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Abstract 
The accurate description of service semantics plays a crucial role in service discovery, composition and interaction. 
Most work in this area has been focused on ontological descriptions, which are searchable and machine-
understandable. However, they do not define service functionality in a verifiable and testable manner. In contrast, 
formal specification techniques, having evolved over the past 30 years, can define semantics in such a manner, but 
they have not yet been widely applied to service computing because the specifications produced are not searchable. 
There is a huge gap between these two methods of semantics description. This paper bridges the gap by advancing a 
transformation technique. It specifies services formally in an algebraic specification language, and then, extractsan 
ontological description of domain knowledge and service semantics as profiles in an ontology description language 
such as OWL-S. This brings the desired searchability benefits. The paper presents a prototype tool for performing this 
transformation and reports a case study to demonstrate the feasibility of our approach.  
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1 INTRODUCTION 
The advent of Web Services technology has greatly 

influenced the uptake and use of the paradigm of service-

oriented computing. In this paradigm, services are 

autonomous, platform-independent and distributed 

computational entities (Papazoglou, 2012). Various 

techniques have been advanced to enable automated 

discovery, execution, composition and interoperation of 

services at runtime.  Such techniques heavily depend on 

accurate descriptions of the semantics of services (Singh & 

Huhns, 2005). Ideally, such descriptions should be: 

 Comprehensibleas published documentation for 

developers of software that use the services.  

 Abstract, hiding design and implementation detail to 

protect the vendor’s intellectual property, and for other 

reasons. 

 Searchableat run-time, since dynamic search and 

composition unlocks the full power of service-oriented 

computing. Services must be described with an 

interface syntax and specified with a functional 

semantics.Both must be machine understandable. 

 Testable at run-time since dynamic composition delays 

integration testing until then, when service has already 

been deployed. Services must be highly reliable, and 

correct with respect to their semantic descriptions. Both 

providers and requesters must be able to verify this.  

However, as we shall see in next subsection, no existing 

 

technique satisfies all of these requirements at once.  This 

paper integrates existing techniques in an attempt to do so.  

1.1 EXISTING WORK AND THE OPEN PROBLEM 
Existing techniques for semantics descriptions of 

services are divided into two categories: ontology-based 

approach and formal method based approach. The former, 

comprising the majority of research, uses a vocabulary 

defined in application domain ontologies to annotate 

services; while the latter uses mathematical notations to 

formally define the functions of the software system.  

Semantic Web Services have been proposed, and 

advanced,in the context of Big Web Services (i.e. those 

based on WSDL, SOAP and UDDI, etc.). They describe 

services using metadata based on domain ontologies 

(Mallraith, Son, & Zeng, 2001). OWL-S was the first major 

ontology definition language for this purpose (Martin & al., 

2004). It provides a set of constructs for describing the 

properties and capabilities of Web Services in a machine-

readable format. Formal methods were applied to provide a 

precise mathematical meaning in a formal ontology.  

An alternative approach is the Web Service Modelling 

Ontology (WSMO) proposed by De Bruijn et al. (2005), a 

conceptual model that uses the Web Services Modelling 

Language (WSML) (Bruijn &et al., 2006).  

As well as Big Web Services, work has also been carried 

out on how to specify the semantics of RESTful web 

services (Richardson & Ruby, 2007), such as, 

MicroWSMO/hRESTS  (Kopecky, Gomadam, & Vitvar, 

2008), WADL (Hadley, 2006) and SA-REST (Lathem, 

Gomadam, & Sheth, 2007).  
This paper is an extended and revised version of the conference paper 
(Liu, Zhu, &Bayley, 2013b) presented at the IEEE 20th International 
Conference on Web Services (ICWS 2013). 
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The above mentioned works all take the same approach 

to specifying the semantics of services.A vocabulary is 

defined in an application domain ontology to give the 

meanings of the input and output parameters, as well as the 

functions of the services. Such descriptions are easy for 

human developers to understand and efficient for computers 

to process. However, they cannot provide a verifiable and 

testable definition of a service's function, because any 

ontology is limited to stereotypes formed from the 

relationship between the concepts and their instances.  

Formal methods, which we consider as an alternative to 

the ontological approach, have been developed over the past 

40 years to define the semantics of software systems in 

mathematical notations. One such formal method, algebraic 

specification was first proposed in the 1970s as an 

implementation-independent specification technique for 

defining the semantics of abstract data types (Ehrich, 1982; 

Goguen et al., 1977). Over these years, it has been advanced 

to specify concurrent systems, state-based systems and 

software components, all based on solid foundations of the 

mathematical theories of behavioural algebras (Goguen & 

Malcolm, 2000) and co-algebras (Bonchi & Montanari, 

2008; Cirstea, 1997, 2002; Rutten, 2000).  

Algebraic specifications are at a very high level of 

abstraction. They are independent of any implementation 

details. One attractive feature they have is that they can be 

used directly in automated software testing (Chen et al., 

1998; Chen, Tse, & Chen, 2001; Gaudel & Gall, 2008; 

Kong, Zhu, & Zhou, 2007; Yu et al., 2008). This feature is 

particularly important for service engineering, because, 

when services compose together dynamically, testing must 

be performed automatically on-the-fly.  

The algebraic method has been applied to service-

oriented software by extending and combining the 

behavioural algebra and co-algebra techniques. Zhu and Yu 

(2010) originally applied the algebraic specification 

language CASOCC to define traditional software entities, 

such as abstract data types, classes and components (Kong, 

Zhu, & Zhou, 2007; Yu et al., 2008). They then extended 

the language to form CASSOC-WS and applied that to Big 

Web Services (Zhu & Yu, 2010). They developed a tool that 

can automatically generate the signatures of algebraic 

specifications from WSDL descriptions of Big Web 

Services. More recently, CASOCC-WS was also applied to 

RESTful web services. A tool was developed for it that 

performs syntax level consistency checking (Liu, Zhu, & 

Bayley, 2012), and a case study was conducted applying 

CASOCC-WS to a real industrial system, GoGrid (Liu, Zhu, 

& Bayley, 2013a). Based on these works, a new algebraic 

formal specification language called SOFIA was proposed 

to improve the practical usability of algebraic specification 

languages when applied to services (Zhu, Liu, & Bayley, 

2013; Liu, Zhu& Bayley, 2014). 

However, algebraic specifications, do not directly 

support efficient searching on services, and nor do other 

formal methods. This weakness has hampered their adoption 

for services because such searching is crucial for service-

oriented computing. Service semantics must be specified in 

a testable and verifiable way and these specifications must 

be searchable. 

In summary, with a vocabulary defined in an application 

domain ontology as annotation, we can create searchable 

and comprehensible descriptions. With the mathematical 

notations of formal methods, on the other hand, we can 

create descriptions that are testable and verifiable. Each 

approach has its strengths and weaknesses. The problem is 

how can we benefit from both strengths? 

1.2 PROPOSED APPROACH AND MAIN CONTRIBUTIONS 
To bridge the gap between algebraic specification and 

ontological descriptions, this paper proposes a 

transformational approach. Algebraic specifications are 

written for services and then transformed with the support of 

an automated tool into an ontology-based semantics 

description, thereby conferring onto formal specifications 

the machine-readability and human-understandability 

benefits of ontologies.   

The main contributions of the paper are three-fold.  

First, we propose a framework to solve the problem 

stated in the previous subsection. The semantics of a service 

and its domain knowledge are both described in a formal 

specification language. The domain knowledge is 

automatically transformed into adomain ontology, while the 

semantics is transformed into an ontology-based service 

description. 

Second, we present the details of these two 

transformations in the form of transformation rules. We also 

report their implementation in an automated tool. 

