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Abstract—The accurate description of service semantics
plays a crucial role in service discovery, composition and
interaction. Most work in this area has been focussed on
ontological descriptions, which are searchable and machine-
understandable, but do not define service functionality in a
verifiable and testable way. Formal specification techniques,
having evolved over the past 30 years, can define semantics
verifiably and testablly, but they have not yet been applied
to service computing because formal specifications are not
searchable. There is a huge gap between these two methods
of semantics description.

In this paper, we bridge the gap. Our technique is to
specify services formally in an algebraic specification language
and then to extract ontological description as profiles in the
language OWL-S, with the associated searchability benefits. We
present a prototype tool for performing this transformation
and report a case study to demonstrate the feasibility of
our approach. The algebraic specification language we use is
SOFIA (Service Oriented Formalism in Algebras).

Keywords-Web services, Formal semantics, Algebraic speci-
fication, Ontology, OWL-S.

I. INTRODUCTION

The advent of Web Services as autonomous, platform-
independent computational entities has greatly facilitated
the uptake and use of the paradigm of service-oriented
computing. Various initiatives have been advanced to define
the semantics of services. These are aimed at enabling the
automation of service discovery, composition and interoper-
ation. Generally speaking, the semantics of software systems
and their components can be described in two different
ways: using ontologies and using formal specifications. The
former is easy for software developers to understand and for
computers to process. The latter, however, gives semantics
that are both testable and verifiable. Unfortunately, there is
wide gap between these two approaches.

This paper aims at bridging the gap with an automated
software tool that converts the formal specification to the
ontology, thereby conferring the machine-readability and
human-understandability benefits of ontologies onto formal
specifications. The main contributions of this paper are:

1) a set of mapping rules that translate algebraic specifi-
cations into domain ontologies,

2) the rules that, given such a domain ontology, extract
ontological descriptions of services from the same
algebraic specifications,

3) a tool called TrS2O that implements both rules for the
SOFIA algebraic specification language, and

4) a case study in which the tool is applied to a real world
RESTful Web Service, the API of GoGrid [1].

The GoGrid API is a RESTful Web Service that enables
resource management of Infrastructure-as-a-Service (IaaS)
on the cloud. SOFIA has been devised as an improvement on
our previous algebraic specification language CASSOC-WS
[2], with significant changes to the syntax and semantics.
For the sake of space, SOFIA will be documented in a
separate paper. A short reference manual is available at [3].
The transformation rules, however, will be presented in a
general language-neutral form though the tool TrS2O has
been implemented for SOFIA.

The remainder of the paper is organised as follows.
Section II defines the general mathematical structure of
algebraic/co-algebraic specifications. Section III presents the
mapping rules that translate algebraic specifications into
ontologies and the rules that extracts ontological descriptions
of the service semantics. Section IV describes the prototype
tool TrS2O that implements both sets of rules for the SOFIA
language and represents the resulting ontology and service
semantics in OWL and OWL-S profiles. Section V reports
the case study of GoGrid API. Section VI concludes the
paper with a comparison of related work and a discussion
of future work.

II. MATHEMATICAL STRUCTURE OF ALGEBRAIC
SPECIFICATIONS

In this section, we integrate the theories of algebraic
and co-algebraic specifications to define the mathematical
framework in which specification languages for service-
oriented systems, such as SOFIA, can be formally defined.

A. Algebraic Structures

We regard a service-oriented system as consisting of a
collection of units. As in [4], we assume that the specifi-
cation of a software system is well-structured in the sense
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that each software unit has a corresponding specification unit
with a unique sort name, and any real-world concepts and
entities that are used are also specified by corresponding
specification units.

We recognise two different ways in which one unit can be
constructed from another, extension and usage, as follows:
• a unit can be extended with additional elements, in a

manner similar to the inheritance relation of object-
orientation. The notation s′ B s means that s′ extends
s.

• a unit can use another unit eg as a component, or as
a parameter or result from an operation etc, like the
association relation of object-orientation. The notation
s′ ≺ s means that s uses s′, and s′ � s means that
s′ ≺ s or s′ = s.

