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Abstract

The accurate description of service semantics plays a crucial role in service discovery, composition and interaction.
Most work in this area has been focused on ontological descriptions, which are searchable and machine-
understandable. However, they do not define service functionality in a verifiable and testable manner. In contrast,
formal specification techniques, having evolved over the past 30 years, can define semantics in such a manner, but
they have not yet been widely applied to service computing because the specifications produced are not searchable.
There is a huge gap between these two methods of semantics description. This paper bridges the gap by advancing a
transformation technique. It specifies services formally in an algebraic specification language, and then, extractsan
ontological description of domain knowledge and service semantics as profiles in an ontology description language
such as OWL-S. This brings the desired searchability benefits. The paper presents a prototype tool for performing this
transformation and reports a case study to demonstrate the feasibility of our approach.
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1 INTRODUCTION
The advent of Web Services technology has greatly

influenced the uptake and use of the paradigm of service-

oriented computing. In this paradigm, services are
autonomous,  platform-independent and  distributed
computational entities (Papazoglou, 2012). Various
techniques have been advanced to enable automated
discovery, execution, composition and interoperation of
services at runtime. Such techniques heavily depend on
accurate descriptions of the semantics of services (Singh &

Huhns, 2005). Ideally, such descriptions should be:

e Comprehensibleas  published documentation  for
developers of software that use the services.

e Abstract, hiding design and implementation detail to
protect the vendor’s intellectual property, and for other
reasons.

e Searchableat run-time, since dynamic search and
composition unlocks the full power of service-oriented
computing. Services must be described with an
interface syntax and specified with a functional
semantics.Both must be machine understandable.

e Testable at run-time since dynamic composition delays
integration testing until then, when service has already
been deployed. Services must be highly reliable, and
correct with respect to their semantic descriptions. Both
providers and requesters must be able to verify this.
However, as we shall see in next subsection, no existing

This paper is an extended and revised version of the conference paper
(Liu, Zhu, &Bayley, 2013b) presented at the IEEE 20t International
Conference on Web Services (ICWS 2013).

technique satisfies all of these requirements at once. This
paper integrates existing techniques in an attempt to do so.

1.1 EXISTING WORK AND THE OPEN PROBLEM

Existing techniques for semantics descriptions of
services are divided into two categories: ontology-based
approach and formal method based approach. The former,
comprising the majority of research, uses a vocabulary
defined in application domain ontologies to annotate
services; while the latter uses mathematical notations to
formally define the functions of the software system.

Semantic Web Services have been proposed, and
advanced,in the context of Big Web Services (i.e. those
based on WSDL, SOAP and UDDI, etc.). They describe
services using metadata based on domain ontologies
(Mallraith, Son, & Zeng, 2001). OWL-S was the first major
ontology definition language for this purpose (Martin & al.,
2004). It provides a set of constructs for describing the
properties and capabilities of Web Services in a machine-
readable format. Formal methods were applied to provide a
precise mathematical meaning in a formal ontology.

An alternative approach is the Web Service Modelling
Ontology (WSMO) proposed by De Bruijn et al. (2005), a
conceptual model that uses the Web Services Modelling
Language (WSML) (Bruijn &et al., 2006).

As well as Big Web Services, work has also been carried
out on how to specify the semantics of RESTful web
services (Richardson & Ruby, 2007), such as,
MicroWSMO/hRESTS  (Kopecky, Gomadam, & Vitvar,
2008), WADL (Hadley, 2006) and SA-REST (Lathem,
Gomadam, & Sheth, 2007).
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The above mentioned works all take the same approach
to specifying the semantics of services.A vocabulary is
defined in an application domain ontology to give the
meanings of the input and output parameters, as well as the
functions of the services. Such descriptions are easy for
human developers to understand and efficient for computers
to process. However, they cannot provide a verifiable and
testable definition of a service's function, because any
ontology is limited to stereotypes formed from the
relationship between the concepts and their instances.

Formal methods, which we consider as an alternative to
the ontological approach, have been developed over the past
40 years to define the semantics of software systems in
mathematical notations. One such formal method, algebraic
specification was first proposed in the 1970s as an
implementation-independent specification technique for
defining the semantics of abstract data types (Ehrich, 1982;
Goguen et al., 1977). Over these years, it has been advanced
to specify concurrent systems, state-based systems and
software components, all based on solid foundations of the
mathematical theories of behavioural algebras (Goguen &
Malcolm, 2000) and co-algebras (Bonchi & Montanari,
2008; Cirstea, 1997, 2002; Rutten, 2000).

Algebraic specifications are at a very high level of
abstraction. They are independent of any implementation
details. One attractive feature they have is that they can be
used directly in automated software testing (Chen et al.,
1998; Chen, Tse, & Chen, 2001; Gaudel & Gall, 2008;
Kong, Zhu, & Zhou, 2007; Yu et al., 2008). This feature is
particularly important for service engineering, because,
when services compose together dynamically, testing must
be performed automatically on-the-fly.

The algebraic method has been applied to service-
oriented software by extending and combining the
behavioural algebra and co-algebra techniques. Zhu and Yu
(2010) originally applied the algebraic specification
language CASOCC to define traditional software entities,
such as abstract data types, classes and components (Kong,
Zhu, & Zhou, 2007; Yu et al., 2008). They then extended
the language to form CASSOC-WS and applied that to Big
Web Services (Zhu & Yu, 2010). They developed a tool that
can automatically generate the signatures of algebraic
specifications from WSDL descriptions of Big Web
Services. More recently, CASOCC-WS was also applied to
RESTful web services. A tool was developed for it that
performs syntax level consistency checking (Liu, Zhu, &
Bayley, 2012), and a case study was conducted applying
CASOCC-WS to a real industrial system, GoGrid (Liu, Zhu,
& Bayley, 2013a). Based on these works, a new algebraic
formal specification language called SOFIA was proposed
to improve the practical usability of algebraic specification
languages when applied to services (Zhu, Liu, & Bayley,
2013; Liu, Zhu& Bayley, 2014).