Finally, we demonstrate the feasibility of our solution 

with a case study of an actual industrial system called 

GoGrid. It is a RESTful web service interface toan  

Infrastructure-as-a-Service (IaaS).  

To our knowledge, the only similar work that has ever 

been reported in the literature is (Doell & Dosch, 2005), 

where traditional algebraic specification signatures are 

transformed into object-oriented class signatures. However, 

such traditional signatures cannot be used for specifying 

services; we will see why in the next section. A further 

problem is that the language is not modularized enough to 

separate the definition of domain knowledge from the 

specification of service functional semantics. This makes 

the two transformations much more complicated, if not 

impossible. For example, when transforming an operation 

into a method, it is unclear which class to put it into. Our 

approach overcomes this difficulty by associating only one 

sort with each modular unit of specification. 

1.3 STRUCTURE OF THE PAPER 
The remainder of the paper is organised as follows. 

Section 2 defines preliminary mathematical notions and the 

notations of algebraic/co-algebraic specification. It also 
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briefly introduces the specification language SOFIA. 

Section 3 presents the mapping rules that translate algebraic 

specifications into ontologies and the rules that extract the 

ontological descriptions of the service semantics. Section 4 

describes the prototype tool TrS2O that implements both 

sets of rules for the SOFIA language. It represents the 

resulting ontology and service semantics in OWL and 

OWL-S profiles. Section 5 reports the case study of the 

GoGrid API. Section 6 concludes the paper with a 

discussion of future work. 

2 PRELIMINARIES 
In this section, we define preliminary mathematical 

notions and notations. We also briefly introduce the SOFIA 

language.  

2.1 ALGEBRAIC STRUCTURES 
We regard a service-oriented system as consisting of a 

collection of units. Each unit has a unique identifier, which 

is called the sort name. We recognise two different ways in 

which one unit can be constructed from another, extension 

and usage, as follows: 

(1) A unit can be extended with additional elements, in a 

manner similar to the inheritance relation of object-

orientation. The notation𝑠 ⊳ 𝑠′means that s extendss’,i.e.s 

inherits all the operations and axioms defined in s’.  

(2) A unit can use another unit, e.g. as a component, 

operation parameter or operation result, just like the 

association relation of object-orientation. Such usage is 

denoted by the notation 𝑠 ≻ 𝑠′, whichmeans thatsusess’. 

As in (Zhu, 2003), we assume that the specification of a 

software system is well-structured in the following sense.  

1) Each type of software entity has a corresponding 

specification unit with a unique sort name.   

2) Each type of real-world entity involved in the software 

system is specified by a corresponding specification 

unit with a unique sort name. 

3) The same is also true for each real-world concept. 

4) Any extension or usage relationship between 

specification units has a corresponding relationship 

between real-world counterparts and vice versa. 

Together, a set of specification units, extension relation 

and usage relation comprise a system signature, defined 

formally as follows. 

Definition 1.(System Signature)A system signature is an 

ordered pair  𝑆𝑝, 𝛴 , where 𝑆𝑝 =  𝑆, ≻, ⊳   is a set Sof sorts 

with two binary relations on S denoted by ≻  and ⊳ , 

and𝛴 =  𝛴𝑠|𝑠 ∈ 𝑆  is a collection of unit signatures, with 

𝛴𝑠 denoting the unit signature for sorts. 

Every kind of software entity, whether it is an abstract 

data type, a class, a component or, as here, a service, must 

define a set of typed operators. The syntactic aspect of an 

operator is determined by its domain, its co-domain and its 

identifier.This is specified in the following form. 

𝑜𝑝: (𝑠1, 𝑠2 , … , 𝑠𝑛) → (𝑠′1 , 𝑠′2 , … , 𝑠′𝑘) 

where op is the identifier of the operator, (𝑠1, 𝑠2 , … , 𝑠𝑛), 𝑛 ≥
0, are the domain sorts, and(𝑠′1 , 𝑠′2 , … , 𝑠′𝑘), 𝑘 > 0, are the 

co-domain sorts. 

We allow an operator to have more than one domain sort 

and more than one co-domain sort at the same time. This is 

the main difference between our theory and that used for 

algebraic specifications, which require a single sort co-

domain, and that used for co-algebraic specifications, which 

require a single sort domain. These restrictions are too tight 

to specify services so they are relaxed in our theory. This 

allows us, for example, to give a BookTicket operator for an 

online ticket booking service a signature like this: 
BookTicket: DATE, NAT, BOOKING -> MESSAGE, BOOKING 

Here, DATE is the date of the performance, NAT is the number 

of tickets wanted, MESSAGE is the response to the requester. 

BOOKING represents the state of the online booking services. 

It occurs in both the domain and the co-domain so that the 

original state can be taken as input and the modified state 

can be produced as output. 

We now define the notion of unit signature to represent 

the structure of software units as follows.Let X be a finite 

set of symbols. We write X* to denote the set of finite 

sequences of the symbols in X. In the sequel, we use Ws to 

denote  𝑥 ∈ 𝑆|𝑠 ≻ 𝑥 ∨ 𝑥 = 𝑠 ∗ .  

Definition 2.(UnitSignature)Given a system 

signature (Sp, Σ) , the unit signatureΣs ∈ Σ for a sort s ∈ S  

consists of a finite family of disjoint setsΣ𝑤,𝑤′
𝑠  indexed by 

pairs of units(𝑤, 𝑤′)   with𝑤, 𝑤′ ∈ 𝑊𝑠 . Each element𝜑  in 

setΣ𝑤,𝑤′
𝑠  is an operator symbol of type𝑤 → 𝑤′ , where wis 

the domain type and w’ the co-domain type of the operator. 

Such operators can be classified as constants, attributes, 

andgeneral operations as follows. 

(1)𝜑 is a constant, if𝑤 = ∅, 𝑤′ = (𝑠), 

(2) 𝜑 is an attribute, if𝑤 = (𝑠), 𝑤′ = (𝑠′) and 𝑠 ≻ 𝑠′, 
(3) Otherwise,𝜑is a general operation. 

In the sequel, we will writeΣ𝐶
𝑠 , Σ𝐴

𝑠 ,andΣ𝐺
𝑠  for the subsets 

of Σ𝑠that contain the constants, the attributes and the general 

operations, respectively. 

The semantics of the operators are defined by axioms 

that describe the properties that these functions must satisfy. 

An axiom consists of a number of universally quantified 

variables and a list of conditional equations.  

Let (Sp, Σ) be a given system signature and𝑠 ∈ 𝑆 be any 

given sort. We define the notion of valid terms that can be 

used in the specification unit of sort s as s-terms. Each s-

term is also typed. Each𝑤 ∈ 𝑊𝑠 is a type in unit s.Formally, 

we have the following definition.  

Definition 3.(Term)For a unit 𝑠 ∈ 𝑆 , the set𝑇𝑠  of valid 

terms in s, called s-terms, is a family of disjoint sets 
 𝑇𝑤

𝑠 |𝑤 ∈ 𝑊𝑠 , 𝑠 ∈ 𝑆 . Here, each 𝑇𝑤
𝑠 is the set of s-terms of 

type w, and is inductively defined as follows.  
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(1) x is an s-term of type w, if 𝑥 ∈ 𝑉𝑤
𝑠 , where 𝑉𝑤

𝑠 is the set of 

variables in s of type w. 

(2) For each(𝑜𝑝: ∅ → 𝑠) ∈ Σ𝐶
𝑠 , op is an s-term of type s.  

(3) For each (𝑜𝑝: 𝑠 → 𝑠′) ∈ Σ𝐴
𝑠 ,  𝑜𝑝(𝑡) is a s-term of type s’, 

if t is an s-term of type s. 