A well-structured specification of a collection of soft-
ware units should also preserve both of these relationships
between units. Formally, we define the notion of system
signature to represent the overall structures of software
systems as follows.

Definition 1: (System signature) A system signature is an
ordered pair (S,Σ), where S = 〈S,B,≺〉 is a set S of sorts
with two binary relations on S denoted by B and ≺, and
Σ = {Σs|s ∈ S} is a collection of unit signatures, with Σs

denoting the unit signature for sort s. 2
The notion of unit signature will be defined below after

the necessary preliminaries.
Every kind of software entity, whether it be an abstract

data type, a class, a component or, as here, a service, must
define a set of typed operators. The syntactic aspect of an
operator is determined by its domain, its co-domain and its
identifier and is specified in the following form.

op : s1, s2, · · · , sn → s′1, s
′
2, · · · , s′k

where op is the identifier of the operator, (s1, s2, · · · , sn),
n ≥ 0, are the domain sorts, and (s′1, s

′
2, · · · , s′k), k > 0,

are the co-domain sorts.
We allow an operator to have more than one domain sort

and more than one co-domain sort at the same time. This
is the main difference between our theory and that used
for algebraic specifications, which require a single sort co-
domain, and that used for coalgebraic specifications, which
require a single sort domain. These restrictions are too tight
to specify services so they are relaxed in our theory. This
allows us, for example, to give a BookTicket operator for
an online ticket booking service a signature like this:
BookTicket: DATE,NAT,BOOKING -> MESSAGE,BOOKING.

Here DATE is the date of the performance, NAT is the number
of tickets wanted, MESSAGE is the response to the requester.
BOOKING represents the state of the online booking services.
It occurs in both the domain and the co-domain so that the
original state can be taken as input and the modified state
can be produced as output.

We now define the notion of unit signature to represent
the structure of software units, as follows.

Definition 2: (Unit Signature)
Given a system signature (S,Σ), the unit signature for

a sort s ∈ S, denoted by Σs, consists of a finite family of
disjoint sets Σsw,w′ indexed by pairs of units (w,w′) with w
and w′ ∈ Ws = {x ∈ S|x ≺ s ∨ x = s}∗. Each element
ϕ in set Σsw,w′ is an operator symbol of type w → w′ ,
where w is the domain type and w′ the co-domain type of
the operator. 2

Such operators can be classified as constants, variables,
or general operations as follows.

1) ϕ is a constant, if w = ∅, w′ = (s),
2) ϕ is a variable, if w = (s), w′ = (s′), and s′ ≺ s,
3) Otherwise, ϕ is a general operation.
In the sequel, we will write ΣsC , ΣsV and ΣsG for the

subsets of Σs that contain the constants, the variables and
the general operations, respectively.

The semantics of the operators are defined by axioms
that describe the properties that these functions must satisfy.
An axiom consists of a number of universally quantified
variables and a list of conditional equations. Terms of sort
s are called s-terms.

Let (S,Σ) be a system signature, {Vs|s ∈ S} be a
collection of disjoint sets of variables, where elements of
Vs are called variables of sort s, and s ∈ S be any given
sort. Then, we have:

Definition 3: (Terms)
The set of s-terms is inductively defined as follows. Let

s1, · · · , sn � s. Then
1) An s′-term τ of type w is a s-term of type w, if s′ ≺ s.
2) A variable v ∈ Vs′ is a s-term of type s′.
3) 〈τ1, · · · , τn〉 is a s-term of type (s1, · · · , sn), if

τ1, · · · , τn are s-terms of types s1, · · · , sn, respective-
ly.

4) ϕ(τ) is a s-term of type w′, if τ is an s-term of type w
and ϕs

′
: w → w′ is an operator in the unit signature

Σs
′

for sort s′ � s.
5) τ#K is a s-term of type sK , if τ is an s-term of type

(s1, · · · , sn), where K ∈ {1, · · · , n}. 2
Next, equations and axioms are defined as follows.
Definition 4: (Equation)
Let τ and τ ′ be s-terms of type w, and let c1, · · · , cn and

d1, · · · , dn be s-terms such that for all i = 1, · · · , n, ci and
di are of type si � s. A conditional equation e of signature
Σs has the form

τ = τ ′, if c1 = d1, · · · , cn = dn.

