

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

58

TRANSFORMATION OF ALGEBRAIC SPECIFICATIONS INTO

ONTOLOGICAL SEMANTIC DESCRIPTIONS OF WEB SERVICES

Dongmei Liu1, Hong Zhu2 and Ian Bayley2
1Nanjing University of Science and Technology, Nanjing, China; 2Oxford Brookes University, Oxford, UK

dmliukz@njust.edu.cn, hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract
The accurate description of service semantics plays a crucial role in service discovery, composition and interaction.
Most work in this area has been focused on ontological descriptions, which are searchable and machine-
understandable. However, they do not define service functionality in a verifiable and testable manner. In contrast,
formal specification techniques, having evolved over the past 30 years, can define semantics in such a manner, but
they have not yet been widely applied to service computing because the specifications produced are not searchable.
There is a huge gap between these two methods of semantics description. This paper bridges the gap by advancing a
transformation technique. It specifies services formally in an algebraic specification language, and then, extractsan
ontological description of domain knowledge and service semantics as profiles in an ontology description language
such as OWL-S. This brings the desired searchability benefits. The paper presents a prototype tool for performing this
transformation and reports a case study to demonstrate the feasibility of our approach.
Keywords: Web services, Formal semantics, Algebraic specification, Ontology, OWL-S
__

1 INTRODUCTION
The advent of Web Services technology has greatly

influenced the uptake and use of the paradigm of service-

oriented computing. In this paradigm, services are

autonomous, platform-independent and distributed

computational entities (Papazoglou, 2012). Various

techniques have been advanced to enable automated

discovery, execution, composition and interoperation of

services at runtime. Such techniques heavily depend on

accurate descriptions of the semantics of services (Singh &

Huhns, 2005). Ideally, such descriptions should be:

 Comprehensibleas published documentation for

developers of software that use the services.

 Abstract, hiding design and implementation detail to

protect the vendor’s intellectual property, and for other

reasons.

 Searchableat run-time, since dynamic search and

composition unlocks the full power of service-oriented

computing. Services must be described with an

interface syntax and specified with a functional

semantics.Both must be machine understandable.

 Testable at run-time since dynamic composition delays

integration testing until then, when service has already

been deployed. Services must be highly reliable, and

correct with respect to their semantic descriptions. Both

providers and requesters must be able to verify this.

However, as we shall see in next subsection, no existing

technique satisfies all of these requirements at once. This

paper integrates existing techniques in an attempt to do so.

1.1 EXISTING WORK AND THE OPEN PROBLEM
Existing techniques for semantics descriptions of

services are divided into two categories: ontology-based

approach and formal method based approach. The former,

comprising the majority of research, uses a vocabulary

defined in application domain ontologies to annotate

services; while the latter uses mathematical notations to

formally define the functions of the software system.

Semantic Web Services have been proposed, and

advanced,in the context of Big Web Services (i.e. those

based on WSDL, SOAP and UDDI, etc.). They describe

services using metadata based on domain ontologies

(Mallraith, Son, & Zeng, 2001). OWL-S was the first major

ontology definition language for this purpose (Martin & al.,

2004). It provides a set of constructs for describing the

properties and capabilities of Web Services in a machine-

readable format. Formal methods were applied to provide a

precise mathematical meaning in a formal ontology.

An alternative approach is the Web Service Modelling

Ontology (WSMO) proposed by De Bruijn et al. (2005), a

conceptual model that uses the Web Services Modelling

Language (WSML) (Bruijn &et al., 2006).

As well as Big Web Services, work has also been carried

out on how to specify the semantics of RESTful web

services (Richardson & Ruby, 2007), such as,

MicroWSMO/hRESTS (Kopecky, Gomadam, & Vitvar,

2008), WADL (Hadley, 2006) and SA-REST (Lathem,

Gomadam, & Sheth, 2007).
This paper is an extended and revised version of the conference paper
(Liu, Zhu, &Bayley, 2013b) presented at the IEEE 20th International
Conference on Web Services (ICWS 2013).

mailto:dmliukz@njust.edu.cn
mailto:hzhu@brookes.ac.uk
mailto:ibayley@brookes.ac.uk

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

59

The above mentioned works all take the same approach

to specifying the semantics of services.A vocabulary is

defined in an application domain ontology to give the

meanings of the input and output parameters, as well as the

functions of the services. Such descriptions are easy for

human developers to understand and efficient for computers

to process. However, they cannot provide a verifiable and

testable definition of a service's function, because any

ontology is limited to stereotypes formed from the

relationship between the concepts and their instances.

Formal methods, which we consider as an alternative to

the ontological approach, have been developed over the past

40 years to define the semantics of software systems in

mathematical notations. One such formal method, algebraic

specification was first proposed in the 1970s as an

implementation-independent specification technique for

defining the semantics of abstract data types (Ehrich, 1982;

Goguen et al., 1977). Over these years, it has been advanced

to specify concurrent systems, state-based systems and

software components, all based on solid foundations of the

mathematical theories of behavioural algebras (Goguen &

Malcolm, 2000) and co-algebras (Bonchi & Montanari,

2008; Cirstea, 1997, 2002; Rutten, 2000).

Algebraic specifications are at a very high level of

abstraction. They are independent of any implementation

details. One attractive feature they have is that they can be

used directly in automated software testing (Chen et al.,

1998; Chen, Tse, & Chen, 2001; Gaudel & Gall, 2008;

Kong, Zhu, & Zhou, 2007; Yu et al., 2008). This feature is

particularly important for service engineering, because,

when services compose together dynamically, testing must

be performed automatically on-the-fly.