However, algebraic specifications, do not directly
support efficient searching on services, and nor do other
formal methods. This weakness has hampered their adoption
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for services because such searching is crucial for service-
oriented computing. Service semantics must be specified in
a testable and verifiable way and these specifications must
be searchable.

In summary, with a vocabulary defined in an application
domain ontology as annotation, we can create searchable
and comprehensible descriptions. With the mathematical
notations of formal methods, on the other hand, we can
create descriptions that are testable and verifiable. Each
approach has its strengths and weaknesses. The problem is
how can we benefit from both strengths?

1.2 PROPOSED APPROACH AND MAIN CONTRIBUTIONS

To bridge the gap between algebraic specification and
ontological  descriptions, this paper proposes a
transformational approach. Algebraic specifications are
written for services and then transformed with the support of
an automated tool into an ontology-based semantics
description, thereby conferring onto formal specifications
the machine-readability and human-understandability
benefits of ontologies.

The main contributions of the paper are three-fold.

First, we propose a framework to solve the problem
stated in the previous subsection. The semantics of a service
and its domain knowledge are both described in a formal
specification language. The domain knowledge is
automatically transformed into adomain ontology, while the
semantics is transformed into an ontology-based service
description.

Second, we present the details of these two
transformations in the form of transformation rules. We also
report their implementation in an automated tool.

Finally, we demonstrate the feasibility of our solution
with a case study of an actual industrial system called
GoGrid. It is a RESTful web service interface toan
Infrastructure-as-a-Service (laaS).

To our knowledge, the only similar work that has ever
been reported in the literature is (Doell & Dosch, 2005),
where traditional algebraic specification signatures are
transformed into object-oriented class signatures. However,
such traditional signatures cannot be used for specifying
services; we will see why in the next section. A further
problem is that the language is not modularized enough to
separate the definition of domain knowledge from the
specification of service functional semantics. This makes
the two transformations much more complicated, if not
impossible. For example, when transforming an operation
into a method, it is unclear which class to put it into. Our
approach overcomes this difficulty by associating only one
sort with each modular unit of specification.

1.3 STRUCTURE OF THE PAPER

The remainder of the paper is organised as follows.
Section 2 defines preliminary mathematical notions and the
notations of algebraic/co-algebraic specification. It also
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briefly introduces the specification language SOFIA.
Section 3 presents the mapping rules that translate algebraic
specifications into ontologies and the rules that extract the
ontological descriptions of the service semantics. Section 4
describes the prototype tool TrS20 that implements both
sets of rules for the SOFIA language. It represents the
resulting ontology and service semantics in OWL and
OWL-S profiles. Section 5 reports the case study of the
GoGrid API. Section 6 concludes the paper with a
discussion of future work.

2 PRELIMINARIES

In this section, we define preliminary mathematical
notions and notations. We also briefly introduce the SOFIA
language.

2.1 ALGEBRAIC STRUCTURES

We regard a service-oriented system as consisting of a
collection of units. Each unit has a unique identifier, which
is called the sort name. We recognise two different ways in
which one unit can be constructed from another, extension
and usage, as follows:

(1) A unit can be extended with additional elements, in a
manner similar to the inheritance relation of object-
orientation. The notations = s"means that s extendss’,i.e.s
inherits all the operations and axioms defined in s’

(2) A unit can use another unit, e.g. as a component,
operation parameter or operation result, just like the
association relation of object-orientation. Such usage is
denoted by the notation s > s’, whichmeans thatsusess".

As in (Zhu, 2003), we assume that the specification of a
software system is well-structured in the following sense.

1) Each type of software entity has a corresponding
specification unit with a unique sort name.

2) Each type of real-world entity involved in the software
system is specified by a corresponding specification
unit with a unique sort name.

3) The same is also true for each real-world concept.

4) Any extension or wusage relationship between
specification units has a corresponding relationship
between real-world counterparts and vice versa.

Together, a set of specification units, extension relation
and usage relation comprise a system signature, defined
formally as follows.

Definition 1.(System Signature)A system signature is an
ordered pair (Sp, 2), where Sp = (S, >,) is a set Sof sorts
with two binary relations on S denoted by > and o
andX = {Z°|s € S} is a collection of unit signatures, with
XS denoting the unit signature for sorts.

Every kind of software entity, whether it is an abstract
data type, a class, a component or, as here, a service, must
define a set of typed operators. The syntactic aspect of an
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operator is determined by its domain, its co-domain and its
identifier.This is specified in the following form.

op: (51,82, s Sp) = (8'1,8"2, 00, S'1)
where op is the identifier of the operator, (s, s, ..., 5,),n =
0, are the domain sorts, and(s'y, s, ..., s'y), k > 0, are the
co-domain sorts.

We allow an operator to have more than one domain sort
and more than one co-domain sort at the same time. This is
the main difference between our theory and that used for
algebraic specifications, which require a single sort co-
domain, and that used for co-algebraic specifications, which
require a single sort domain. These restrictions are too tight
to specify services so they are relaxed in our theory. This
allows us, for example, to give a BookTicket operator for an
online ticket booking service a signature like this:

BookTicket: DATE, NAT, BOOKING -> MESSAGE, BOOKING
Here, DATE is the date of the performance, NAT is the number
of tickets wanted, MESSAGE is the response to the requester.
BOOKING represents the state of the online booking services.
It occurs in both the domain and the co-domain so that the
original state can be taken as input and the modified state
can be produced as output.

We now define the notion of unit signature to represent
the structure of software units as follows.Let X be a finite
set of symbols. We write X* to denote the set of finite
sequences of the symbols in X. In the sequel, we use W; to
denote {x € S|s > x Vx = s}*.

Definition 2.(UnitSignature)Given a system
signature (Sp, X), the unit signatureXs € Xfor a sorts € S
consists of a finite family of disjoint setsXj, - indexed by
pairs of units(w,w’) withw,w' € W,. Each elementg in
setx;, - is an operator symbol of typew — w', where wis
the domain type and w’ the co-domain type of the operator.