The condition is optional, and when omitted, the above is
called unconditional equation, or simply an equation. 2

Definition 5: (Axiom)
An axiom ax is an ordered pair (Vax, Eax), where Eax

is a list of conditional equations, Vax is a set of variables
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that occur in the equations. These are universally quantified
at the outermost. 2

A specification of a software unit consists of a unit
signature and a set of axioms, whereas a specification of a
software system consists of a set of specification units, which
form a system signature and a set of axioms. Formally, we
have the following definition:

Definition 6: (Specification)
A specification is a triple (S,Σ,Ax), where
1) S = 〈S, .,≺〉, S is a finite set of sorts, ≺ and .

are binary relations on S that represent the uses and
inheritance relations, respectively;

2) Σ = {Σs|s ∈ S} is a set of unit signatures indexed
by S,

3) Ax = {Axs|s ∈ S} is finite set of axioms indexed by
S,

4) for all s and s′ ∈ S, s′ . s implies that Σs ⊆ Σs
′

and
Axs ⊆ Axs′ .

For each s ∈ S, (Σs, Axs) is called the specification unit
for sort s. 2

Note that, by Definition 2, a specification consists of a
system signature (S,Σ), and a collection Ax of axiom sets.

B. Semantics of Algebraic Structures

We now define the semantics of algebraic specifications
by defining what is a correct implementation of a specifi-
cation. In general, an implementation of a specification is a
mathematical structure that realises the operators specified
in the signature with operations that satisfy the axioms.

Definition 7: (Algebra)
Given a system signature (S,Σ), a (S,Σ)-algebra A is a

mathematical structure (A,F) that consists of a collection
A = {As|s ∈ S} of sets indexed by S, and a collection F
of functions indexed by the set

⋃
s∈S Σs such that for each

operator ϕs : w → w′, the function fϕ ∈ F has domain Aw
and co-domain Aw′ , where w = (s1, s2, · · · , sn), Aw =
As1 × · · · × Asn , w′ = (s′1, s

′
2, · · · , s′n), and Aw′ = As′1 ×

· · · ×As′n . 2
The evaluation of a term in an algebra depends on the

values assigned to the variables that occur in the term. Such
an assignment α of variables Vs, s ∈ S, in an algebra A is
a function from Vs to As.

Definition 8: (Evaluation of terms in an algebra)
Given an assignment α. The evaluation of a term τ in an

(S,Σ)-algebra A = (A,F), written Evaα(τ), is defined as
follows.

1) Evaα(v) = α(v);
2) Evaα(〈τ1, · · · , τn〉) = 〈Evaα(τ1), · · · , Evaα(τn)〉;
3) Evaα(ϕ(τ)) = fA,ϕ(Evaα(τ)).
4) Evaα(τ#K) = VK , where Evaα(τ) = 〈V1, · · · , Vn〉,

1 ≤ K ≤ n. 2
Let e be an equation in the following form.

τ = τ ′, if c1 = d1, · · · , cn = dn.

Definition 9: (Satisfaction)
An (S,Σ)-algebra A = (A,F) satisfies e, written A |= e,

if for all assignments α, we have that Evaα(τ) = Evaα(τ ′)
whenever Evaα(ci) = Evaα(di) is true for all i =
1, 2, · · · , n.

Let E = (S,Σ,Ax) be a specification. An (S,Σ)-algebra
A = (A,F) satisfies specification E , written A |= E , if for
all equations e in Ax, we have that A |= e. 2

III. MAPPING SPECIFICATION TO ONTOLOGY

An ontology is a description of the concepts in a domain
through the relations between the concepts, and the indi-
viduals as the instances of the concepts and relations. In
ontology modelling languages, such as OWL, the concepts
are often modelled by classes, and the relations are modelled
by properties, which are also used to describe the features
and attributes of the concepts. The individuals are modelled
by objects, i.e. instances of a concept. An ontology that
consists of a set of concepts and relationships among them
together with a set of individual instances is a representation
of domain knowledge [6].