The algebraic method has been applied to service-

oriented software by extending and combining the

behavioural algebra and co-algebra techniques. Zhu and Yu

(2010) originally applied the algebraic specification

language CASOCC to define traditional software entities,

such as abstract data types, classes and components (Kong,

Zhu, & Zhou, 2007; Yu et al., 2008). They then extended

the language to form CASSOC-WS and applied that to Big

Web Services (Zhu & Yu, 2010). They developed a tool that

can automatically generate the signatures of algebraic

specifications from WSDL descriptions of Big Web

Services. More recently, CASOCC-WS was also applied to

RESTful web services. A tool was developed for it that

performs syntax level consistency checking (Liu, Zhu, &

Bayley, 2012), and a case study was conducted applying

CASOCC-WS to a real industrial system, GoGrid (Liu, Zhu,

& Bayley, 2013a). Based on these works, a new algebraic

formal specification language called SOFIA was proposed

to improve the practical usability of algebraic specification

languages when applied to services (Zhu, Liu, & Bayley,

2013; Liu, Zhu& Bayley, 2014).

However, algebraic specifications, do not directly

support efficient searching on services, and nor do other

formal methods. This weakness has hampered their adoption

for services because such searching is crucial for service-

oriented computing. Service semantics must be specified in

a testable and verifiable way and these specifications must

be searchable.

In summary, with a vocabulary defined in an application

domain ontology as annotation, we can create searchable

and comprehensible descriptions. With the mathematical

notations of formal methods, on the other hand, we can

create descriptions that are testable and verifiable. Each

approach has its strengths and weaknesses. The problem is

how can we benefit from both strengths?

1.2 PROPOSED APPROACH AND MAIN CONTRIBUTIONS
To bridge the gap between algebraic specification and

ontological descriptions, this paper proposes a

transformational approach. Algebraic specifications are

written for services and then transformed with the support of

an automated tool into an ontology-based semantics

description, thereby conferring onto formal specifications

the machine-readability and human-understandability

benefits of ontologies.

The main contributions of the paper are three-fold.

First, we propose a framework to solve the problem

stated in the previous subsection. The semantics of a service

and its domain knowledge are both described in a formal

specification language. The domain knowledge is

automatically transformed into adomain ontology, while the

semantics is transformed into an ontology-based service

description.

Second, we present the details of these two

transformations in the form of transformation rules. We also

report their implementation in an automated tool.

Finally, we demonstrate the feasibility of our solution

with a case study of an actual industrial system called

GoGrid. It is a RESTful web service interface toan

Infrastructure-as-a-Service (IaaS).

To our knowledge, the only similar work that has ever

been reported in the literature is (Doell & Dosch, 2005),

where traditional algebraic specification signatures are

transformed into object-oriented class signatures. However,

such traditional signatures cannot be used for specifying

services; we will see why in the next section. A further

problem is that the language is not modularized enough to

separate the definition of domain knowledge from the

specification of service functional semantics. This makes

the two transformations much more complicated, if not

impossible. For example, when transforming an operation

into a method, it is unclear which class to put it into. Our

approach overcomes this difficulty by associating only one

sort with each modular unit of specification.

1.3 STRUCTURE OF THE PAPER
The remainder of the paper is organised as follows.

Section 2 defines preliminary mathematical notions and the

notations of algebraic/co-algebraic specification. It also

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

60

briefly introduces the specification language SOFIA.

Section 3 presents the mapping rules that translate algebraic

specifications into ontologies and the rules that extract the

ontological descriptions of the service semantics. Section 4

describes the prototype tool TrS2O that implements both

sets of rules for the SOFIA language. It represents the

resulting ontology and service semantics in OWL and

OWL-S profiles. Section 5 reports the case study of the

GoGrid API. Section 6 concludes the paper with a

discussion of future work.

2 PRELIMINARIES
In this section, we define preliminary mathematical

notions and notations. We also briefly introduce the SOFIA

language.

2.1 ALGEBRAIC STRUCTURES
We regard a service-oriented system as consisting of a

collection of units. Each unit has a unique identifier, which

is called the sort name. We recognise two different ways in

which one unit can be constructed from another, extension

and usage, as follows:

(1) A unit can be extended with additional elements, in a

manner similar to the inheritance relation of object-

orientation. The notation𝑠 ⊳ 𝑠′means that s extendss’,i.e.s

inherits all the operations and axioms defined in s’.

(2) A unit can use another unit, e.g. as a component,

operation parameter or operation result, just like the

association relation of object-orientation. Such usage is

denoted by the notation 𝑠 ≻ 𝑠′, whichmeans thatsusess’.

As in (Zhu, 2003), we assume that the specification of a

software system is well-structured in the following sense.

1) Each type of software entity has a corresponding

specification unit with a unique sort name.

2) Each type of real-world entity involved in the software

system is specified by a corresponding specification

unit with a unique sort name.

3) The same is also true for each real-world concept.

4) Any extension or usage relationship between

specification units has a corresponding relationship

between real-world counterparts and vice versa.

Together, a set of specification units, extension relation

and usage relation comprise a system signature, defined

formally as follows.

Definition 1.(System Signature)A system signature is an

ordered pair 𝑆𝑝, 𝛴 , where 𝑆𝑝 = 𝑆, ≻, ⊳ is a set Sof sorts

with two binary relations on S denoted by ≻ and ⊳ ,

and𝛴 = 𝛴𝑠|𝑠 ∈ 𝑆 is a collection of unit signatures, with

𝛴𝑠 denoting the unit signature for sorts.

Every kind of software entity, whether it is an abstract

data type, a class, a component or, as here, a service, must

define a set of typed operators. The syntactic aspect of an

operator is determined by its domain, its co-domain and its

identifier.This is specified in the following form.