Such operators can be classified as constants, attributes,

andgeneral operations as follows.

(L)e is a constant, ifw = @, w' = (s),

(2) ¢ is an attribute, ifw = (s),w’ = (s") and s > s,
(3) Otherwise,pis a general operation.

In the sequel, we will writeX?, £5,andx for the subsets
of £5that contain the constants, the attributes and the general
operations, respectively.

The semantics of the operators are defined by axioms
that describe the properties that these functions must satisfy.
An axiom consists of a number of universally quantified
variables and a list of conditional equations.

Let (Sp, X) be a given system signature ands € S be any
given sort. We define the notion of valid terms that can be
used in the specification unit of sort s as s-terms. Each s-
term is also typed. Eachw € W is a type in unit s.Formally,
we have the following definition.

Definition 3.(Term)For a unit s € S, the setT* of valid
terms in s, called s-terms, is a family of disjoint sets
{T3|w € W,,s € S}. Here, each T;is the set of s-terms of
type w, and is inductively defined as follows.
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(1) x is an s-term of type w, if x € V7, where V7 is the set of

variables in s of type w.

(2) For each(op: @ — s) € X7, op is an s-term of type s.
(3) For each (op:s — s") € £, op(t) is a s-term of type s’,

if tis an s-term of type s.

(4) For each (op:w - w') € Z%, op(t) is an s-term of type

w’, if tis an s-term of type w.

(5)(ty, o, ..., T, )is an s-term of type w, if 7; is an s-term of
types;, fori = 1,2, ...,n, wherew = (sq, Sy, ..., S )-
(6) t#kis an s-term of types,, if tis an s-term of type

(s1, S, -, Sp),and 0<k<n is a natural number.

An equation in specification unit shas the form t = t’,
wheretand 1’ are s-terms of the same type. A conditional
equation in specification unit shas the form

t=1,ifc; =dy,...,c, =d,,
where tand t'are s-terms of the same type, ¢; and d; are s-
terms of typessuch that s>s;vs;=s for all i=
12,..,n,c =d,..,c, = d,are the conditions.

An axiom in the specification unit s is a conditional or
unconditional equation E with all variables in the equation
universally quantified at the outermost.

A specification unit consists of a unit signature and a set
of axioms.

Definition 4. (Specification) A
triple(Sp, %, Ax) , where
(1) Sp = (S,>,), S is finite set of sorts,> and > are the
extends and uses relations on S, respectively;
(2) T = {Z°|s € S}is a set of unit signatures indexed by s;
(3) Ax = {Ax%|s € S}is a finite collection of axiom sets
indexed by s;
(4) for all s ands’€S ,s s implies that 2% € %°
and Ax* € Ax®.
For eachs € S, (Z°, Ax®) is called the specification unit
for sort s.
Note that, by Definition 2, a specification consists of a
system signature (Sp, Z), and a collection Ax of axiom sets.

specification is a

2.2  SEMANTICS OF ALGEBRAIC SPECIFICATION

We now define the semantics of algebraic specifications
by defining what it means for an implementation to be
correct with respect to a specification. In general, an
implementation of a specification is a mathematical
structure that realises the operators in the signature and
satisfies the axioms.

Definition 5. (Algebra) Given a system signature(Sp, Z) , a
(Sp, %) -algebraT is a mathematical structure (A,F) that
consists of a collectionA = {A|s € S} of sets indexed by s,
and a collection F of functions indexed by (w,w"), where
w,w' € W,,s € S such that for each operator ¢: w —» w',
the function f, € F has domain A, and co-domain A,
whered, = Ay, X Ay, X .. X A ,whenu = (51,85, ..., 8,) .

The evaluation of a term in an algebra depends on the
values assigned to the variables that occur in the term. Such
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an assignment a of variables V;,s € S, in an algebral is a
function fromV; to A;.

Definition 6. (Evaluation of terms in an algebra) Given an
assignment «, the evaluation of a term 7 in an(Sp,X)-
algebral’ = (4, F), writtenEva, (7), is defined as follows.
(1) Eva, (v) = a(v) ;

(QEvay (¢(1) = fa,p (Evay (7)) ;

Q)Eva, ({11, T2, .., Tp)) =

(Evay (1), Evag (12), .., Evay (1))

(4) Eva,(t#k) =¢, , if Eva,(t) = (e, ..,€,) , and
1<k<n.
Definition 7. (Satisfaction) Let e be an equation in the

following form.
t=1,ifc; =dy,...,c, =d,.

An (Sp,X)-algebral’ = (4, F) satisfies e, writtenl = e , if
for all assignments a, we have thatEva,(7) = Eva, (1)
wheneverEva, (c;) = Eva,(d;) istrueforalli =1,2 ..., n.

Lete = (Sp, Z, Ax) be a specification. An(Sp, X)-algebra
I' = (4, F)satisfies specificatione, writtenl = ¢, if for all
equations e in Ax, we have that T  e.

2.3 THEe SOFIA SPECIFICATION LANGUAGE

SOFIA is a new algebraic specification language
designed for the formal specification of services. It is
based on the algebraic structure described above. Here,
we give a brief introduction to the language. The readers
are referred to (Zhu, Liu, & Bayley, 2013) for the
reference manual.

The overall structure of a SOFIA specification is a
collection of specification units. A unit can be split into
two partial units: a Signature unit, to define the
signature, and an Axiom unit, to define the axioms that
apply to the signature unit. The users can also define
auxiliary functions and concepts in a Definition unit.
More formally, in BNF notation we have:

<Specification> ::= <Unit>*

<Unit> ::= <Spec Unit> | <Signature Unit> | <Axiom Unit>

| <Definition Unit>

The “uses” and “extends” relations between
specification units are declared in clauses introduced
with the keywordsusesand extends, as shown below.

<Spec unit> ::= Spec <Sort Name> [<Observability>];

[extends <Sort Names>]
[uses <Sort Names>]
<Signature>;
[<Axioms>]

End

SOFIA also declares if a software entity is observable
in the sense that its states or values can be directly
tested for equality; otherwise, its states or values have to
be checked by other means, e.g. through observers.

