown in Figure 3, when the number of mutants 
increases, the average fault detecting rates stays at the 
same level. Statistical analysis of the correlation be-
tween the number of non-equivalent mutants and fault 
detecting rate shows that the Pearson product-moment 
correlation coefficient between the parameters is 0.20. 

Therefore, it is confident to state that fault detecting rate 
is independent of the complexity of the component.  

Table 2. Summary of the algebraic specifications 
Component #Crts #Con/Trans #Obs #Axioms Time 
Bank 1 1 2 6 60m 
Cart 2 2 2 4 50m 
Count 1 0 1 1 35m 
Course 2 1 2 6 50m 
Customer 2 2 3 4 60m 
Gangster 2 5 20 19 90m 
GeneralInfo 1 0 1 1 30m 
LinkedList 1 2 5 16 100m 
Math 1 1 5 9 60m 
Order 2 0 5 5 60m 
Product 2 3 10 14 70m 
RateQuote 1 0 4 4 50m 
RateTable 2 7 7 14 80m 
ReadAhead 1 0 6 6 75m 
Register 2 8 9 17 90m 
SalesRep 2 1 2 3 40m 
Stock 2 1 2 5 65m 
StorageBin 3 0 2 4 40m 
Student 2 1 2 4 40m 
Widget 2 0 2 4 50m 
Average 1.75 1.75 4.60 6.85 82.25m

Table 3. Results of experiments 
Subject/Component #M #NEM #D Rate 

Single component subjects 
Bank 42 37 23 62.2
Stock 23 22 13 59.1
Product 18 14 14 100.0
Cart 8 8 7 87.5
Count 13 9 8 88.9
LinkedList 33 33 32 97.0
Math 98 73 73 100.0

Multiple component subjects 
Course 24 24 14 58.3College Student 25 25 15 60.0
Customer 40 40 27 67.5
Order 57 53 34 64.2Sales 
SalesRep 24 24 14 58.3
StorageBin 46 44 27 61.4Warehouse Widget 34 28 20 71.4
Gangster 9 8 8 100.0Gangster ReadAhead 35 33 31 93.9
RateTable 48 36 36 100.0SafeDriver RateQuote 272 220 202 91.8

Total 849 731 598 81.8
Average  47.2 40.6 33.2 79.0
Std Dev 59.9 47.7 44.9 17.6

Figure 3. Complexity vs fault detecting rate 
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Figure 4 shows how the tests of single component 
subjects are compared with the tests of multiple com-
ponent subjects. As one would expect, fault detecting 
ability seems decreasing when testing multiple com-
ponent subjects. However, statistical analysis of the 
above statement was not conclusive, thus more research 
on this is necessary.  

Figure 4. Single component vs multiple components 

Figure 5. BMP Entity Beans vs Session Beans 
A surprising finding is that the method consistently 

detects significantly more faults in session beans than in 
BMP entities beans despite that entity beans are usually 
much less complex than session beans, as shown in 
Figure 5. A statistical analysis using t-test shows that 
with probability less than 0.003 the above statement is 
false. One of the possible reasons is that the generated 
mutants better represent the type of errors that devel-
opers are likely to make in writing session beans than in 
writing entity beans. For example, the mutants represent 
commission errors are generated to setters and getters 
methods of entity beans. Specification-based testing 
methods are less capable of detecting them, but such 
faults are less likely to occur in practice.  

6. Conclusion 
This paper developed a technique of automated com-
ponent testing based on algebraic specifications. A 
specification language CASOCC is designed to support 
testing software components. An algorithm is devel-
oped to generate checkable test cases. An automated 
prototype testing tool CASCAT is implemented for 
testing EJB components. The approach has the follow-
ing advantages. First, AS are independent of the im-
plementation details, thus suitable for software com-
ponents. Second, as shown by the CASCAT testing tool, 
algebraic testing of components can achieve a very high 
degree of automation, which include test case genera-
tion, test driver construction and test result checking. 

Third, it does not require the availability and uses of the 
full set of axioms of all constituent and dependent enti-
ties. Thus, it is scalable and practically usable. More-
over, it allows software testers to focus on a subset of 
functions and properties of the component under test. 
Finally, the method can achieve a high fault detecting 
ability as shown by our experiment.  

6.1 Related work 
The most closely related work includes the research on 
algebraic testing and component testing.  

In the area of algebraic testing, there are DAISTS in 
early 1980s [16] and Gaudel et al.’s work in late 1980s 
[17] on testing abstract data types, Frankl and Doong’s 
LOBAS language and ASTOOT system [18], Hughes 
and Stotts’ Daistish [19] for testing classes of OO pro-
grams, and more recently, Chen, et al.’s TACCLE [20, 
21] for testing clusters of classes. Algebraic testing has 
not been applied to component testing before. Existing 
techniques of algebraic testing are not readily applicable 
to component testing as discussed in the paper. In [26, 
27], the notion of checkable test cases (called observ-
able test cases) is studied theoretically. Testing based on 
structured algebraic specifications in CASL has also 
been investigated theoretically by Machado et al [35, 
36]. There are no implementations or empirical studies 
for testing components to our knowledge. Table 4 
compares our technique with existing test tools that are 
based on algebraic specifications.   

Table 4. Comparison with existing works 
Work 

/System 
Entities 
tested Test case generation Result 

checking 
DAISTS 

[16] ADT Manually scripted ground terms 
substituted into axioms 

Manual 
program 

LOFT [17] ADT 

All ground terms up to certain 
complexity substituted to axioms; 
random values assigned to vari-
ables of predefined sorts.  

Observa-
tion con-
texts 

ASTOOT / 
LOBAS[18] Class Rewriting ground terms into their 

normal forms using the axioms 
Manual 
program 

Daistish [19] Class Manually scripted ground terms 
substituted into axioms 

Manual 
program 

TACCLE 
[20, 21] 

Class,  
Cluster

Ground normal forms substituted 
in axioms + path coverage 

Observa-
tion context

CASOCC/ 
CASCAT 

ADT, 
Class, 
Com-
ponent

Composition of observation con-
texts and axioms with ground 
normal forms substituted into 
non-primitive variables and ran-
dom values for primitive variables

Direct 
checking 
since test 
cases are 
checkable 

The speciality of testing component-based systems is 
that when a component is integrated into a system, its 
specification should not be effected by the context in 
which the component is used. This is exactly what the 
protected importation mechanism is as a specification 
composition mechanism. Other specification composi-
tion mechanisms such as unprotected importation, un-
ion, renaming and translation mechanisms in CASL that 
are useful for software architectural specifications seem 
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less useful in the context of component-based devel-
opment and testing. Thus, the importation relation is 
used in CASOCC language. 

Comparing with other specification-based compo-
nent testing methods such as those based on de-
sign-by-contract [13] and finite state machines [14], our 
method has the advantage of high degree of automation. 
In comparison with self-testing techniques such as [12], 
specification-based testing methods do not introduce 
additional complexity into the code.  

6.2 Future work 
We are planning more experiments with software that 
contains multiple components. Our tool is implemented 
for testing EJB 2.0 component. It does not directly 
support message driven components defined in EJB 3.0. 
Therefore, the case study does not include message 
driven components. We are extending the implementa-
tion of the tool to enable direct testing of such compo-
nents. We are also interested in extending the technique 
for testing other types of systems such as web services 
and concurrent systems. As stated in [37, 38], the theo-
ries of behavioural algebraic specifications can be ap-
plied to a wider range of software systems including 
concurrent and non-deterministic systems. 
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