𝑜𝑝: (𝑠1, 𝑠2 , … , 𝑠𝑛) → (𝑠′1 , 𝑠′2 , … , 𝑠′𝑘)

where op is the identifier of the operator, (𝑠1, 𝑠2 , … , 𝑠𝑛), 𝑛 ≥
0, are the domain sorts, and(𝑠′1 , 𝑠′2 , … , 𝑠′𝑘), 𝑘 > 0, are the

co-domain sorts.

We allow an operator to have more than one domain sort

and more than one co-domain sort at the same time. This is

the main difference between our theory and that used for

algebraic specifications, which require a single sort co-

domain, and that used for co-algebraic specifications, which

require a single sort domain. These restrictions are too tight

to specify services so they are relaxed in our theory. This

allows us, for example, to give a BookTicket operator for an

online ticket booking service a signature like this:
BookTicket: DATE, NAT, BOOKING -> MESSAGE, BOOKING

Here, DATE is the date of the performance, NAT is the number

of tickets wanted, MESSAGE is the response to the requester.

BOOKING represents the state of the online booking services.

It occurs in both the domain and the co-domain so that the

original state can be taken as input and the modified state

can be produced as output.

We now define the notion of unit signature to represent

the structure of software units as follows.Let X be a finite

set of symbols. We write X* to denote the set of finite

sequences of the symbols in X. In the sequel, we use Ws to

denote 𝑥 ∈ 𝑆|𝑠 ≻ 𝑥 ∨ 𝑥 = 𝑠 ∗ .

Definition 2.(UnitSignature)Given a system

signature (Sp, Σ) , the unit signatureΣs ∈ Σ for a sort s ∈ S

consists of a finite family of disjoint setsΣ𝑤,𝑤′
𝑠 indexed by

pairs of units(𝑤, 𝑤′) with𝑤, 𝑤′ ∈ 𝑊𝑠 . Each element𝜑 in

setΣ𝑤,𝑤′
𝑠 is an operator symbol of type𝑤 → 𝑤′ , where wis

the domain type and w’ the co-domain type of the operator.

Such operators can be classified as constants, attributes,

andgeneral operations as follows.

(1)𝜑 is a constant, if𝑤 = ∅, 𝑤′ = (𝑠),

(2) 𝜑 is an attribute, if𝑤 = (𝑠), 𝑤′ = (𝑠′) and 𝑠 ≻ 𝑠′,
(3) Otherwise,𝜑is a general operation.

In the sequel, we will writeΣ𝐶
𝑠 , Σ𝐴

𝑠 ,andΣ𝐺
𝑠 for the subsets

of Σ𝑠that contain the constants, the attributes and the general

operations, respectively.

The semantics of the operators are defined by axioms

that describe the properties that these functions must satisfy.

An axiom consists of a number of universally quantified

variables and a list of conditional equations.

Let (Sp, Σ) be a given system signature and𝑠 ∈ 𝑆 be any

given sort. We define the notion of valid terms that can be

used in the specification unit of sort s as s-terms. Each s-

term is also typed. Each𝑤 ∈ 𝑊𝑠 is a type in unit s.Formally,

we have the following definition.

Definition 3.(Term)For a unit 𝑠 ∈ 𝑆 , the set𝑇𝑠 of valid

terms in s, called s-terms, is a family of disjoint sets
 𝑇𝑤

𝑠 |𝑤 ∈ 𝑊𝑠 , 𝑠 ∈ 𝑆 . Here, each 𝑇𝑤
𝑠 is the set of s-terms of

type w, and is inductively defined as follows.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

61

(1) x is an s-term of type w, if 𝑥 ∈ 𝑉𝑤
𝑠 , where 𝑉𝑤

𝑠 is the set of

variables in s of type w.

(2) For each(𝑜𝑝: ∅ → 𝑠) ∈ Σ𝐶
𝑠 , op is an s-term of type s.

(3) For each (𝑜𝑝: 𝑠 → 𝑠′) ∈ Σ𝐴
𝑠 , 𝑜𝑝(𝑡) is a s-term of type s’,

if t is an s-term of type s.

(4) For each (𝑜𝑝: 𝑤 → 𝑤′) ∈ Σ𝐺
𝑠 , 𝑜𝑝(𝑡) is an s-term of type

w’, if t is an s-term of type w.

(5) 𝜏1 , 𝜏2, … , 𝜏𝑛 is an s-term of type w, if 𝜏𝑖 is an s-term of

type𝑠𝑖 , for𝑖 = 1,2, … , 𝑛, where𝑤 = (𝑠1 , 𝑠2, … , 𝑠𝑛).
(6) 𝜏#𝑘 is an s-term of type𝑠𝑘 , if 𝜏 is an s-term of type

(𝑠1 , 𝑠2, … , 𝑠𝑛),and 0<k≤n is a natural number.

An equation in specification unit shas the form τ = τ′,
whereτand τ′ are s-terms of the same type. A conditional

equation in specification unit shas the form

τ = τ′, if 𝑐1 = 𝑑1, … , 𝑐𝑛 = 𝑑𝑛 ,

where τand τ′are s-terms of the same type, 𝑐𝑖 and 𝑑𝑖 are s-

terms of typesisuch that 𝑠 ≻ 𝑠𝑖 ∨ 𝑠𝑖 = 𝑠 for all 𝑖 =
1,2, … , 𝑛,𝑐1 = 𝑑1 , … , 𝑐𝑛 = 𝑑𝑛are the conditions.

An axiom in the specification unit s is a conditional or

unconditional equation E with all variables in the equation

universally quantified at the outermost.

A specification unit consists of a unit signature and a set

of axioms.