In this section, we present a set of mapping rules to
derive ontological descriptions of services from algebraic
specifications.

A. Extraction of Domain Ontology

Given a specification (S,Σ,Ax) of service Sv, the
following set of rules will translate the specification into
an ontology. These rules extract classes, properties and
individuals from algebraic specifications.

Rule 1: For each sort s ∈ S of the specification, generate
a formula Class(s). 2

The predicate Class(x) means that x is a class or concept.
Rule 2: For an extension relation s′ B s in the system

signature (S,Σ) of the specification, generate a formula
subClassof(s′, s). 2

The predicate subClassof(x, y) means that class x is a
subclass of y, or equally, x is a sub-concept of y.

Rule 3: For a uses relation s′ ≺ s in the system signature
(S,Σ) of the specification, generate a formula uses(s, s′).
2

The predicate uses(x, y) means that concept x is defined
using the concept y. The uses relationship between classes
or concepts is somehow redundant because further details
about how x uses y will be presented in other precidates
deduced from the operations on the sorts.

Rule 4: For each operator ϕ : s→ s′ ∈ ΣsV ,
1) A formula Property(ϕ) is generated,
2) A formula ϕ(s, s′) is generated. 2
Informally, the predicate Property(ϕ) means that ϕ is a

property. The predicate ϕ(x, y) means that ϕ is a property
of concept x (i.e. an attribute or an element of x), and its
value is of type y.

Rule 5: For each general operation ϕ : w → w′ ∈ ΣsG,
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Specification Sv; 
   … 
   Spec UnitName; 
      …  
      Operation  
          Op: (P1, P2, …, Pn) 
              →(Q1, Q2, …, Qm) 
      … 
   End UnitName 

<rdf:RDF> 
<owl:Ontology rdf:about=""> 
  …  
  <owl:imports rdf:resource="# Sv.owl"/> 
</owl:Ontology> 
 
<profile:serviceName> UnitName.Op </profile:serviceName> 
<profile:hasInput rdf:resource="Sv.owl#P1"/> 
<profile:hasInput rdf:resource="Sv.owl#P2"/> 
  … 
<profile:hasInput rdf:resource="Sv.owl#Pn"/> 
<profile:hasOutput rdf:resource= "Sv.owl#Q1"/> 
<profile:hasOutput rdf:resource= "Sv.owl#Q2"/> 
   … 
<profile:hasOutput rdf:resource= "Sv.owl#Qm"/> 
</rdf:RDF> 

Figure 1. Rules to Translate Specification Unit into Service Profile

1) Generate a formula Class(ϕ).
2) For each s ∈ w, generate a formula Domain(ϕ, s).
3) For each s ∈ w′, generate a formula

Codomain(ϕ, s′). 2
Note that the formula Class(ϕ) means that ϕ is a concept.

Here, we regard an operation as a relation (i.e. a relational
concept) that links the concepts of the domain to the
concepts of the co-domain. The predicate Domain(ϕ, x)
means that x is a domain of the relation ϕ. The predicate
Codomain(ϕ, x) means that x is a co-domain (or range or
output) of the relation ϕ.

Rule 6: For each constant ϕ ∈ ΣsC ,
1) generate a formula Individual(ϕ), and
2) generate a formula s(ϕ). 2
The predicate Individual(y) means that y is an individual

and x(y) means that y is an instance of class x.

B. Generation of Service Profile

Having generated the ontology from a specification, the
services can be described in OWL-S profiles based on the
ontology. Such a profile can also be generated from the
specification unit that defines the service’s functionality.
Figure 1 shows the mapping rules between specifications
and service profiles.

For example, the following is the specification unit that
defines the operations on Servers in the GoGrid system,
where the axioms are omitted since they are not used in
the translation.