(4) For each (𝑜𝑝: 𝑤 → 𝑤′) ∈ Σ𝐺
𝑠 , 𝑜𝑝(𝑡) is an s-term of type 

w’, if t is an s-term of type w.  

(5) 𝜏1 , 𝜏2, … , 𝜏𝑛 is an s-term of type w, if 𝜏𝑖  is an s-term of 

type𝑠𝑖 , for𝑖 = 1,2, … , 𝑛, where𝑤 = (𝑠1 , 𝑠2, … , 𝑠𝑛).  
(6) 𝜏#𝑘 is an s-term of type𝑠𝑘 , if  𝜏 is an s-term of type 

(𝑠1 , 𝑠2, … , 𝑠𝑛),and 0<k≤n is a natural number.  

An equation in specification unit shas the form τ = τ′, 
whereτand τ′ are s-terms of the same type. A conditional 

equation in specification unit shas the form  

τ = τ′, if 𝑐1 = 𝑑1, … , 𝑐𝑛 = 𝑑𝑛 ,  

where τand τ′are s-terms of the same type, 𝑐𝑖  and 𝑑𝑖  are s-

terms of typesisuch that 𝑠 ≻ 𝑠𝑖 ∨ 𝑠𝑖 = 𝑠 for all 𝑖 =
1,2, … , 𝑛,𝑐1 = 𝑑1 , … , 𝑐𝑛 = 𝑑𝑛are the conditions.  

An axiom in the specification unit s is a conditional or 

unconditional equation E with all variables in the equation 

universally quantified at the outermost.  

A specification unit consists of a unit signature and a set 

of axioms.  

Definition 4. (Specification) A specification is a 

triple 𝑆𝑝, Σ, 𝐴𝑥  , where 

(1) 𝑆𝑝 =  𝑆, ≻, ⊳ , S is finite set of sorts,⊳ and ≻ are the 

extends and uses relations on S, respectively; 

(2) Σ =  Σ𝑠|𝑠 ∈ 𝑆 is a set of unit signatures indexed by s; 

(3) 𝐴𝑥 =  𝐴𝑥𝑠|𝑠 ∈ 𝑆 is a finite collection of axiom sets 

indexed by s; 

(4) for all s and 𝑠′ ∈ 𝑆  , 𝑠 ⊳ 𝑠′  implies that Σ𝑠′ ⊆ Σ𝑠 

and 𝐴𝑥𝑠′ ⊆ 𝐴𝑥𝑠. 

For each𝑠 ∈ 𝑆, (Σ𝑠 , 𝐴𝑥𝑠) is called the specification unit 

for sort s. 

Note that, by Definition 2, a specification consists of a 

system signature  𝑆𝑝, Σ , and a collection Ax of axiom sets. 

2.2 SEMANTICS OF ALGEBRAIC SPECIFICATION 
We now define the semantics of algebraic specifications 

by defining what it means for an implementation to be 

correct with respect to a specification. In general, an 

implementation of a specification is a mathematical 

structure that realises the operators in the signature and 

satisfies the axioms. 

Definition 5. (Algebra) Given a system signature 𝑆𝑝, Σ  , a 

 𝑆𝑝, Σ -algebra Γ  is a mathematical structure (A,F) that 

consists of a collection𝐴 =  𝐴𝑠|𝑠 ∈ 𝑆  of sets indexed by s, 

and a collection F of functions indexed by (𝑤, 𝑤′), where 

𝑤, 𝑤′ ∈ 𝑊𝑠 , 𝑠 ∈ 𝑆  such that for each operator 𝜑: 𝑤 → 𝑤′ , 
the function 𝑓𝜑 ∈ 𝐹  has domain Aw and co-domain Aw’, 

where𝐴𝑢 = 𝐴𝑠1
× 𝐴𝑠2

× … × 𝐴𝑠𝑛 , when 𝑢 = (𝑠1 , 𝑠2 , … , 𝑠𝑛) . 

The evaluation of a term in an algebra depends on the 

values assigned to the variables that occur in the term. Such 

an assignment 𝛼 of variables 𝑉𝑠 , 𝑠 ∈ 𝑆, in an algebraΓ is a 

function from𝑉𝑠 to 𝐴𝑠. 

Definition 6.  (Evaluation of terms in an algebra) Given an 

assignment 𝛼 , the evaluation of a term 𝜏  in an (𝑆𝑝, Σ) -

algebraΓ = (𝐴, 𝐹), written𝐸𝑣𝑎𝛼 (𝜏), is defined as follows. 

(1) 𝐸𝑣𝑎𝛼(𝑣) = 𝛼(𝑣) ; 

(2)𝐸𝑣𝑎𝛼 (𝜑(𝜏)) = 𝑓𝐴,𝜑(𝐸𝑣𝑎𝛼 (𝜏)) ; 

(3)𝐸𝑣𝑎𝛼 ( 𝜏1, 𝜏2 , … , 𝜏𝑛  ) = 
 𝐸𝑣𝑎𝛼 (𝜏1), 𝐸𝑣𝑎𝛼(𝜏2), … , 𝐸𝑣𝑎𝛼 (𝜏𝑛)  ; 
(4) 𝐸𝑣𝑎𝛼 (𝜏#𝑘) = 𝑒𝑘 , if 𝐸𝑣𝑎𝛼(𝜏) =  𝑒1, … , 𝑒𝑛 , and 

1 ≤ 𝑘 ≤ 𝑛. 

Definition 7.  (Satisfaction) Let e be an equation in the 

following form. 

τ = τ′, if 𝑐1 = 𝑑1, … , 𝑐𝑛 = 𝑑𝑛 . 

An (𝑆𝑝, Σ)-algebraΓ = (𝐴, 𝐹) satisfies e, writtenΓ ⊨ 𝑒  , if 

for all assignments 𝛼 , we have that𝐸𝑣𝑎𝛼(𝜏) = 𝐸𝑣𝑎𝛼 (𝜏′) 

whenever𝐸𝑣𝑎𝛼 (𝑐𝑖) = 𝐸𝑣𝑎𝛼 (𝑑𝑖)  is true for all𝑖 = 1,2 … , 𝑛. 

Let𝜀 = (𝑆𝑝, Σ, 𝐴𝑥) be a specification. An(𝑆𝑝, Σ)-algebra 

Γ = (𝐴, 𝐹)satisfies specification𝜀 , writtenΓ ⊨ 𝜀  , if for all 

equations e in Ax, we have that Γ ⊨ 𝑒.  

2.3 THE SOFIA SPECIFICATION LANGUAGE 

SOFIA is a new algebraic specification language 
designed for the formal specification of services. It is 
based on the algebraic structure described above. Here, 
we give a brief introduction to the language. The readers 
are referred to (Zhu, Liu, & Bayley, 2013) for the 

reference manual.  

The overall structure of a SOFIA specification is a 
collection of specification units. A unit can be split into 
two partial units: a Signature unit, to define the 
signature, and an Axiom unit, to define the axioms that 
apply to the signature unit. The users can also define 
auxiliary functions and concepts in a Definition unit. 
More formally, in BNF notation we have: 

<Specification> ::= <Unit>* 
<Unit> ::= <Spec Unit> | <Signature Unit> | <Axiom Unit> 

| <Definition Unit> 

The “uses” and “extends” relations between 
specification units are declared in clauses introduced 
with the keywordsusesand extends, as shown below. 