Definition 4. (Specification) A specification is a

triple 𝑆𝑝, Σ, 𝐴𝑥 , where

(1) 𝑆𝑝 = 𝑆, ≻, ⊳ , S is finite set of sorts,⊳ and ≻ are the

extends and uses relations on S, respectively;

(2) Σ = Σ𝑠|𝑠 ∈ 𝑆 is a set of unit signatures indexed by s;

(3) 𝐴𝑥 = 𝐴𝑥𝑠|𝑠 ∈ 𝑆 is a finite collection of axiom sets

indexed by s;

(4) for all s and 𝑠′ ∈ 𝑆 , 𝑠 ⊳ 𝑠′ implies that Σ𝑠′ ⊆ Σ𝑠

and 𝐴𝑥𝑠′ ⊆ 𝐴𝑥𝑠.

For each𝑠 ∈ 𝑆, (Σ𝑠 , 𝐴𝑥𝑠) is called the specification unit

for sort s.

Note that, by Definition 2, a specification consists of a

system signature 𝑆𝑝, Σ , and a collection Ax of axiom sets.

2.2 SEMANTICS OF ALGEBRAIC SPECIFICATION
We now define the semantics of algebraic specifications

by defining what it means for an implementation to be

correct with respect to a specification. In general, an

implementation of a specification is a mathematical

structure that realises the operators in the signature and

satisfies the axioms.

Definition 5. (Algebra) Given a system signature 𝑆𝑝, Σ , a

 𝑆𝑝, Σ -algebra Γ is a mathematical structure (A,F) that

consists of a collection𝐴 = 𝐴𝑠|𝑠 ∈ 𝑆 of sets indexed by s,

and a collection F of functions indexed by (𝑤, 𝑤′), where

𝑤, 𝑤′ ∈ 𝑊𝑠 , 𝑠 ∈ 𝑆 such that for each operator 𝜑: 𝑤 → 𝑤′ ,
the function 𝑓𝜑 ∈ 𝐹 has domain Aw and co-domain Aw’,

where𝐴𝑢 = 𝐴𝑠1
× 𝐴𝑠2

× … × 𝐴𝑠𝑛 , when 𝑢 = (𝑠1 , 𝑠2 , … , 𝑠𝑛) .

The evaluation of a term in an algebra depends on the

values assigned to the variables that occur in the term. Such

an assignment 𝛼 of variables 𝑉𝑠 , 𝑠 ∈ 𝑆, in an algebraΓ is a

function from𝑉𝑠 to 𝐴𝑠.

Definition 6. (Evaluation of terms in an algebra) Given an

assignment 𝛼 , the evaluation of a term 𝜏 in an (𝑆𝑝, Σ) -

algebraΓ = (𝐴, 𝐹), written𝐸𝑣𝑎𝛼 (𝜏), is defined as follows.

(1) 𝐸𝑣𝑎𝛼(𝑣) = 𝛼(𝑣) ;

(2)𝐸𝑣𝑎𝛼 (𝜑(𝜏)) = 𝑓𝐴,𝜑(𝐸𝑣𝑎𝛼 (𝜏)) ;

(3)𝐸𝑣𝑎𝛼 (𝜏1, 𝜏2 , … , 𝜏𝑛) =
 𝐸𝑣𝑎𝛼 (𝜏1), 𝐸𝑣𝑎𝛼(𝜏2), … , 𝐸𝑣𝑎𝛼 (𝜏𝑛) ;
(4) 𝐸𝑣𝑎𝛼 (𝜏#𝑘) = 𝑒𝑘 , if 𝐸𝑣𝑎𝛼(𝜏) = 𝑒1, … , 𝑒𝑛 , and

1 ≤ 𝑘 ≤ 𝑛.

Definition 7. (Satisfaction) Let e be an equation in the

following form.

τ = τ′, if 𝑐1 = 𝑑1, … , 𝑐𝑛 = 𝑑𝑛 .

An (𝑆𝑝, Σ)-algebraΓ = (𝐴, 𝐹) satisfies e, writtenΓ ⊨ 𝑒 , if

for all assignments 𝛼 , we have that𝐸𝑣𝑎𝛼(𝜏) = 𝐸𝑣𝑎𝛼 (𝜏′)

whenever𝐸𝑣𝑎𝛼 (𝑐𝑖) = 𝐸𝑣𝑎𝛼 (𝑑𝑖) is true for all𝑖 = 1,2 … , 𝑛.

Let𝜀 = (𝑆𝑝, Σ, 𝐴𝑥) be a specification. An(𝑆𝑝, Σ)-algebra

Γ = (𝐴, 𝐹)satisfies specification𝜀 , writtenΓ ⊨ 𝜀 , if for all

equations e in Ax, we have that Γ ⊨ 𝑒.

2.3 THE SOFIA SPECIFICATION LANGUAGE

SOFIA is a new algebraic specification language
designed for the formal specification of services. It is
based on the algebraic structure described above. Here,
we give a brief introduction to the language. The readers
are referred to (Zhu, Liu, & Bayley, 2013) for the

reference manual.

The overall structure of a SOFIA specification is a
collection of specification units. A unit can be split into
two partial units: a Signature unit, to define the
signature, and an Axiom unit, to define the axioms that
apply to the signature unit. The users can also define
auxiliary functions and concepts in a Definition unit.
More formally, in BNF notation we have:

<Specification> ::= <Unit>*
<Unit> ::= <Spec Unit> | <Signature Unit> | <Axiom Unit>

| <Definition Unit>

The “uses” and “extends” relations between
specification units are declared in clauses introduced
with the keywordsusesand extends, as shown below.

<Spec unit> ::= Spec <Sort Name> [<Observability>];
[extends <Sort Names>]
[uses <Sort Names>]
<Signature>;
[<Axioms>]

End

SOFIA also declares if a software entity is observable
in the sense that its states or values can be directly
tested for equality; otherwise, its states or values have to
be checked by other means, e.g. through observers.