Spec GServer;
Uses
ServerListRequest, ServerListResponse,
ServerGetRequest, ServerGetResponse,
ServerAddRequest, ServerAddResponse,
ServerEditRequest, ServerEditResponse,
ServerDeleteRequest, ServerDeleteResponse,
ServerPowerRequest, ServerPowerResponse;

Var
clockTime: Integer;

Operation
List(GServer, ServerListRequest) :
GServer, ServerListResponse;

Get(GServer, ServerGetRequest) :
GServer, ServerGetResponse;

Add(GServer, ServerAddRequest) :
GServer, ServerAddResponse;

Edit(GServer, ServerEditRequest) :
GServer, ServerEditResponse;

Delete(GServer, ServerDeleteRequest) :
GServer, ServerDeleteResponse;

Power(GServer, ServerPowerRequest) :
GServer, ServerPowerResponse;

Axiom
...

End

It can be translated into the functional part of the service
profile. A fragment of the profile for the List operation is
given below.

<owl:Ontology rdf:about="">
<owl:imports rdf:resource=

"http://www.daml.org/services/owl-s/1.0/
Profile.owl"/>

<owl:imports rdf:resource=
"#GServerOntology.owl"/>

</owl:Ontology>
<profile:serviceName> GServer.List
</profile:serviceName>
<profile:hasInput rdf:resource=

"GServerOntology.owl#GServer"/>
<profile:hasInput rdf:resource=

"GServerOntology.owl#ServerListRequest"/>
<profile:hasOutput rdf:resource=

"GServerOntology.owl#GServer"/>
<profile:hasOutput rdf:resource=

"GServerOntology.owl#ServerListResponse"/>
</rdf:RDF>

IV. TOOL TRS2O

A prototype tool called TrS2O (Translator from
Specification to Ontology) has been designed and imple-
mented in Java for translating formal specifications in SOFI-
A to ontological descriptions of services in OWL. Figure 2
shows the overall structure of TrS2O Tool.

 

Service 
Specification 
in SOFIA 

Parser 
and 

Syntax 
Checker 

Ontology     
Generator 

Service 
Ontology  

Parser 
Tree 

Error Report 

Services 
Description 
Generator  Service 

Profile 

TrS2O 

Figure 2. Overall Structure of TrS2O Tool

The tool TrS2O contains three main components.
• Specification Parser and Syntax Checker: It parses

algebraic specifications written in SOFIA and generates
a parse tree. It checks the well-formedness of the
specifications and type correctness of equations in the
axioms.

• Ontology Generator: It takes the parse tree of the alge-
braic specification as input, and generates an ontology
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represented in OWL language according to the rules
defines in section III.

• Services Description Generator: It takes the parser tree
of the algebraic specification and the ontology as input,
and generates the descriptions of services in OWL-S
profiles.

Figure 3. Interface of TrS2O Tool

Figure 3 shows the interface of the tool, where on the
left hand side of the window, the upper part displays the
specification in SOFIA; the lower part is the parsing report.
On the right hand side, the upper part displays the ontology
generated by TrS2O, and the lower part is the profile of
services generated from the specification. It is worth noting
that the ontology generated by TrS2O can be processed by
any OWL tool, such as Protege1 for visualization, reasoning,
and search for domain knowledge based on ontology.

V. CASE STUDY

In this section, we report a case study using a real
industrial RESTful web services GoGrid.

A. GoGrid API

GoGrid is an infrastructure-as-a-service (IaaS) provider
[1]. It provides an easy-to-use API for developers, systems
administrators and end-users to access its functions. Its
services can be accessed through a RESTful web service
interface in a number of different programming and scripting
languages. RESTful web services, unlike SOAP/WSDL, are
based on the HTTP protocol, so each GoGrid API call is an
individual HTTP query.

GoGrid API has 5 types of common requests: List, Get,
Add, Delete, and Edit. These types of requests can be applied
to 8 different types of objects: Job, Load balancer, Server,
Image, IP, Passwords, Billing and Utility. Some of the

1http://protege.stanford.edu/

requests are not applicable to all types of objects, while some
objects have special operators. Table I gives the applicable
operators for each type of objects.