<Spec unit> ::= Spec <Sort Name> [<Observability>]; 
[extends <Sort Names>] 
[uses <Sort Names>] 
<Signature>;  
[<Axioms>]  

End 

SOFIA also declares if a software entity is observable 
in the sense that its states or values can be directly 
tested for equality; otherwise, its states or values have to 
be checked by other means, e.g. through observers. 

SOFIA explicitly declares three kinds of operators 
using keywords Const for constants, Var for attributes, 
and Operation for general operators. For example, the 
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following is the signature unit in the SOFIA specification 
of Stack.  
 Signature Stack;  
  uses Int, Real, Bool; 
  Const: nil; 
  Var  
  Length: Int; 
  IsEmpty: Bool; 
  Top: Real; 
  Operation 
  Push(Real); 
  Pop; 
  End;  

Note that SOFIA assumes that the sort name of the unit 
occurs on both sides of the general operators. Thus, 
Push(Real)is syntactic sugar for Push: Stack, Real -> Stack.  

An axiom in SOFIA is in the form of  
for all x1: s1, x2: s2, …, xn: sn that 

e1 = e2, if cond; 

where x1, …, xn are universally quantified variables that 
occur in the equation, and s1, …, sn are their respective 
sorts. For example, the axioms for Stack are as follows.  

for all x: Real, s: Stack that 
 s.push(x).length = s.length+1; 
 s.push(x).IsEmpty = False;  
 s.push(x).top = x; 
 s.push(x).pop = s;  
 s.pop.length = s.length-1, if s.length>0; 
 s.length=0, if s.IsEmpty= True; 
 s.IsEmpty = True, if s.length=0; 
 s.IsEmpty = False, if s.length>0; 
 nil.IsEmpty = True; 

SOFIA uses the prefix-dot notation for the application of 
an operator to the main sort.  

To improve the readability of axioms, the language 
also allows the definition of local variables/identifiers 
for use in equations. The following is an example. 

for all x: Real, s: Stack that 
   let s’ = s.push(x) in 

 s’.length = s.length+1; 
 s’.IsEmpty = False;  
 s’.top = x; 
 s’.pop = s;  
end 

3 TRANSFORMATION RULES 
Anontology defines the concepts in a domain througha 

set of relations between them. Individual entities are the 

instances of these concepts. In ontology modeling languages, 

such as OWL, concepts are often modeled as classes. 

Relations are modeled as properties to describe the features 

and attributes of the concepts. Individuals are modeled as 

objects,which are instances of the classes that represent the 

corresponding concepts. Such an ontologyis a representation 

of domain knowledge (Uschold & Gruninger, 1996). 

In this section, we present a set of mapping rules to 

derive ontological descriptions of services from algebraic 

specifications. We use general algebraic structures rather 

than the concrete syntax of SOFIA so that the rules are 

generally applicable. 

3.1 EXTRACTION OF DOMAIN ONTOLOGY 
Given an algebraic specification (𝑆𝑝, Σ, 𝐴𝑥) , the 

following rules will extract classes, properties and 

individuals from algebraic specifications, and thus translate 

an algebraic specification into a domain ontology.  

Rule 1: For each sort𝑠 ∈ 𝑆 of the specification, generate a 

formula Class(s), wherepredicate Class(x) means that x is a 

class or, in other words, x is a concept. 

Rule 2: For an extension relation 𝑠 ⊳ 𝑠′  in the system 

signature (𝑆𝑝, Σ)  of the specification, generate a formula 

subClassOf(s, s’), where predicate subClassOf(x, y)means 

that class x is a subclass of y, or equally, x is a sub-concept 

of y. 

Rule 3: For a uses relation𝑠 ≻ 𝑠′  in the system signature 

(𝑆𝑝, Σ) of the specification, generate a formula uses(s, s'), 

where predicate uses(x, y) means that concept x is defined 

by using the concept y, it is somewhat redundant because it 

can be deduced from other predicates later on. 

Rule 4: For each constant𝜑 ∈ Σ𝐶
𝑠 , 

(1) Generate a formula Individual( 𝜑 ), where predicate 

Individual(y) means that y is an individual, and 

(2) Generate a formula s(𝜑), where x(y)means that y is an 

instance of class x. 

Rule 5: For each operator: 𝑠 → 𝑠′, 𝜑 ∈ Σ𝐴
𝑠 , 

(1) Generate a formula Property( 𝜑 ), where predicate 

Property(z) means that z is a property, and 

(2) Generate a formula 𝜑(s, s'), where z(x, y) means that z is 

a property of concept x (i.e. an attribute or an element of x), 

and its value is of type y. 

Rule 6: For each general operation: 𝑤 → 𝑤′, 𝜑 ∈ Σ𝐺
𝑠  , 

(1) Generate a formula Class(𝜑), where predicate Class(z) 

means that z is a concept, and 

(2) For each𝑠𝑖 ∈ 𝑤 , generate a formula isDomainOf(𝜑,si), 

where isDomainOf(z, x) means that x is the domain of 

the relation z, and 

(3) For each 𝑠𝑖 ∈ 𝑤′, generate a formula isCodomainOf(𝜑, si) 

where the predicate isCodomainOf(z, x) means that x is the 

co-domain (or range or output) of the relation z.. 

To explain Rule 6, we regard an operation as a relation 

(i.e. a relational concept) that links the concepts of the 

domain to the concepts of the co-domain. 

3.2 GENERATION OF SERVICE PROFILE 
Having generated the ontology from a specification, the 

services can be described in an OWL-S profile based on the 

ontology. Such a profile can also be generated from the 

specification unit that defines the service's functionality. 
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Given a specification 

(𝑆𝑝, Σ, 𝐴𝑥)  of service Sv, the 

following rule will generate the 

service profile. 

Rule 7: For each general 

operation𝜑: 𝑤 → 𝑤′, 𝜑 ∈ Σ𝐺
𝑠 , 

(1) Generate a service profile frame. 

(2) Generate an element 

serviceNamewith value 𝑠. 𝜑. 

(3) For each 𝑠𝑖 ∈ 𝑤 , generate an 

element hasInputwith resource 

"Sv.owl#si". 

(4) For each 𝑠𝑖 ∈ 𝑤′ , generate an 

element hasOutputwith resource 

"Sv.owl#si". 

Figure 1 illustrates the above 

transformation rule.  

For example, here is the specification unit in the SOFIA 

language that defines the operations on Servers in the 

GoGrid system. The axioms are omitted since they are not 

used in the translation.  
Spec GServer; 

uses ServerListRequest, ServerListResponse, 
ServerGetRequest, ServerGetResponse, 
ServerAddRequest, ServerAddResponse, 
ServerEditRequest, ServerEditResponse, 
ServerDeleteRequest, ServerDeleteResponse, 
ServerPowerRequest, ServerPowerResponse; 

Var   clockTime: Int; 
Operation 

List(ServerListRequest) : ServerListResponse; 
Get(ServerGetRequest) : ServerGetResponse; 
Add(ServerAddRequest) : ServerAddResponse; 
Edit(ServerEditRequest) : ServerEditResponse; 
Delete(ServerDeleteRequest) : ServerDeleteResponse; 
Power(ServerPowerRequest) : ServerPowerResponse; 

Axiom 
  … 

End  
 

The profile for the List operation is given as follows. 
<rdf:RDF> 
<owl:Ontology rdf:about=""> 
<owl:imports rdf:resource= 
      "http://www.daml.org/services/owl-s/1.0/Profile.owl"/> 
<owl:imports rdf:resource="#GServerOntology.owl"/> 
</owl:Ontology> 
<profile:serviceName> GServer.List</profile:serviceName> 
<profile:hasInput rdf:resource="GServerOntology.owl#GServer"/> 
<profile:hasInput rdf:resource= 
  "GServerOntology.owl#ServerListRequest"/> 
<profile:hasOutput rdf:resource=  
  "GServerOntology.owl#GServer"/> 
<profile:hasOutput rdf:resource= 
  "GServerOntology.owl#ServerListResponse"/> 
</rdf:RDF> 

4 TRS2OTOOL 
A prototype tool called TrS2O (Translator from 

Specification toOntology) has been designed and 

implemented in Java. It translates formal specifications in 

SOFIA to ontological descriptions of services in OWL. 