SOFIA explicitly declares three kinds of operators
using keywords Const for constants, Var for attributes,
and Operation for general operators. For example, the

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

62

following is the signature unit in the SOFIA specification
of Stack.
 Signature Stack;
 uses Int, Real, Bool;
 Const: nil;
 Var
 Length: Int;
 IsEmpty: Bool;
 Top: Real;
 Operation
 Push(Real);
 Pop;
 End;

Note that SOFIA assumes that the sort name of the unit
occurs on both sides of the general operators. Thus,
Push(Real)is syntactic sugar for Push: Stack, Real -> Stack.

An axiom in SOFIA is in the form of
for all x1: s1, x2: s2, …, xn: sn that

e1 = e2, if cond;

where x1, …, xn are universally quantified variables that
occur in the equation, and s1, …, sn are their respective
sorts. For example, the axioms for Stack are as follows.

for all x: Real, s: Stack that
 s.push(x).length = s.length+1;
 s.push(x).IsEmpty = False;
 s.push(x).top = x;
 s.push(x).pop = s;
 s.pop.length = s.length-1, if s.length>0;
 s.length=0, if s.IsEmpty= True;
 s.IsEmpty = True, if s.length=0;
 s.IsEmpty = False, if s.length>0;
 nil.IsEmpty = True;

SOFIA uses the prefix-dot notation for the application of
an operator to the main sort.

To improve the readability of axioms, the language
also allows the definition of local variables/identifiers
for use in equations. The following is an example.

for all x: Real, s: Stack that
 let s’ = s.push(x) in

 s’.length = s.length+1;
 s’.IsEmpty = False;
 s’.top = x;
 s’.pop = s;
end

3 TRANSFORMATION RULES
Anontology defines the concepts in a domain througha

set of relations between them. Individual entities are the

instances of these concepts. In ontology modeling languages,

such as OWL, concepts are often modeled as classes.

Relations are modeled as properties to describe the features

and attributes of the concepts. Individuals are modeled as

objects,which are instances of the classes that represent the

corresponding concepts. Such an ontologyis a representation

of domain knowledge (Uschold & Gruninger, 1996).

In this section, we present a set of mapping rules to

derive ontological descriptions of services from algebraic

specifications. We use general algebraic structures rather

than the concrete syntax of SOFIA so that the rules are

generally applicable.

3.1 EXTRACTION OF DOMAIN ONTOLOGY
Given an algebraic specification (𝑆𝑝, Σ, 𝐴𝑥) , the

following rules will extract classes, properties and

individuals from algebraic specifications, and thus translate

an algebraic specification into a domain ontology.

Rule 1: For each sort𝑠 ∈ 𝑆 of the specification, generate a

formula Class(s), wherepredicate Class(x) means that x is a

class or, in other words, x is a concept.

Rule 2: For an extension relation 𝑠 ⊳ 𝑠′ in the system

signature (𝑆𝑝, Σ) of the specification, generate a formula

subClassOf(s, s’), where predicate subClassOf(x, y)means

that class x is a subclass of y, or equally, x is a sub-concept

of y.

Rule 3: For a uses relation𝑠 ≻ 𝑠′ in the system signature

(𝑆𝑝, Σ) of the specification, generate a formula uses(s, s'),

where predicate uses(x, y) means that concept x is defined

by using the concept y, it is somewhat redundant because it

can be deduced from other predicates later on.

Rule 4: For each constant𝜑 ∈ Σ𝐶
𝑠 ,

(1) Generate a formula Individual(𝜑), where predicate

Individual(y) means that y is an individual, and

(2) Generate a formula s(𝜑), where x(y)means that y is an

instance of class x.

Rule 5: For each operator: 𝑠 → 𝑠′, 𝜑 ∈ Σ𝐴
𝑠 ,

(1) Generate a formula Property(𝜑), where predicate

Property(z) means that z is a property, and

(2) Generate a formula 𝜑(s, s'), where z(x, y) means that z is

a property of concept x (i.e. an attribute or an element of x),

and its value is of type y.

Rule 6: For each general operation: 𝑤 → 𝑤′, 𝜑 ∈ Σ𝐺
𝑠 ,

(1) Generate a formula Class(𝜑), where predicate Class(z)

means that z is a concept, and

(2) For each𝑠𝑖 ∈ 𝑤 , generate a formula isDomainOf(𝜑,si),

where isDomainOf(z, x) means that x is the domain of

the relation z, and

(3) For each 𝑠𝑖 ∈ 𝑤′, generate a formula isCodomainOf(𝜑, si)

where the predicate isCodomainOf(z, x) means that x is the

co-domain (or range or output) of the relation z..

To explain Rule 6, we regard an operation as a relation

(i.e. a relational concept) that links the concepts of the

domain to the concepts of the co-domain.

3.2 GENERATION OF SERVICE PROFILE
Having generated the ontology from a specification, the

services can be described in an OWL-S profile based on the

ontology. Such a profile can also be generated from the

specification unit that defines the service's functionality.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

63

Given a specification

(𝑆𝑝, Σ, 𝐴𝑥) of service Sv, the

following rule will generate the

service profile.

Rule 7: For each general

operation𝜑: 𝑤 → 𝑤′, 𝜑 ∈ Σ𝐺
𝑠 ,

(1) Generate a service profile frame.

(2) Generate an element

serviceNamewith value 𝑠. 𝜑.

(3) For each 𝑠𝑖 ∈ 𝑤 , generate an

element hasInputwith resource

"Sv.owl#si".

(4) For each 𝑠𝑖 ∈ 𝑤′ , generate an

element hasOutputwith resource

"Sv.owl#si".