SOFIA explicitly declares three kinds of operators
using keywords Const for constants, Var for attributes,
and Operation for general operators. For example, the
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following is the signature unit in the SOFIA specification
of Stack.

Signature Stack;

uses Int, Real, Bool;
Const: nil;
Var
Length: Int;
IsEmpty: Bool;
Top: Real;
Operation
Push(Real);
Pop;
End;
Note that SOFIA assumes that the sort name of the unit
occurs on both sides of the general operators. Thus,
Push(Real)is syntactic sugar for Push: Stack, Real -> Stack.
An axiom in SOFIA is in the form of
for all x1: s1, x2: s2, ..., xn: sn that
el =e2,if cond;
where x1, .., xn are universally quantified variables that
occur in the equation, and si, .., sn are their respective
sorts. For example, the axioms for Stack are as follows.
for all x: Real, s: Stack that
s.push(x).length = s.length+1;
s.push(x).IsEmpty = False;
s.push(x).top = x;
s.push(x).pop =s;
s.pop.length = s.length-1, if s.length>0;
s.length=0, if s.IsEmpty= True;
s.IsEmpty = True, if s.length=0;
s.IsEmpty = False, if s.length>0;
nil.IsEmpty = True;
SOFIA uses the prefix-dot notation for the application of
an operator to the main sort.

To improve the readability of axioms, the language
also allows the definition of local variables/identifiers
for use in equations. The following is an example.

for all x: Real, s: Stack that
let s’ = s.push(x) in
s’.length = s.length+1;
s’.IsEmpty = False;
s'.top =x;
s'.pop=s;
end

3 TRANSFORMATION RULES

Anontology defines the concepts in a domain througha
set of relations between them. Individual entities are the
instances of these concepts. In ontology modeling languages,
such as OWL, concepts are often modeled as classes.
Relations are modeled as properties to describe the features
and attributes of the concepts. Individuals are modeled as
objects,which are instances of the classes that represent the
corresponding concepts. Such an ontologyis a representation
of domain knowledge (Uschold & Gruninger, 1996).
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In this section, we present a set of mapping rules to
derive ontological descriptions of services from algebraic
specifications. We use general algebraic structures rather
than the concrete syntax of SOFIA so that the rules are
generally applicable.

3.1 EXTRACTION OF DOMAIN ONTOLOGY
Given an algebraic specification (Sp,%,Ax) , the
following rules will extract classes, properties and
individuals from algebraic specifications, and thus translate
an algebraic specification into a domain ontology.
Rule 1: For each sorts € S of the specification, generate a
formula Class(s), wherepredicate Class(x) means that x is a
class or, in other words, x is a concept.
Rule 2: For an extension relations = s’ in the system
signature (Sp,X) of the specification, generate a formula
subClassOf(s, s’), where predicate subClassOf(x, y)means
that class x is a subclass of y, or equally, x is a sub-concept
ofy.
Rule 3: For a uses relations > s’ in the system signature
(Sp, %) of the specification, generate a formula uses(s, s,
where predicate uses(x, y) means that concept x is defined
by using the concept y, it is somewhat redundant because it
can be deduced from other predicates later on.
Rule 4: For each constantp € X7,
(1) Generate a formula Individual( ¢ ), where predicate
Individual(y) means thaty is an individual, and
(2) Generate a formula s(¢), where x(y)means that y is an
instance of class x.
Rule 5: For each operator: s - s', ¢ € X,
(1) Generate a formula Property( ¢ ), where predicate
Property(z) means that z is a property, and
(2) Generate a formula ¢(s, s"), where z(x, y) means that z is
a property of concept x (i.e. an attribute or an element of x),
and its value is of type y.
Rule 6: For each general operation:w —» w', @ € Z7 ,
(1) Generate a formula Class(¢), where predicate Class(z)
means that z is a concept, and
(2) For eachs; € w, generate a formula isDomainOf(¢,s;),
where isDomainOf(z, X) means that x is the domain of
the relation z, and
(3) For each s; € w', generate a formula isCodomainOf(g, s;)
where the predicate isCodomainOf(z, xX) means that x is the
co-domain (or range or output) of the relation z..
To explain Rule 6, we regard an operation as a relation
(i.e. a relational concept) that links the concepts of the
domain to the concepts of the co-domain.

3.2 GENERATION OF SERVICE PROFILE

Having generated the ontology from a specification, the
services can be described in an OWL-S profile based on the
ontology. Such a profile can also be generated from the
specification unit that defines the service's functionality.
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Given a specification
(Sp,X,Ax) of service S, the
following rule will generate the
service profile.

Rule 7: For each

operationgp: w - w', @ € X2,

(1) Generate a service profile frame.

(2) Generate an element
serviceNamewith value s. ¢.

(3) For eachs; € w, generate an
element haslnputwith resource
"S,.owl#s;".

(4) For each s; € w', generate an
element hasOutputwith resource
"S,.owl#s;".

Figure 1 illustrates the above
transformation rule.

general
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<rdf:RDF>
<owl:Ontology rdf:about="">

|
<owl:imports rdf:resource="# Sv.owl"/>

Specification Sv;

Spec UnitNamé; PP

Operation/”
Op: (P1, P2, ..., Pn)
—(01,02, ..., Om)

~

End UnitName

“t._ | <profile:hasOutput rdf:resource= "Sv.owl#Q2"/>

</owl:Ontology>
R ———g S
4---I-<profile:serviceName> UnitName.Op </profile:serviceName>
<profile:hasinput rdf:resource="Sv.owl#P1"/>
<profile:hasinput rdf:resource="Sv.owl#P2"/>

e ‘)
<profile:haslnput rdf:resource="Sv.owl#Pn"/>
<profile:hasOutput rdf:resource= "Sv.owl#Q1"/>

For example, here is the specification unit in the SOFIA
language that defines the operations on Servers in the
GoGrid system. The axioms are omitted since they are not

used in the translation.
Spec GServer;

uses ServerlListRequest, ServerListResponse,
ServerGetRequest, ServerGetResponse,
ServerAddRequest, ServerAddResponse,
ServerEditRequest, ServerEditResponse,
ServerDeleteRequest, ServerDeleteResponse,
ServerPowerRequest, ServerPowerResponse;

Var clockTime: Int;
Operation

List(ServerListRequest) : ServerListResponse;
Get(ServerGetRequest) : ServerGetResponse;
Add(ServerAddRequest) : ServerAddResponse;
Edit(ServerEditRequest) : ServerEditResponse;
Delete(ServerDeleteRequest) : ServerDeleteResponse;
Power(ServerPowerRequest) : ServerPowerResponse;

Axiom

End

The profile for the List operation is given as follows.