Table I
APPLICABLE OPERATORS ON OBJECTS

Object List Get Add Delete Edit Other Ops
Job Yes Yes
Load Balancer Yes Yes Yes Yes Yes
Server Yes Yes Yes Yes Yes Power
Server image Yes Yes Yes Yes Save,

Restore
IP Yes
Password Yes Yes
Billing Yes
Untility Yes

B. GoGrid Specification in SOFIA

In the case study, we first formally specify GoGrid API
in SOFIA. For each type of objects of GoGrid API, the
formal specification in SOFIA consists of three types of
specification units:
• units that specify the valid requests, including their

structures and the constraints on the combinations of
their components;

• units that specify the responses, also including their
structures and the constraints on the valid combinations
of their components;

• units that specify the objects of certain types, including
their structures in terms of the signatures and the
semantics of the operations expressed in axioms that
characterise the relationships between the requests and
the responses.

There are also some specification units that define the
features and concepts that are common to many types of
objects, requests, or responses. For example, there are four
query parameters that are common to all GoGrid API calls.
For each type of request, there are also some properties that
are common to all types of objects.

The specification of GoGrid is based on a framework for
specifying RESTful web services. The framework defines
the common structure and features of all RESTful web ser-
vices, such as the structure of HTTP requests and responses
as a set of specification units in SOFIA. A concrete RESTful
web services can be specified in a number of specification
units that extend the framework units. For example, the
following is the specification unit that defines HTTPRequest.
Spec HTTPRequest;
Uses HTTPMethod, RequestHeaderField;
Var

method: HTTPMethod;
server: String;
path: String;
headerFields[1..*]: RequestHeaderField;
body: String;

End
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Note that, in SOFIA, when a type of objects is structural,
i.e., it consists of a number of attributes, each attribute is
defined as a variable. In the terminology of algebraic spec-
ification, a ”variable” is an observer, which is an operation
from the sort being defined to another sort. It is similar to
the getters in object-oriented programs for getting the value
of attributes.

Table II gives the numbers of specification units in GoGrid
Specification in SOFIA.

Table II
NUMBER OF UNITS IN GOGRID SPECIFICATION

Type of unit No.
Framework of RESTful web service 10
Common features 37
Definition of Server operations 13
Definition of Server image operations 13
Definition of Load Balancer operations 11
Definition of Job operations 5
Definition of operations on other objects 14
Total 103

C. GoGrid Ontology

Using TrS2O tool, we have extracted ontology from
GoGrid specification. Figure 4 shows the ontology generated
from the framework part of the specification.

Take HTTPRequest sort for example, the fragment of
ontology profile is given below. It includes one class with
2 properties for uses relation and 5 properties for variables
defined as ObjectProperty.

<owl:Class rdf:ID="HTTPRequest">
<rdfs:subClassOf rdf:resource=
"http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>
<owl:Class rdf:ID="HTTPMethod"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>
<owl:Class rdf:ID="RequestHeaderField"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
<owl:ObjectProperty rdf:about=

"#HTTPRequest.method">
<rdfs:domain rdf:resource="#HTTPRequest"/>
<rdfs:range rdf:resource="#HTTPMethod"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about=

"#HTTPRequest.server">
<rdfs:domain rdf:resource="#HTTPRequest"/>
<rdfs:range rdf:resource="#String"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about=

"#HTTPRequest.path">
<rdfs:domain rdf:resource="#HTTPRequest"/>
<rdfs:range rdf:resource="#String"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about=

"#HTTPRequest.headerFields">
<rdfs:domain rdf:resource="#HTTPRequest"/>
<rdfs:range rdf:resource=

"#RequestHeaderField"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about=

"#HTTPRequest.body">
<rdfs:domain rdf:resource="#HTTPRequest"/>
<rdfs:range rdf:resource="#String"/>

</owl:ObjectProperty>

VI. CONCLUSION

In this paper, we proposed an approach to bridge the gap
between formal specification and ontological description of
service semantics by transforming formal specifications into
domain onotology and ontological descriptions of services.
The former is capable of providing verifiable and testable
specifications of service semantics, while the later has the
advantage of practical usability and easy to understand for
software developers. The prototype tool is built for the
specification language SOFIA, and the output is in OWL.
However, the set of mapping rules to translate algebraic
specifications of service to ontology is general and ap-
plicable to all algebraic specification languages and all
ontology description languages. A case study with the tool
demonstrates the feasibility of the proposed approach.