Figure 1 illustrates the above

transformation rule.

For example, here is the specification unit in the SOFIA

language that defines the operations on Servers in the

GoGrid system. The axioms are omitted since they are not

used in the translation.
Spec GServer;

uses ServerListRequest, ServerListResponse,
ServerGetRequest, ServerGetResponse,
ServerAddRequest, ServerAddResponse,
ServerEditRequest, ServerEditResponse,
ServerDeleteRequest, ServerDeleteResponse,
ServerPowerRequest, ServerPowerResponse;

Var clockTime: Int;
Operation

List(ServerListRequest) : ServerListResponse;
Get(ServerGetRequest) : ServerGetResponse;
Add(ServerAddRequest) : ServerAddResponse;
Edit(ServerEditRequest) : ServerEditResponse;
Delete(ServerDeleteRequest) : ServerDeleteResponse;
Power(ServerPowerRequest) : ServerPowerResponse;

Axiom
 …

End

The profile for the List operation is given as follows.
<rdf:RDF>
<owl:Ontology rdf:about="">
<owl:imports rdf:resource=
 "http://www.daml.org/services/owl-s/1.0/Profile.owl"/>
<owl:imports rdf:resource="#GServerOntology.owl"/>
</owl:Ontology>
<profile:serviceName> GServer.List</profile:serviceName>
<profile:hasInput rdf:resource="GServerOntology.owl#GServer"/>
<profile:hasInput rdf:resource=
 "GServerOntology.owl#ServerListRequest"/>
<profile:hasOutput rdf:resource=
 "GServerOntology.owl#GServer"/>
<profile:hasOutput rdf:resource=
 "GServerOntology.owl#ServerListResponse"/>
</rdf:RDF>

4 TRS2OTOOL
A prototype tool called TrS2O (Translator from

Specification toOntology) has been designed and

implemented in Java. It translates formal specifications in

SOFIA to ontological descriptions of services in OWL.

Figure 2 shows the overall structure of the TrS2O Tool.

Figure 2.The Overall Structure of The TrS2O Tool

The tool TrS2O contains three main components.

(1) Specification Parser and Syntax Checker, which parses

algebraic specifications written in SOFIA and generates a

parse tree. It checks whether a specification is syntactically

well-formed and whether the equations in the axioms are

type correct.

(2) Ontology Generator, which takes the parse tree of the

algebraic specification as input, and generates an ontology

represented in the OWL language according to the rules

defined in section 3.

(3) Services Description Generator, which takes as inputs

the ontology and the parse tree of the algebraic specification

and generates the descriptions of services in OWL-S

profiles.

Service
Specification

in SOFIA

Error
Report

Parser
and

Syntax
Checker

Ontology
Generator

Service
Ontology Parse

Tree
Services

Description
Generator

Service
Profile

Figure 1. Illustration of Rule 7

Specification Sv;

 …

 Spec UnitName;

 …

 Operation

 Op: (P1, P2, …, Pn)

 ®(Q1, Q2, …, Qm)

 …

 End UnitName

<rdf:RDF>

<owl:Ontology rdf:about="">

 …

 <owl:imports rdf:resource="# Sv.owl"/>

</owl:Ontology>

<profile:serviceName> UnitName.Op </profile:serviceName>

<profile:hasInput rdf:resource="Sv.owl#P1"/>

<profile:hasInput rdf:resource="Sv.owl#P2"/>

 …

<profile:hasInput rdf:resource="Sv.owl#Pn"/>

<profile:hasOutput rdf:resource= "Sv.owl#Q1"/>

<profile:hasOutput rdf:resource= "Sv.owl#Q2"/>

 …

<profile:hasOutput rdf:resource= "Sv.owl#Qm"/>

</rdf:RDF>

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

64

Figure 4. Visualization of Ontology Generated byTrS2O

Figure 3. The Interface of TrS2O Tool

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

65

Figure 3 shows the user interface of TrS2O. The upper-

left pane displays the specification in SOFIA, while the

lower-left displays the parsing report for it. The panes on the

right are generated from the specification. The upper-right

andshows the ontology and the lower-right showsprofile of

services.

It is worth noting that the ontology generated by TrS2O

can be processed by any OWL tool.Figure 4 illustrates the

visualization of the ontology for the GoGrid specification;

the tool used was Protege. Reasoning and searching on

domain knowledge can also be performed.

5 CASE STUDY
In this section, we report a case study with a real

industrial RESTful web services GoGrid.

5.1 GOGRID API
GoGrid

1
 is an infrastructure-as-a-service (IaaS) provider.

It provides an easy-to-use API for developers, system

administrators and end-users to access its functions. Its

services can be accessed through a RESTful web service

interface in a number of different programming and

scripting languages. RESTful web services, unlike

SOAP/WSDL, are based on the HTTP protocol, so each

GoGrid API call is an individual HTTP query.

The latest version of the GoGrid API has 11 different

types of objects and 5 types of common operators. Not all

operators can be applied to all types of objects, however.

There are three types of objects that are only used as

parameters of the operators, so no operators are applicable

on them, and there are some objects that have special

operators. Table 1gives the applicable operators for each

type of object.

It is worth noting that some operators in GoGrid have

different meanings for different types of objects. In order to

achieve well-structuredness, in our specification of GoGrid,

the definitions were grouped by object rather than by

operator. For the sake of space, we give here just the

applicable operators for the load balancer object and its

systematic specification, because it is one of the most

important objects with the most operators.