<rdf:RDF>
<owl:Ontology rdf:about="">
<owl:imports rdf:resource=

"http://www.daml.org/services/owl-s/1.0/Profile.owl"/>
<owl:imports rdf:resource="#GServerOntology.owl"/>

</owl:Ontology>

<profile:serviceName> GServer.List</profile:serviceName>
<profile:hasinput rdf:resource="GServerOntology.owl#GServer"/>

<profile:haslnput rdf:resource=

"GServerOntology.owl#ServerListRequest"/>

<profile:hasOutput rdf:resource=
"GServerOntology.owl#GServer"/>
<profile:hasOutput rdf:resource=

"GServerOntology.owl#ServerListResponse"/>

</rdf:RDF>

R
<profile:hasOutput rdf:resource= "Sv.owl#Qm"/>
</rdf:RDF>

Figure 1. Illustration of Rule 7

4 TRrS20TooL

A prototype tool called TrS20 (Translator from
Specification toOntology) has been designed and
implemented in Java. It translates formal specifications in
SOFIA to ontological descriptions of services in OWL.
Figure 2 shows the overall structure of the TrS20 Tool.

Ontology >
Service Generator
Specification Service
i Parser
in SOFIA “nd I?Farse Ontology
Syntax ree Servi
ervices
Checker Description \/
Generator
$ Service
Profile
\/_

Figure 2.The Overall Structure of The TrS20 Tool

The tool TrS20 contains three main components.
(1) Specification Parser and Syntax Checker, which parses
algebraic specifications written in SOFIA and generates a
parse tree. It checks whether a specification is syntactically
well-formed and whether the equations in the axioms are
type correct.
(2) Ontology Generator, which takes the parse tree of the
algebraic specification as input, and generates an ontology
represented in the OWL language according to the rules
defined in section 3.
(3) Services Description Generator, which takes as inputs
the ontology and the parse tree of the algebraic specification
and generates the descriptions of services in OWL-S
profiles.

63



International Journal of Services Computing (ISSN 2330-4472)

New Open Save Parser GenOnto GenProf Protege Exit

GServer_all.as l

Const PUT, POST, GET, DELETE;

Operation

M2String (HTTPMethod) : String;

Axiom

Forall hm: HTTPMethod That
M2String(hm.PUT) == "PUT";

M2String(hm.POST) == "POST";
M25tring(hm.GET) GET";
M2String(hm.DELETE) == "DELETE";
End

End

Spec RequestHeader;
Const Accept, Accept_Encoding, Date, Host,
If_Modified_Since, If_ None_Match, User_Agent;

Operation

H2String(RequestHeader): String;

Axiom

Forall rh: RequestHeader That
H2String(rh.Accept) == "Accept”;

End

End

Signature RequestHeaderField;
Uses RequestHeader;

Var

header: RequestHeader;
value: String;

Ontology

<2ml version="1.0"7>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns="
xmins:protege="http://protege.stanford.edu/plugins/owl/protege="
xminsixsp="http://www.owl-ontologies.com/2005/08/07 /xsp.owlZ"
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmins="http://www.owl-ontologies.com/Ontologyl361554286.0wlZ"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema®"
xmins:swrl="http://www.w3.0rg/2003/11/swrl#"
xmins:swrlb="http://www.w3.0rg/2003/11/swrlb*"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema®"
xml:base="http://www.owl-ontologies.com/Ontology1361554286.owl">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="ServerDeleteRequest">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="isDomainof"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="GServer.Delete"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfsisubClassOf>
<owl:Class rdf:ID="DeleteRequest"/>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.0rg/2002/07/owl#Thing"/>

This is a parser tool for Sofia!

Begin to parse Spec Unit: HTTPMethod

Successfully parse the Spec Unit: HTTPMethod

Begin to parse Spec Unit: RequestHeader

Successfully parse the Spec Unit: RequestHeader

Begin to parse Signature Unit: RequestHeaderField
Successfully parse the Signature Unit: RequestHeaderField
Begin to parse Signature Unit: HTTPRequest

Successfully parse the Signature Unit: HTTPRequest
Begin to parse Signature Unit: QueryParameter

< »

Operation </owl:Class>

HF2String(RequestHeaderField) : String; - <owl:Class rdf:ID="ListofServer"/> -~
<| i | b < »
Result Profile

<owl:Ontology rdf:about=
<owlkimports rdf:resource="http://www.daml.org/services/owl-s/1.0/Profile.owl"/>
<owkimports rdf:resource="#GServerOntology.owl"/>

</owl:Ontology>

<profile:serviceName> GServer.List </profile:serviceName>

<profile:hasInput rdf:resource="GServerOntology.owl#GServer"/>

<profile:hasInput rdf:resource="GServerOntology.owl#ServerListRequest"/>

<profilehasOutput rdfiresource="GServerOntology.owl#GServer"/>

<profile:hasOutput rdfiresource="GServerOntology.owl#ServerListResponse”/>

</rdf:RDF>

<

Figure 3. The Interface of TrS20 Tool
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Figure 4. Visualization of Ontology Generated byTrS20
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Figure 3 shows the user interface of TrS20. The upper-
left pane displays the specification in SOFIA, while the
lower-left displays the parsing report for it. The panes on the
right are generated from the specification. The upper-right
andshows the ontology and the lower-right showsprofile of
services.