Figure 2 shows the overall structure of the TrS2O Tool. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.The Overall Structure of The TrS2O Tool 

 

The tool TrS2O contains three main components. 

(1) Specification Parser and Syntax Checker, which parses 

algebraic specifications written in SOFIA and generates a 

parse tree. It checks whether a specification is syntactically 

well-formed and whether the equations in the axioms are 

type correct. 

(2) Ontology Generator, which takes the parse tree of the 

algebraic specification as input, and generates an ontology 

represented in the OWL language according to the rules 

defined in section 3. 

(3) Services Description Generator, which takes as inputs 

the ontology and the parse tree of the algebraic specification 

and generates the descriptions of services in OWL-S 

profiles. 
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Figure 1. Illustration of Rule 7 

 

 

 

 

Specification Sv; 

   … 

   Spec UnitName; 

      …  

      Operation  

          Op: (P1, P2, …, Pn) 

              ®(Q1, Q2, …, Qm) 

      … 

   End UnitName 

<rdf:RDF> 

<owl:Ontology rdf:about=""> 

  …  

  <owl:imports rdf:resource="# Sv.owl"/> 

</owl:Ontology> 

 

<profile:serviceName> UnitName.Op </profile:serviceName> 

<profile:hasInput rdf:resource="Sv.owl#P1"/> 

<profile:hasInput rdf:resource="Sv.owl#P2"/> 

  … 

<profile:hasInput rdf:resource="Sv.owl#Pn"/> 

<profile:hasOutput rdf:resource= "Sv.owl#Q1"/> 

<profile:hasOutput rdf:resource= "Sv.owl#Q2"/> 

   … 

<profile:hasOutput rdf:resource= "Sv.owl#Qm"/> 

</rdf:RDF> 
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Figure 4. Visualization of Ontology Generated byTrS2O 

 
Figure 3. The Interface of TrS2O Tool 
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Figure 3 shows the user interface of TrS2O. The upper-

left pane displays the specification in SOFIA, while the 

lower-left displays the parsing report for it. The panes on the 

right are generated from the specification. The upper-right 

andshows the ontology and the lower-right showsprofile of 

services.  

It is worth noting that the ontology generated by TrS2O 

can be processed by any OWL tool.Figure 4 illustrates the 

visualization of the ontology for the GoGrid specification; 

the tool used was Protege. Reasoning and searching on 

domain knowledge can also be performed. 

5 CASE STUDY 
In this section, we report a case study with a real 

industrial RESTful web services GoGrid. 

5.1 GOGRID API 
GoGrid

1
 is an infrastructure-as-a-service (IaaS) provider. 

It provides an easy-to-use API for developers, system 

administrators and end-users to access its functions. Its 

services can be accessed through a RESTful web service 

interface in a number of different programming and 

scripting languages. RESTful web services, unlike 

SOAP/WSDL, are based on the HTTP protocol, so each 

GoGrid API call is an individual HTTP query. 

The latest version of the GoGrid API has 11 different 

types of objects and 5 types of common operators. Not all 

operators can be applied to all types of objects, however. 

There are three types of objects that are only used as 

parameters of the operators, so no operators are applicable 

on them, and there are some objects that have special 

operators. Table 1gives the applicable operators for each 

type of object. 

It is worth noting that some operators in GoGrid have 

different meanings for different types of objects. In order to 

achieve well-structuredness, in our specification of GoGrid, 

the definitions were grouped by object rather than by 

operator. For the sake of space, we give here just the 

applicable operators for the load balancer object and its 

systematic specification, because it is one of the most 

important objects with the most operators. 

Table 1. Applicable Operators on Objects 

Object List Get Add Delete Edit Other Ops 

Server  Yes Yes Yes Yes Yes Power 

Server 
image  

Yes Yes  Yes Yes 
Save, 

Restore 

Load 

Balancer  
Yes Yes Yes Yes Yes  

Job  Yes Yes     
IP  Yes      
Password  Yes Yes     
Billing   Yes     
Option  Yes      

                                                                    
1
 http://www.gogrid.com/ 

5.2 SPECIFICATION OF GOGRID IN SOFIA 
For each type of objects in the GoGrid system, we write 

several specification units to define various aspects of the 

object and its operators, including 

(1) Valid requests, for which we define their structures and 

constraints on how their components may be combined; 

(2) Responses,with structures and constraints as above; 

(3) Objects of certain types, with signatures and semantics, 

including signatures and axioms that characterize the 

relationships between the valid requests and the 

responses. 

Other specification units define features and concepts 

common to many types of objects. Examples include the 

four query parameters common to all GoGrid API calls. 

Some properties are common to all objects too. 

The specification of the GoGrid API is based on a 

framework for specifying RESTful web services (Liu, Zhu, & 

Bayley, 2013b). The framework consists of a collection of 

specification units that define the general structure of HTTP 

requests and responses so that a specific RESTful web 

services can be specified as extensions to these units. In 

particular, the following sorts in the framework are used in 

the GoGrid specification: URL, HTTPMethod, 

RequestHeader, RequestHeaderField, HTTPRequest, 

QueryParameter, QueryString, ResponseHeader, 

ResponseHeaderField and HTTPResponse. Details are 

omitted for the sake of space.  

5.2.1 Objects and Collections 

Here we give the specifications of the load balance 

object and its collection, ListofLB. The latter has an 

operation itemsto get an individual load balancer object, an 

operation insert to add on object to the list, and an attribute 

length to give the number of load balancer objects in the 

list.The specifications ofOption, IPPP (which stands for IP 

Port Pair), and ListofIPPP(its collection) are omitted here. 
Spec LoadBalancer; 

uses Option, IPPP, ListofIPPP; 
Var 

id: Long; 
name, description: String; 
virtualip: IPPP; 
realiplist: ListofIPPP; 
type, persistence, os, state, datacenter: Option; 

Axiom 
For all lb: LoadBalancer that 

lb.id <> Null; 
End 

End 
Spec ListofLB; 

uses LoadBalancer; 
Var  

length: Int; 
Operation 

items(Int) : LoadBalancer; 
insert(LoadBalancer); 

End 
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Note that, when an object is structural (i.e. it consists of 

a number of elements), each element of the object can be 

specified using an attributein the SOFIA language. 

Traditionallyin algebraic specifications, an attribute is an 

observer, i.e. an operation from the sort being defined to 

another sort. It is similar to the getters in object-oriented 

programs for getting the value of attributes. Here, SOFIA 

provides attribute as a language facility to specify the 

object’s structure directly.  

5.2.2 Requests 

There are four query parameters that are common to all 

GoGrid API calls, and they are specified as follows: 
Spec CommonParameter; 

Var 
api_key, sig, v, format: String; 

Axiom 
Forall cp: CommonParameter That 

cp.api_key <> Null; 
cp.sig <> Null; 
cp.v <> Null; 

End 
End 

Here api_key is a key generated by GoGrid for security when 

accessing resources, sig is an MD5 signature of the API 

request data, v is the version id of the API, and format is an 

optional field to indicate the response format required. NULL 

is a value that represents no information.  