A. Related Work

OWL-S [7], [8] was the first major ontology definition lan-
guage for the description of the semantics of Web Services.
It provides a set of constructs for describing the properties
and capabilities of Web services in a machine-readable
format. WSMO [9] (Web Service Modelling Ontology) is a
conceptual model for semantic description of Web Services
realized in Web Service Modelling Language (WSML) [10].
In addition to the work on the so-called Big Web Services,
there are also attempts to develop languages and facilities
to describe semantics of RESTful web services, such as
WADL [11], MicroWSMO/hRESTS [12], and SA-REST
[13]. These ontology-based approaches describe the seman-
tics of services using vocabulary defined in an ontology for
the meanings of the input and output parameters as well
as the functions of the services. Such descriptions have
the advantages of easy to understand for human developers
and efficient for processing by computers. However, this
approach is inadequate to provide verifiable and testable def-
initions of services’ functions, because an ontology can only
define a vocabulary through the stereotypes of relationships
between the concepts and their instances.
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Figure 4. Ontology Generated from the Framework part of GoGrid Specification

Algebraic specification as a formal method for soft-
ware development was first proposed in the 1970s as an
implementation-independent specification technique for ab-
stract data types [14], [15]. Over these years, it has been
advanced to specify concurrent systems, state-based systems
and software components based on solid foundations of the
theories of behavioural algebras [16] and co-algebras [17]–
[20]. In comparison with other formal approaches, algebraic
specifications are at a very high level of abstraction. They
are independent of any implementation details. Another
attractive feature of algebraic specifications is that they can
be used directly in automated software testing [21]–[25].
This feature is particularly important for service engineering,
because when services compose together dynamically testing
must be performed automatically on-the-fly.

In our previous work, in order to apply algebraic method
to service-oriented software, we extended and combined
the behavioural algebra and co-algebra techniques and re-
vised the algebraic specification language CASOCC, which
was originally designed for the specification of traditional
software entities such as abstract data types, classes and
components [25], [26]. Its revised version CASOCC-WS
was applied to the formal specification of Big Web Services
[2]. A tool that can automatically generate the signatures
of algebraic specifications from WSDL description of Big
Web Services was also reported. More recently, we have
also applied CASOCC-WS to the formal specification of
RESTful Web Services and developed a tool to perform
syntax level consistency checking [27]. A case study with

algebraic specification of a real industrial system GoGrid has
been conducted [28]. Base on these work, a new algebraic
formal specification language called SOFIA is proposed to
improve the practical usability of algebraic specification
languages [3].

Work has been reproted in the literature on transforming
signatures of algebraic specifications into object-oriented
class signatures [29]. They use the traditional algerbaic
specification language, which allows the definition of several
sorts in one specification unit. This makes the transformation
much more complicated. For example, when transforming an
operation into a method, it has to be classified to determine
which class it belongs to. Our new specification language
SOFIA enforces specifications to be well structured where
only one sort is defined in one specification unit. Using
SOFIA, the transformation of specifications into class sig-
nature could be much easier. Moreover, the transformation
of specifications into domain ontology and ontological de-
scription of service semantics is more complicated, because
in addition to recognise classes and the methods in the
specifications, we also need to analyse various relationships
between classes, individuals, etc.

B. Future work

We are pursuing towards a formal approach for specifying
and testing service-oriented system. Currently, we are defin-
ing the formal semantics of the algebraic specification lan-
guage SOFIA in order to lay a solid theoretical foundation
of the proposed approach. We are also developing a tool that
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uses specifications in SOFIA as input to perform automated
testing and verification of web services. Another future work
is to check the consistency of specification based on the
ontological reasoning as well as equational logic inferences.
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