It is worth noting that the ontology generated by TrS20
can be processed by any OWL tool.Figure 4 illustrates the
visualization of the ontology for the GoGrid specification;
the tool used was Protege. Reasoning and searching on
domain knowledge can also be performed.

5 CASE STUDY
In this section, we report a case study with a real
industrial RESTful web services GoGrid.

5.1 GOGRID API

GoGrid' is an infrastructure-as-a-service (laaS) provider.

It provides an easy-to-use API for developers, system
administrators and end-users to access its functions. Its
services can be accessed through a RESTful web service
interface in a number of different programming and
scripting languages. RESTful web services, unlike
SOAP/WSDL, are based on the HTTP protocol, so each
GoGrid API call is an individual HTTP query.

The latest version of the GoGrid API has 11 different
types of objects and 5 types of common operators. Not all
operators can be applied to all types of objects, however.
There are three types of objects that are only used as
parameters of the operators, so no operators are applicable
on them, and there are some objects that have special
operators. Table 1gives the applicable operators for each
type of object.

It is worth noting that some operators in GoGrid have
different meanings for different types of objects. In order to
achieve well-structuredness, in our specification of GoGrid,
the definitions were grouped by object rather than by
operator. For the sake of space, we give here just the
applicable operators for the load balancer object and its
systematic specification, because it is one of the most
important objects with the most operators.

Table 1. Applicable Operators on Objects

Server Yes  Yes  Yes Yes Yes Power
isrﬁgvgzr Yes Yes Yes Yes Rsez\t/glie
Iég?:ncer Yes Yes  Yes Yes Yes

Job Yes  Yes

IP Yes

Password Yes Yes

Billing Yes

Option Yes

! http://www.gogrid.com/
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5.2 SPECIFICATION OF GOGRID IN SOFIA

For each type of objects in the GoGrid system, we write
several specification units to define various aspects of the
object and its operators, including
(1) Valid requests, for which we define their structures and

constraints on how their components may be combined;

(2) Responses,with structures and constraints as above;

(3) Objects of certain types, with signatures and semantics,
including signatures and axioms that characterize the
relationships between the valid requests and the
responses.

Other specification units define features and concepts
common to many types of objects. Examples include the
four query parameters common to all GoGrid API calls.
Some properties are common to all objects too.

The specification of the GoGrid API is based on a
framework for specifying RESTful web services (Liu, Zhu, &
Bayley, 2013b). The framework consists of a collection of
specification units that define the general structure of HTTP
requests and responses so that a specific RESTful web
services can be specified as extensions to these units. In
particular, the following sorts in the framework are used in

the  GoGrid  specification:  URL,  HTTPMethod,
RequestHeader, RequestHeaderField, HTTPRequest,
QueryParameter, QuerysString, ResponseHeader,

ResponseHeaderField and HTTPResponse. Details are
omitted for the sake of space.
5.2.1 Obijects and Collections
Here we give the specifications of the load balance
object and its collection, ListofLB. The latter has an
operation itemsto get an individual load balancer object, an
operation insert to add on object to the list, and an attribute
length to give the number of load balancer objects in the
list. The specifications ofOption, IPPP (which stands for IP
Port Pair), and ListofIPPP(its collection) are omitted here.
Spec LoadBalancer;
uses Option, IPPP, ListofIPPP;
Var
id: Long;
name, description: String;
virtualip: IPPP;
realiplist: ListofIPPP;
type, persistence, os, state, datacenter: Option;
Axiom
For all Ib: LoadBalancer that
lb.id <> Null;
End
End
Spec ListofLB;
uses LoadBalancer;
Var
length: Int;
Operation
items(Int) : LoadBalancer;
insert(LoadBalancer);
End
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Note that, when an object is structural (i.e. it consists of
a number of elements), each element of the object can be
specified using an attributein the SOFIA language.
Traditionallyin algebraic specifications, an attribute is an
observer, i.e. an operation from the sort being defined to
another sort. It is similar to the getters in object-oriented
programs for getting the value of attributes. Here, SOFIA
provides attribute as a language facility to specify the
object’s structure directly.

5.2.2 Requests
There are four query parameters that are common to all
GoGrid API calls, and they are specified as follows:
Spec CommonParameter;
Var
api_key, sig, v, format: String;
Axiom
Forall cp: CommonParameter That
cp.api_key <> Null;
cp.sig <> Null;
cp.v <> Null;
End
End
Here api_key is a key generated by GoGrid for security when
accessing resources, sig is an MD5 signature of the API
request data, v is the version id of the API, and format is an
optional field to indicate the response format required. NULL
is a value that represents no information.

The signature can be generated by an MD5 hash from
three parts:

o the api_key, obtained before API calls can be made,

e the user's sharedsecret, a string of characters set by the
user and known only by the GoGrid server, and

e a Unixtimestamp, the number of seconds since the Unix

Epoch of when the request was made.

Together, the api_key and sharedsecret act as an
authentication mechanism. Their uses in authentication
depend on system context such as time, becausesig is time-
dependent.Therefore, the axioms for specifying the
authentication mechanism are given in the specification of
the whole system. Here, we can only say that both are
required.

In addition to the parameters common to all service
requests, each specific type of service request may also
contain various specific parameters. So,for each type of
request, we first specify the common structure as one sort:
ListRequest, GetRequest, and so on. These are then extended
for the different types of objects, giving ServerListRequest,
LBListRequest, and so on. Here we only have space for the
get operation on load balancer, but it is the most common
operation, and complex enough to be representative. It is
implemented using the HTTP request method GET and is
the only way to determine the internal state of a service.
Spec GetRequest;

extends HTTPRequest;
uses CommonParameter, ListofString;
Var
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para: CommonParameter;
id, name : ListofString;
Axiom
For all gr: GetRequest that
gr.id = Null, if gr.name <> Null;
gr.name = Null, if gr.id <> Null;
End
End
As you can see, the sort GetRequestadds to
HTTPRequestsome extra attributes:para,the common query
parameters defined before, and both idandname; these are
used to select the object; only one is required and it is an
error to use both. Now GetRequest can be extended to load
balancers as LBGetRequest as follows.