Table 1. Applicable Operators on Objects

Object List Get Add Delete Edit Other Ops

Server Yes Yes Yes Yes Yes Power

Server
image

Yes Yes Yes Yes
Save,

Restore

Load

Balancer
Yes Yes Yes Yes Yes

Job Yes Yes
IP Yes
Password Yes Yes
Billing Yes
Option Yes

1
 http://www.gogrid.com/

5.2 SPECIFICATION OF GOGRID IN SOFIA
For each type of objects in the GoGrid system, we write

several specification units to define various aspects of the

object and its operators, including

(1) Valid requests, for which we define their structures and

constraints on how their components may be combined;

(2) Responses,with structures and constraints as above;

(3) Objects of certain types, with signatures and semantics,

including signatures and axioms that characterize the

relationships between the valid requests and the

responses.

Other specification units define features and concepts

common to many types of objects. Examples include the

four query parameters common to all GoGrid API calls.

Some properties are common to all objects too.

The specification of the GoGrid API is based on a

framework for specifying RESTful web services (Liu, Zhu, &

Bayley, 2013b). The framework consists of a collection of

specification units that define the general structure of HTTP

requests and responses so that a specific RESTful web

services can be specified as extensions to these units. In

particular, the following sorts in the framework are used in

the GoGrid specification: URL, HTTPMethod,

RequestHeader, RequestHeaderField, HTTPRequest,

QueryParameter, QueryString, ResponseHeader,

ResponseHeaderField and HTTPResponse. Details are

omitted for the sake of space.

5.2.1 Objects and Collections

Here we give the specifications of the load balance

object and its collection, ListofLB. The latter has an

operation itemsto get an individual load balancer object, an

operation insert to add on object to the list, and an attribute

length to give the number of load balancer objects in the

list.The specifications ofOption, IPPP (which stands for IP

Port Pair), and ListofIPPP(its collection) are omitted here.
Spec LoadBalancer;

uses Option, IPPP, ListofIPPP;
Var

id: Long;
name, description: String;
virtualip: IPPP;
realiplist: ListofIPPP;
type, persistence, os, state, datacenter: Option;

Axiom
For all lb: LoadBalancer that

lb.id <> Null;
End

End
Spec ListofLB;

uses LoadBalancer;
Var

length: Int;
Operation

items(Int) : LoadBalancer;
insert(LoadBalancer);

End

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

66

Note that, when an object is structural (i.e. it consists of

a number of elements), each element of the object can be

specified using an attributein the SOFIA language.

Traditionallyin algebraic specifications, an attribute is an

observer, i.e. an operation from the sort being defined to

another sort. It is similar to the getters in object-oriented

programs for getting the value of attributes. Here, SOFIA

provides attribute as a language facility to specify the

object’s structure directly.

5.2.2 Requests

There are four query parameters that are common to all

GoGrid API calls, and they are specified as follows:
Spec CommonParameter;

Var
api_key, sig, v, format: String;

Axiom
Forall cp: CommonParameter That

cp.api_key <> Null;
cp.sig <> Null;
cp.v <> Null;

End
End

Here api_key is a key generated by GoGrid for security when

accessing resources, sig is an MD5 signature of the API

request data, v is the version id of the API, and format is an

optional field to indicate the response format required. NULL

is a value that represents no information.

The signature can be generated by an MD5 hash from

three parts:

 the api_key, obtained before API calls can be made,

 the user's sharedsecret, a string of characters set by the

user and known only by the GoGrid server, and

 a Unixtimestamp, the number of seconds since the Unix

Epoch of when the request was made.

Together, the api_key and sharedsecret act as an

authentication mechanism. Their uses in authentication

depend on system context such as time, becausesig is time-

dependent.Therefore, the axioms for specifying the

authentication mechanism are given in the specification of

the whole system. Here, we can only say that both are

required.

In addition to the parameters common to all service

requests, each specific type of service request may also

contain various specific parameters. So,for each type of

request, we first specify the common structure as one sort:

ListRequest, GetRequest, and so on. These are then extended

for the different types of objects, giving ServerListRequest,

LBListRequest, and so on. Here we only have space for the

get operation on load balancer, but it is the most common

operation, and complex enough to be representative. It is

implemented using the HTTP request method GET and is

the only way to determine the internal state of a service.
Spec GetRequest;

extends HTTPRequest;
uses CommonParameter, ListofString;
Var

para: CommonParameter;
id, name : ListofString;

Axiom
For all gr: GetRequest that

gr.id = Null, if gr.name <> Null;
gr.name = Null, if gr.id <> Null;

End
End

As you can see, the sort GetRequestadds to

HTTPRequestsome extra attributes:para,the common query

parameters defined before, and both idandname; these are

used to select the object; only one is required and it is an

error to use both. Now GetRequest can be extended to load

balancers as LBGetRequest as follows.

Spec LBGetRequest;
extends GetRequest;
uses ListofString;
Var
 loadbalancer: ListofString;
Axiom

For all lbgr: LBGetRequest that
lbgr.id = Null, if lbgr.loadbalancer <> Null;
lbgr.name = Null, if lbgr.loadbalancer <> Null;

End
End

5.2.3 Responses

The GoGrid API responses can be in any of three

different formats: JSON (JavaScript Object Notation), XML,

and CSV (Comma Separated Values). The default format,

used when the optional format parameter is omitted, is

JSON. However, algebraic specification is abstract enough

to specify all three at once.