The signature can be generated by an MD5 hash from 

three parts:  

 the api_key, obtained before API calls can be made,  

 the user's sharedsecret, a string of characters set by the 

user and known only by the GoGrid server, and  

 a Unixtimestamp, the number of seconds since the Unix 

Epoch of when the request was made.  

Together, the api_key and sharedsecret act as an 

authentication mechanism. Their uses in authentication 

depend on system context such as time, becausesig is time-

dependent.Therefore, the axioms for specifying the 

authentication mechanism are given in the specification of 

the whole system. Here, we can only say that both are 

required. 

In addition to the parameters common to all service 

requests, each specific type of service request may also 

contain various specific parameters. So,for each type of 

request, we first specify the common structure as one sort: 

ListRequest, GetRequest, and so on. These are then extended 

for the different types of objects, giving ServerListRequest, 

LBListRequest, and so on. Here we only have space for the 

get operation on load balancer, but it is the most common 

operation, and complex enough to be representative. It is 

implemented using the HTTP request method GET and is 

the only way to determine the internal state of a service. 
Spec GetRequest; 

extends HTTPRequest; 
uses CommonParameter, ListofString; 
Var 

para: CommonParameter; 
id, name : ListofString;  

Axiom 
For all gr: GetRequest that 

gr.id = Null, if gr.name <> Null; 
gr.name = Null, if gr.id <> Null; 

End 
End 

As you can see, the sort GetRequestadds to 

HTTPRequestsome extra attributes:para,the common query 

parameters defined before, and both idandname; these are 

used to select the object; only one is required and it is an 

error to use both. Now GetRequest can be extended to load 

balancers as LBGetRequest as follows. 

Spec LBGetRequest; 
extends GetRequest; 
uses ListofString; 
Var 
  loadbalancer: ListofString; 
Axiom 

For all lbgr: LBGetRequest that 
lbgr.id = Null, if lbgr.loadbalancer <> Null; 
lbgr.name = Null, if lbgr.loadbalancer <> Null; 

End 
End 

 
5.2.3 Responses 

The GoGrid API responses can be in any of three 

different formats: JSON (JavaScript Object Notation), XML, 

and CSV (Comma Separated Values). The default format, 

used when the optional format parameter is omitted, is 

JSON. However, algebraic specification is abstract enough 

to specify all three at once. 

The response to a get call starts with a summary, defined 

below,containing the total number of objects available, start 

index, number of objects returned in a page, and number of 

pages.  
Signature ResponseSummary; 

Var 
total, start, returned, numpages: Int; 

End 

As well as this summary, the response contains status, 

request method, status code and a list of returned objects.  
Spec GetResponse; 

extends HTTPResponse; 
uses ResponseSummary; 
Var 

summary: ResponseSummary; 
status, request_method: String;  
statusCode: Int; 

Axiom 
For all gr: GetResponse that 

gr.summary.total >=0;  
gr.summary.start = 0;  
gr.summary.returned = gr. summary.total;  

End 
End 
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For load balancers, this is extended with an attribute for 

the list of returned load balancer objects. 
Spec LBGetResponse; 

extends GetResponse; 
uses ListofLB; 
Var  
objects: ListofLB; 

End 

 
5.2.4 Semantics of the operations 

For each type of request, we define an operator that 

takes a request as the input and produces a response as the 

output. All such operators have GoGrid as the context. We 

also need to know the clock time on the grid and also the 

shared secret chosen by each user and timestamp for 

checking the authentication of access. Thus, we have the 

following signature for the sort GLB, which represents the 

load balancer web services of the GoGrid cloud computing 

system. 
Spec GLB; 

uses 
LBListRequest, LBListResponse, 
LBGetRequest, LBGetResponse, 
LBAddRequest, LBAddResponse, 
LBEditRequest, LBEditResponse, 
LBDeleteRequest, LBDeleteResponse, 

Var 
clockTime, timeStamp: Int; 
sharedSecret: String;  

Operation 
List(LBListRequest): LBListResponse; 
Get(LBGetRequest): LBGetResponse; 
Add(LBAddRequest): LBAddResponse; 
Edit(LBEditRequest): LBEditResponse; 
Delete(LBDeleteRequest): LBDeleteResponse; 

Axiom 
... 

End 

Axioms are used to characterize the semantics of each 

operator, but here, as illustration, we give just the get 

operator. 

First of all, GoGrid authenticates each get call by using 

the MD5 function to reconstruct the signature from the 

api_key, the user's shared secret, and the time stamp. It then 

compares it to the signature contained in the request 

parameter. It also checks the time stamp with its server 

clock time, allowing a discrepancy of up to 10 minutes. This 

authentication rule can be specified as follows. 
For all G:GLB, X:LBGetRequest that 
   Let  key = X.para.api_key, 
           sig_Re = MD5(key, G.sharedSecret, X.timeStamp) 
in G.Get(X).statusCode = 403, 
           if   X.para.sig <> sig_Re  
or abs(X.timeStamp - G.clockTime) > 600; 
   End 
End 

An important feature of the Get operator is that it is an 

observer. So, applying it will not change the state of the 

context sort GLB. This property can be expressed by axioms 

in the following form.  
Axiom <Get-XOp>: 
     For all G: GLB, X: LBGetRequest, X1: LBXOpRequest that 
[G.Get(X)].XOp(X1) = G.XOp(X1); 
End 

where XOp is any of the operators List, Get, Add, Edit or 

Delete. 

The following axiom states that when an operation 

changes the state of the cloud by adding a load balancer, the 

Get operator should be able to observe the effect 

accordingly. In fact, such an axiom also defines the 

semantics of the Add operator. 
For all G: GLB, X1: LBAddRequest, 
            X2, X3: LBGetRequest,  
            i: Int  
that 
[G.Add(X1)].Get(X2).objects = G.Add(X1).objects, 
         If  X2.name.length = 1, 
             X1.name = X2.name.items(0), 
             G.Add(X1).statusCode = 200, 
             G.Get(X2).statusCode = 200; 
[G.Add(X1)].Get(X2).objects = G.Get(X2).objects, 
         If search(X2.name, X1.name) = False, 
            G.Add(X1).statusCode = 200, 
            G.Get(X2).statusCode = 200; 
[G.Add(X1)].Get(X2).objects = 
                insert(G.Get(X3).objects, G.Add(X1).objects) 
        If search(X2.name, X1.name) = True, 
           search(X3.name, X1.name) = False, 
           search(X3.name, X2.name.items(i)) = True, 
           X2.name.items(i) <> X1.name, 
           0 =< i, i < X2.name.length, 
           G.Add(X1).statusCode = 200, 
           G.Get(X2).statusCode = 200, 
           G.Get(X3).statusCode = 200; 
End 

where insert and search are auxiliary functions, defined in a 

definition unit, that insert a list of load balancer objects into 

another list, and search for a string in a list of strings. 

The final axiom listed here states that when an operation 

changes the state of the cloud by deleting a load balancer, 

the Get operator should also be able to observe the 

difference accordingly. 
For all G: GLB, X1: LBDeleteRequest, 
            X2: LBGetRequest  
that 
[G.Delete(X1)].Get(X2).statusCode = 500, 
        If  search(X2.name, X1.name) = True, 
            G.Delete(X1).statusCode = 200; 
[G.Delete(X1)].Get(X2).objects = G.Get(X2).objects, 
       If  search(X2.name, X1.name) = False, 
           G.Delete(X1).statusCode = 200, 
           G.Get(X2).statusCode = 200; 
End 
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5.2.5 Summary of GoGrid Specification 

The complete GoGrid API has been specified in SOFIA. 

The numbers of different types of specification units in the 

specification are shown in Table 2. 