Spec LBGetRequest;
extends GetRequest;
uses ListofString;
Var
loadbalancer: ListofString;
Axiom
For all Ibgr: LBGetRequest that
Ibgr.id = Null, if Ibgr.loadbalancer <> Null;
Ibgr.name = Null, if Ibgr.loadbalancer <> Null;
End
End

5.2.3 Responses

The GoGrid API responses can be in any of three
different formats: JSON (JavaScript Object Notation), XML,
and CSV (Comma Separated Values). The default format,
used when the optional format parameter is omitted, is
JSON. However, algebraic specification is abstract enough
to specify all three at once.

The response to a get call starts with a summary, defined
below,containing the total number of objects available, start
index, number of objects returned in a page, and number of
pages.

Signature ResponseSummary;
Var
total, start, returned, numpages: Int;
End

As well as this summary, the response contains status,
request method, status code and a list of returned objects.
Spec GetResponse;

extends HTTPResponse;

uses ResponseSummary;

Var
summary: ResponseSummary;
status, request_method: String;
statusCode: Int;

Axiom
For all gr: GetResponse that

gr.summary.total >=0;

gr.summary.start = 0;

gr.summary.returned = gr. summary.total;

End
End
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For load balancers, this is extended with an attribute for

the list of returned load balancer objects.
Spec LBGetResponse;

extends GetResponse;

uses ListofLB;

Var

objects: ListofLB;
End

5.2.4 Semantics of the operations

For each type of request, we define an operator that
takes a request as the input and produces a response as the
output. All such operators have GoGrid as the context. We
also need to know the clock time on the grid and also the
shared secret chosen by each user and timestamp for
checking the authentication of access. Thus, we have the
following signature for the sort GLB, which represents the
load balancer web services of the GoGrid cloud computing
system.

Spec GLB;
uses
LBListRequest, LBListResponse,
LBGetRequest, LBGetResponse,
LBAddRequest, LBAddResponse,
LBEditRequest, LBEditResponse,
LBDeleteRequest, LBDeleteResponse,
Var
clockTime, timeStamp: Int;
sharedSecret: String;
Operation
List(LBListRequest): LBListResponse;
Get(LBGetRequest): LBGetResponse;
Add(LBAddRequest): LBAddResponse;
Edit(LBEditRequest): LBEditResponse;
Delete(LBDeleteRequest): LBDeleteResponse;
Axiom
End

Axioms are used to characterize the semantics of each
operator, but here, as illustration, we give just the get
operator.

First of all, GoGrid authenticates each get call by using
the MD5 function to reconstruct the signature from the
api_key, the user's shared secret, and the time stamp. It then
compares it to the signature contained in the request
parameter. It also checks the time stamp with its server
clock time, allowing a discrepancy of up to 10 minutes. This
authentication rule can be specified as follows.

For all G:GLB, X:LBGetRequest that
Let key = X.para.api_key,
sig_Re = MD5(key, G.sharedSecret, X.timeStamp)
in G.Get(X).statusCode = 403,
if X.para.sig <> sig_Re
or abs(X.timeStamp - G.clockTime) > 600;
End
End
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An important feature of the Get operator is that it is an
observer. So, applying it will not change the state of the
context sort GLB. This property can be expressed by axioms
in the following form.

Axiom <Get-XOp>:

For all G: GLB, X: LBGetRequest, X1: LBXOpRequest that

[G.Get(X)].XOp(X1) = G.XOp(X1);

End

where XOp is any of the operators List, Get, Add, Edit or
Delete.

The following axiom states that when an operation
changes the state of the cloud by adding a load balancer, the
Get operator should be able to observe the effect
accordingly. In fact, such an axiom also defines the
semantics of the Add operator.

For all G: GLB, X1: LBAddRequest,
X2, X3: LBGetRequest,
irInt
that
[G.Add(X1)].Get(X2).0bjects = G.Add(X1).objects,
If X2.name.length =1,
X1.name = X2.name.items(0),
G.Add(X1).statusCode = 200,
G.Get(X2).statusCode = 200;
[G.Add(X1)].Get(X2).objects = G.Get(X2).objects,
If search(X2.name, X1.name) = False,
G.Add(X1).statusCode = 200,
G.Get(X2).statusCode = 200;
[G.Add(X1)].Get(X2).objects =
insert(G.Get(X3).objects, G.Add(X1).objects)
If search(X2.name, X1.name) = True,
search(X3.name, X1.name) = False,
search(X3.name, X2.name.items(i)) = True,
X2.name.items(i) <> X1.name,
0 =<i, i < X2.name.length,
G.Add(X1).statusCode = 200,
G.Get(X2).statusCode = 200,
G.Get(X3).statusCode = 200;
End
where insert and search are auxiliary functions, defined in a
definition unit, that insert a list of load balancer objects into
another list, and search for a string in a list of strings.

The final axiom listed here states that when an operation
changes the state of the cloud by deleting a load balancer,
the Get operator should also be able to observe the
difference accordingly.

For all G: GLB, X1: LBDeleteRequest,
X2: LBGetRequest
that
[G.Delete(X1)].Get(X2).statusCode = 500,
If search(X2.name, X1.name) = True,
G.Delete(X1).statusCode = 200;
[G.Delete(X1)].Get(X2).objects = G.Get(X2).objects,
If search(X2.name, X1.name) = False,
G.Delete(X1).statusCode = 200,
G.Get(X2).statusCode = 200;
End
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5.2.5 Summary of GoGrid Specification

The complete GoGrid API has been specified in SOFIA.
The numbers of different types of specification units in the
specification are shown in Table 2.

Table 2. Number of Units in GoGrid Specification

Framework of RESTful web service 10
Common features 37
Definition of Server operations 13
Definition of Server image operations 13
Definition of Load Balancer operations 11
Definition of Job operations 5

Definition of operations on other objects 14
Total 103

5.3 GOGRID ONTOLOGY

Using the TrS20 tool, we have extracted an ontology
from the GoGrid specification. Take specification GLBfor
example. Table 3 gives the numbers of classes, properties
and individuals in the GoGrid Ontology in OWL.

Table 3. Basic Data of GoGrid Ontology

Class Sort 39
General Operator 9
extends 9
uses 36
Property Domain 16
Codomain 12
Variable Operator 97
Individual Constant Operator 20

For example, here is a fragment of the ontology profile
for the GetRequest sort. It has, in order,one class for the sort,
one property for the extends relation, two properties for the
uses relations and three properties for attributes, each
defined as ObjectProperty.

<owl:Class rdf:ID="GetRequest">
<rdfs:subClassOf rdf:resource=

"http://www.w3.0rg/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Class rdf:ID="HTTPRequest"/>
</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>

<owl:Class rdf:ID="CommonParameter"/>
</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>
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<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allvValuesFrom>
<owl:Class rdf:ID="ListofString"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:ObjectProperty rdf:about="#GetRequest.para">
<rdfs:domain rdf:resource="#GetRequest"/>
<rdfs:range rdf:resource="#CommonParameter"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#HTTPRequest.id">
<rdfs:domain rdf:resource="#GetRequest"/>
<rdfs:range rdf:resource="#ListofString"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#HTTPRequest.name">
<rdfs:domain rdf:resource="#GetRequest"/>
<rdfs:range rdf:resource="#ListofString"/>
</owl:ObjectProperty>
Similarly, here is a fragment of the ontology profile for
the GLB sort. It has, in order, one class for the sort, ten
properties for the wuses relations, five properties for
isDomainOf and fiveproperties for isCodomainOf,.five
classes for general operators, and three properties for the
attributes, defined as ObjectProperty.
<owl:Class rdf:ID="GLB">
<rdfs:subClassOf rdf:resource=
"http://www.w3.0rg/2002/07/owl#Thing" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>
<owl:Class rdf:ID="LBListRequest"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>
<owl:Class rdf:ID="LBListResponse"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
... //the other 8 properties for the uses relation
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#isDomainOf"/>
<owl:allValuesFrom rdf:resource="#GLB.List "/>
</owl:Restriction>
</rdfs:subClassOf>
...//the other 4 properties for isDomainOf
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#isCodomainOf"/>
<owl:allValuesFrom rdf:resource="#GLB.List "/>
</owl:Restriction>
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</rdfs:subClassOf>
...//the other 4 properties for isCodomainOf
</owl:Class>
<owl:Class rdf:ID="GLB.List">
<rdfs:subClassOf rdf:resource=

"http://www.w3.0rg/2002/07 /owl#Thing" />

</owl:Class>
...//the other 4 classes for general operators
<owl:ObjectProperty rdf:about="#GLB.clockTime">
<rdfs:domain rdf:resource="#GLB"/>
<rdfs:range rdf.resource="#Integer"/>
</owl:ObjectProperty>

...//the other two properties for variable operators

5.4 GoGrid Server Profile.
With the TrS20 tool, we have also generateda service
profile. Here it is for the example of GLB.
<rdf:RDF>
<owl:Ontology rdf:about="">
<owl:imports rdf:resource=
"http://www.daml.org/services/owl-s/1.0/Profile.owl"/>
<owl:imports rdf:resource="#GLBOntology.ow!"/>
</owl:Ontology>
<profile:serviceName>GLB.List</profile:serviceName>
<profile:hasinput rdf:resource= "GLBOntology.owl#GLB" />
<profile:hasinput rdf:resource=
"GLBOntology.owl#GLBListRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owI#GLB" />
<profile:hasOutput rdf:resource=
"GLBOntology.owl#GLBListResponse"/>
<profile:serviceName>GLB.Get</profile:serviceName>
<profile:haslnput rdf:resource= "GLBOntology.owl#GLB"/>
<profile:hasInput rdf:resource=
"GLBOntology.owl#GLBGetRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owI#GLB"/>
<profile:hasOutput rdf:resource=
"GLBOntology.owl#GLBGetResponse"/>
<profile:serviceName>GLB.Add</profile:serviceName>
<profile:haslnput rdf:resource= "GLBOntology.owl|#GLB"/>
<profile:hasinput rdf:resource=
"GLBOntology.owl#GLBAddRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owI#GLB"/>
<profile:hasOutput rdf:resource=
"GLBOntology.owl#GLBAddResponse"/>
<profile:serviceName>GLB.Edit</profile:serviceName>
<profile:haslnput rdf:resource= "GLBOntology.owl#GLB"/>
<profile:haslnput rdf:resource=
"GLBOntology.owl#GLBEditRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/>
<profile:hasOutput rdf:resource=
"GLBOntology.owl#GLBEditResponse"/>
<profile:serviceName>GLB.Delete</profile:serviceName>
<profile:haslnput rdf:resource= "GLBOntology.owl#GLB"/>
<profile:hasInput rdf:resource=
"GLBOntology.owl#GLBDeleteRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/>
<profile:hasOutput rdf:resource=
"GLBOntology.owl#GLBDeleteResponse"/>
</rdf:RDF>
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6 CoONCLUSIONS AND FUTURE WORK

In this paper, we propose an approach that bridges the
gap between formal specification and ontological
description of service semantics. We do this by transforming
formal specifications into domain ontology and ontological
descriptions of services. The former is capable of providing
verifiable and testable specifications of service semantics,
whilst the latter has the advantage of being practically
usable and easy for software developers to understand. The
prototype tool is built for the specification language SOFIA,
and the output is in OWL. A case study with the tool
demonstrates the feasibility of the proposed approach.

We are pursuing a formal approach for specifying and
testing service-oriented systems. Currently, we are
developing a tool that uses specifications in SOFIA as input
to perform automated testing and verification of web
services. Another possible avenue for future work is to
check the consistency of specification using both
ontological reasoning and equational logic inferences.
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