 

Table 2. Number of Units in GoGrid Specification 

Type of unit No 

Framework of RESTful web service 10 

Common features 37 

Definition of Server operations 13 

Definition of Server image operations 13 

Definition of Load Balancer operations 11 

Definition of Job operations 5 

Definition of operations on other objects 14 

Total 103 

 

5.3 GOGRID ONTOLOGY 
Using the TrS2O tool, we have extracted an ontology 

from the GoGrid specification. Take specification GLBfor 

example. Table 3 gives the numbers of classes, properties 

and individuals in the GoGrid Ontology in OWL. 

 

Table 3. Basic Data of GoGrid Ontology 

Ontology 

Concept 

Specification 

Concept 

No. 

Class 
Sort 39 

General Operator 9 

Property 

extends 9 

uses 36 

Domain 16 

Codomain 12 

Variable Operator 97 

Individual Constant Operator 20 

 

For example, here is a fragment of the ontology profile 

for the GetRequest sort. It has, in order,one class for the sort, 

one property for the extends relation, two properties for the 

uses relations and three properties for attributes, each 

defined as ObjectProperty. 
<owl:Class rdf:ID="GetRequest"> 
<rdfs:subClassOf rdf:resource= 
      "http://www.w3.org/2002/07/owl#Thing"/> 
<rdfs:subClassOf> 
<owl:Class rdf:ID="HTTPRequest"/> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#uses"/> 
<owl:allValuesFrom> 
<owl:Class rdf:ID="CommonParameter"/> 
</owl:allValuesFrom> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty rdf:resource="#uses"/> 
<owl:allValuesFrom> 
<owl:Class rdf:ID="ListofString"/> 
</owl:allValuesFrom> 
</owl:Restriction> 
</rdfs:subClassOf> 
</owl:Class> 
<owl:ObjectProperty rdf:about="#GetRequest.para"> 
<rdfs:domain rdf:resource="#GetRequest"/> 
<rdfs:range rdf:resource="#CommonParameter"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:about="#HTTPRequest.id"> 
<rdfs:domain rdf:resource="#GetRequest"/> 
<rdfs:range rdf:resource="#ListofString"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:about="#HTTPRequest.name"> 
<rdfs:domain rdf:resource="#GetRequest"/> 
<rdfs:range rdf:resource="#ListofString"/> 
</owl:ObjectProperty> 

Similarly, here is a fragment of the ontology profile for 

the GLB sort. It has, in order, one class for the sort, ten 

properties for the uses relations, five properties for 

isDomainOf and fiveproperties for isCodomainOf,.five 

classes for general operators, and three properties for the 

attributes, defined as ObjectProperty. 
<owl:Class rdf:ID="GLB"> 
<rdfs:subClassOf rdf:resource= 
        "http://www.w3.org/2002/07/owl#Thing"/> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#uses"/> 
<owl:allValuesFrom> 
<owl:Class rdf:ID="LBListRequest"/> 
</owl:allValuesFrom> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#uses"/> 
<owl:allValuesFrom> 
<owl:Class rdf:ID="LBListResponse"/> 
</owl:allValuesFrom> 
</owl:Restriction> 
</rdfs:subClassOf> 
… //the other 8 properties for the uses relation 
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty rdf:resource="#isDomainOf"/> 
<owl:allValuesFrom rdf:resource="#GLB.List "/> 
</owl:Restriction> 
</rdfs:subClassOf> 
  …//the other 4 properties for isDomainOf 

<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#isCodomainOf"/> 
<owl:allValuesFrom rdf:resource="#GLB.List "/> 
</owl:Restriction> 
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</rdfs:subClassOf> 
…//the other 4 properties for isCodomainOf 
</owl:Class> 
<owl:Class rdf:ID="GLB.List"> 
<rdfs:subClassOf rdf:resource= 
           "http://www.w3.org/2002/07/owl#Thing"/> 
</owl:Class> 
…//the other 4 classes for general operators 
<owl:ObjectProperty rdf:about="#GLB.clockTime"> 
<rdfs:domain rdf:resource="#GLB"/> 
<rdfs:range rdf:resource="#Integer"/> 
</owl:ObjectProperty> 

 …//the other two properties for variable operators 

5.4 GoGrid Server Profile. 
With the TrS2O tool, we have also generateda service 

profile. Here it is for the example of GLB. 
<rdf:RDF> 
<owl:Ontology rdf:about=""> 
<owl:imports rdf:resource= 
           "http://www.daml.org/services/owl-s/1.0/Profile.owl"/> 
<owl:imports rdf:resource="#GLBOntology.owl"/> 
</owl:Ontology> 
<profile:serviceName>GLB.List</profile:serviceName> 
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/> 
<profile:hasInput rdf:resource= 
         "GLBOntology.owl#GLBListRequest"/> 
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/> 
<profile:hasOutput rdf:resource= 
         "GLBOntology.owl#GLBListResponse"/> 
<profile:serviceName>GLB.Get</profile:serviceName> 
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/> 
<profile:hasInput rdf:resource= 
         "GLBOntology.owl#GLBGetRequest"/> 
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/> 
<profile:hasOutput rdf:resource= 
         "GLBOntology.owl#GLBGetResponse"/> 
<profile:serviceName>GLB.Add</profile:serviceName> 
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/> 
<profile:hasInput rdf:resource= 
         "GLBOntology.owl#GLBAddRequest"/> 
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/> 
<profile:hasOutput rdf:resource= 
         "GLBOntology.owl#GLBAddResponse"/> 
<profile:serviceName>GLB.Edit</profile:serviceName> 
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/> 
<profile:hasInput rdf:resource= 
         "GLBOntology.owl#GLBEditRequest"/> 
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/> 
<profile:hasOutput rdf:resource= 
         "GLBOntology.owl#GLBEditResponse"/> 
<profile:serviceName>GLB.Delete</profile:serviceName> 
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/> 
<profile:hasInput rdf:resource= 
        "GLBOntology.owl#GLBDeleteRequest"/> 
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/> 
<profile:hasOutput rdf:resource= 
       "GLBOntology.owl#GLBDeleteResponse"/> 
</rdf:RDF> 

6 CONCLUSIONS AND FUTURE WORK 
In this paper, we propose an approach that bridges the 

gap between formal specification and ontological 

description of service semantics. We do this by transforming 

formal specifications into domain ontology and ontological 

descriptions of services. The former is capable of providing 

verifiable and testable specifications of service semantics, 

whilst the latter has the advantage of being practically 

usable and easy for software developers to understand. The 

prototype tool is built for the specification language SOFIA, 

and the output is in OWL. A case study with the tool 

demonstrates the feasibility of the proposed approach. 

We are pursuing a formal approach for specifying and 

testing service-oriented systems. Currently, we are 

developing a tool that uses specifications in SOFIA as input 

to perform automated testing and verification of web 

services. Another possible avenue for future work is to 

check the consistency of specification using both 

ontological reasoning and equational logic inferences. 

ACKNOWLEDGMENT  
The work reported in this paper is partially supported by 

EU FP7 project MONICA on Mobile Cloud Computing 

(Grant No.: PIRSES-GA-2011-295222), National Natural 

Science Foundation of China (Grant No. 61272420), 

National Natural Science Foundation of Jiangsu Province 

(Grant No. BK2011022) and Jiangsu Qinglan Project.  

REFERENCES 
Bonchi, F., & Montanari, U. (2008). A coalgebraic theory of 
reactive systems. Electronic Notes in Theoretical Computer 
Science, 209, 201-215. 

Bruijn, J., et al. (2006). The web service modelling language 
WSML: An overview, Proceedings of the 3rd European Semantic 
Web Conference (pp. 590-604): Springer-Verlag. 

Bruijn, J. d., et al. (2005). Web service modeling ontology 
(WSMO), (W3C member submission): W3C. 

Chen, H. Y., Tse, T. H., Chan, F. T., & Chen, T. Y. (1998). In black 
and white: An integrated approach to class-level testing of 
object-oriented programs. ACM Transactions on Software 
Engineering and Methodology, 7(3), 250-295. 

Chen, H. Y., Tse, T. H., & Chen, T. Y. (2001). TACCLE: A 
methodology for object-oriented software testing at the class 
and cluster levels. ACM Transactions on Software Engineering 
and Methodology, 10(4), 56-109. 

Cirstea, C. (1997). Coalgebra semantics for hidden algebra: 
Parameterised objects and inheritance, Proceedings of the 12th 
International Workshop on Recent Trends in Algebraic 
Development Techniques (pp. 174-189). 



International Journal of Services Computing (ISSN 2330-4472)           Vol. 2, No. 1, January - March 2014 

 

70 

 

 

Cirstea, C. (2002). A coalgebraic equational approach to 
specifying observational structures. Theoretical Computer 
Science, 280(1-2), 35-68. 

Doell, B., & Dosch, W. (2005). Transforming functional 
signatures of algebraic specifications into object-oriented class 
signatures, Proceedings of the 12th Asia-Pacific Software 
Engineering Conference (pp. 323-332): IEEE CS Press. 

Ehrich, H.-D. (1982). On the theory of specification, 
implementation, and parametrization of abstract data types. 
Journal of ACM, 29(1), 206-227. 

Gaudel, M.-C.,& Le Gall, P.  (2007). Testing data types 
implementations from algebraic specifications. In Formal 
Methods and Testing, R. Hierons, J. Bowen, and M. Harman,eds, 
Lecture Notes in Computer Science, Vol. 4949, (209-239) 
Springer-Verlag.   

Goguen, J. A., & Malcolm, G. (2000). A hidden agenda. 
Theoretical Computer Science, 245(1), 55-101. 

Goguen, J. A., Thatcher, J. W., Wagner, E. G., & Wright, J. B. 
(1977). Initial algebra semantics and continuous algebras. 
Journal of ACM, 24(1), 68 - 95  

Hadley, M. J. (2006). Web application description language 
(WADL) (SMLI TR-2006-153). CA, USA: Sun Microsystems Inc.,. 

Kong, L., Zhu, H., & Zhou, B. (2007). Automated testing 
components based on algebraic specifications, Proceedings of 
the 31th IEEE International Conference on Computer Software 
and Applications (COMPSAC 2007) (pp. 717-722). 

Kopecky, J., Gomadam, K., & Vitvar, T. (2008). hRESTS: An 
HTML microformat for describing RESTful web services, 
Proceedings of theIEEE/WIC/ACM 2008 International 
Conference on Web Intelligence and Intelligent Agent 
Technology (WI-IAT'08) (pp. 619-625). Sydney, Australia. 

Lathem, J., Gomadam, K., & Sheth, A. P. (2007). SA-REST and 
(S)mashups: Adding semantics to RESTful services, 
Proceedings of ICSC (pp. 469-476). 

Liu, D., Zhu, H., & Bayley, I. (2012). Applying algebraic 
specification to cloud computing -- a case study of 
Infrastructure-as-a-Service GoGrid, Proceedings of The Seventh 
International Conference on Software Engineering Advances (pp. 
407-414). 

Liu, D., Zhu, H., & Bayley, I. (2013a). A case study on algebraic 
specification of cloud computing, Proceedings of the 21st 
Enuromicro International Conference on Parallel, Distributed 
and Network-Based Processing (pp.269-273). Queen's 
University, Belfast, Northern Ireland. 

Liu, D., Zhu, H., & Bayley, I. (2013b). From algebraic 
specification to ontological description of service semantics, 
Proceedings of the 20th International Conference on Web 
Services (ICWS 2013). Santa Clara, CA. 

Mallraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web 
services. IEEE Intelligent Systems(March/April), 46-53. 

Martin, D., al., e. (2004). Semantic Markup for Web Services 
(W3C member submission): W3C. 

Papazoglou, M. P. (2012). Web Services and SOA: Principles and 
Technology (2nd ed.): Pearson. 

Richardson, L., & Ruby, S. (2007). RESTful Web Services: O'Reily. 

Rutten, J. M. (2000). Universal coalgebra: a theory of systems. 
Theoretical Computer Science, 249(1), 3-80. 

Singh, M. P., & Huhns, M. N. (2005). Service-Oriented Computing: 
Semantics, Processes, Agents: John Wiley & Sons. 

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, 
methods, and applications. Knowledge Engineering Review, 
11(2), 93-155. 

Yu, B., Kong, L., Zhang, Y., & Zhu, H. (2008). Testing java 
components based on algebraic specifications, Proceedings of 
the First International Conference on Software Testing, 
Verification, and Validation (ICST 2008) (pp.190-199). 
Lillehammer, Norway: IEEE CS Press. 

Zhu, H. (2003). A note on test oracles and semantics of 
algebraic specifications, Proceedings of the 3rd International 
Conference on Quality Software (QSIC 2003) (pp. 91-98). Dallas, 
TX. 

Zhu, H., Liu, D., & Bayley, I. (2013). Reference manual of the 
SOFIA algebraic specification language (TR-CCT-AFM-01-2013). 
Oxford, UK: Department of Computing and Communication 
Technologies, Oxford Brookes University. 

Liu, D., Zhu, H. & Bayley, I. (2014). SOFIA: An Algebraic 
Specification Language for Developing Services, In Proc. of The 
8th IEEE International Symposium on Service-Oriented 
Systems Engineering (SOSE 2014). (pp.70-75) Oxford, UK.  

Zhu, H., & Yu, B. (2010). Algebraic specification of web services, 
Proceedings of the 10th International Conference on Quality 
Software (QSIC 2010) (pp. 457-464): IEEE CS Press. 

 

Authors 

  
Dongmei Liu received the BS degree in 

Computer Applied Technology, the MS 

degree in Computer Architecture, and the 

PhD degree in Computer Software and 

Theory from Wuhan University, China, in 

1999, 2001 and 2004, respectively. 

Currently, she is an associate professor at Nanjing 

University of Science and Technology, China. Her research 

interests include software testing, software reliability 

modeling, formal specification methods and intelligent 

computation. 

 
 
Hong Zhu is a full professor of computer 

science at the Oxford Brookes University, 

UK, where he chairs the Applied Formal 

Methods research group. He received a 

BSc, MSc and PhD degree in Computer 

Science from Nanjing University, China, in 1982, 1984 and 



International Journal of Services Computing (ISSN 2330-4472)           Vol. 2, No. 1, January - March 2014 

 

71 

 

1987, respectively. He was with Nanjing University from 

August 1987 to November 1998 and joined Oxford Brookes 

University in Nov. 1998. His main research interests are in 

software engineering, including software testing, modeling, 

design and development methodologies. He has published 

two books and more than 170 research papers in journals 

and international conferences and chapters in peer reviewed 

edited books. He is a senior member of IEEE and a member 

of ACM and BCS.  

 

 

Ian Bayley was born in Liverpool, studied 

for an MEng Computing (Mathematical 

Foundations and Formal Methods) at 

Imperial College London and earned a 

DPhil Computation at Balliol College Oxford with research 

into the semantics of functional programming languages. 

Since 2005, he has been a lecturer at Oxford Brookes 

University. His research interests include software 

engineering, formal methods, and programming paradigms. 

 

 

 

 

 

 

 

 

 

 

 