The response to a get call starts with a summary, defined

below,containing the total number of objects available, start

index, number of objects returned in a page, and number of

pages.
Signature ResponseSummary;

Var
total, start, returned, numpages: Int;

End

As well as this summary, the response contains status,

request method, status code and a list of returned objects.
Spec GetResponse;

extends HTTPResponse;
uses ResponseSummary;
Var

summary: ResponseSummary;
status, request_method: String;
statusCode: Int;

Axiom
For all gr: GetResponse that

gr.summary.total >=0;
gr.summary.start = 0;
gr.summary.returned = gr. summary.total;

End
End

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

67

For load balancers, this is extended with an attribute for

the list of returned load balancer objects.
Spec LBGetResponse;

extends GetResponse;
uses ListofLB;
Var
objects: ListofLB;

End

5.2.4 Semantics of the operations

For each type of request, we define an operator that

takes a request as the input and produces a response as the

output. All such operators have GoGrid as the context. We

also need to know the clock time on the grid and also the

shared secret chosen by each user and timestamp for

checking the authentication of access. Thus, we have the

following signature for the sort GLB, which represents the

load balancer web services of the GoGrid cloud computing

system.
Spec GLB;

uses
LBListRequest, LBListResponse,
LBGetRequest, LBGetResponse,
LBAddRequest, LBAddResponse,
LBEditRequest, LBEditResponse,
LBDeleteRequest, LBDeleteResponse,

Var
clockTime, timeStamp: Int;
sharedSecret: String;

Operation
List(LBListRequest): LBListResponse;
Get(LBGetRequest): LBGetResponse;
Add(LBAddRequest): LBAddResponse;
Edit(LBEditRequest): LBEditResponse;
Delete(LBDeleteRequest): LBDeleteResponse;

Axiom
...

End

Axioms are used to characterize the semantics of each

operator, but here, as illustration, we give just the get

operator.

First of all, GoGrid authenticates each get call by using

the MD5 function to reconstruct the signature from the

api_key, the user's shared secret, and the time stamp. It then

compares it to the signature contained in the request

parameter. It also checks the time stamp with its server

clock time, allowing a discrepancy of up to 10 minutes. This

authentication rule can be specified as follows.
For all G:GLB, X:LBGetRequest that
 Let key = X.para.api_key,
 sig_Re = MD5(key, G.sharedSecret, X.timeStamp)
in G.Get(X).statusCode = 403,
 if X.para.sig <> sig_Re
or abs(X.timeStamp - G.clockTime) > 600;
 End
End

An important feature of the Get operator is that it is an

observer. So, applying it will not change the state of the

context sort GLB. This property can be expressed by axioms

in the following form.
Axiom <Get-XOp>:
 For all G: GLB, X: LBGetRequest, X1: LBXOpRequest that
[G.Get(X)].XOp(X1) = G.XOp(X1);
End

where XOp is any of the operators List, Get, Add, Edit or

Delete.

The following axiom states that when an operation

changes the state of the cloud by adding a load balancer, the

Get operator should be able to observe the effect

accordingly. In fact, such an axiom also defines the

semantics of the Add operator.
For all G: GLB, X1: LBAddRequest,
 X2, X3: LBGetRequest,
 i: Int
that
[G.Add(X1)].Get(X2).objects = G.Add(X1).objects,
 If X2.name.length = 1,
 X1.name = X2.name.items(0),
 G.Add(X1).statusCode = 200,
 G.Get(X2).statusCode = 200;
[G.Add(X1)].Get(X2).objects = G.Get(X2).objects,
 If search(X2.name, X1.name) = False,
 G.Add(X1).statusCode = 200,
 G.Get(X2).statusCode = 200;
[G.Add(X1)].Get(X2).objects =
 insert(G.Get(X3).objects, G.Add(X1).objects)
 If search(X2.name, X1.name) = True,
 search(X3.name, X1.name) = False,
 search(X3.name, X2.name.items(i)) = True,
 X2.name.items(i) <> X1.name,
 0 =< i, i < X2.name.length,
 G.Add(X1).statusCode = 200,
 G.Get(X2).statusCode = 200,
 G.Get(X3).statusCode = 200;
End

where insert and search are auxiliary functions, defined in a

definition unit, that insert a list of load balancer objects into

another list, and search for a string in a list of strings.

The final axiom listed here states that when an operation

changes the state of the cloud by deleting a load balancer,

the Get operator should also be able to observe the

difference accordingly.
For all G: GLB, X1: LBDeleteRequest,
 X2: LBGetRequest
that
[G.Delete(X1)].Get(X2).statusCode = 500,
 If search(X2.name, X1.name) = True,
 G.Delete(X1).statusCode = 200;
[G.Delete(X1)].Get(X2).objects = G.Get(X2).objects,
 If search(X2.name, X1.name) = False,
 G.Delete(X1).statusCode = 200,
 G.Get(X2).statusCode = 200;
End

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

68

5.2.5 Summary of GoGrid Specification

The complete GoGrid API has been specified in SOFIA.

The numbers of different types of specification units in the

specification are shown in Table 2.

Table 2. Number of Units in GoGrid Specification

Type of unit No

Framework of RESTful web service 10

Common features 37

Definition of Server operations 13

Definition of Server image operations 13

Definition of Load Balancer operations 11

Definition of Job operations 5

Definition of operations on other objects 14

Total 103

5.3 GOGRID ONTOLOGY
Using the TrS2O tool, we have extracted an ontology

from the GoGrid specification. Take specification GLBfor

example. Table 3 gives the numbers of classes, properties

and individuals in the GoGrid Ontology in OWL.

Table 3. Basic Data of GoGrid Ontology

Ontology

Concept

Specification

Concept

No.

Class
Sort 39

General Operator 9

Property

extends 9

uses 36

Domain 16

Codomain 12

Variable Operator 97

Individual Constant Operator 20

For example, here is a fragment of the ontology profile

for the GetRequest sort. It has, in order,one class for the sort,

one property for the extends relation, two properties for the

uses relations and three properties for attributes, each

defined as ObjectProperty.
<owl:Class rdf:ID="GetRequest">
<rdfs:subClassOf rdf:resource=
 "http://www.w3.org/2002/07/owl#Thing"/>
<rdfs:subClassOf>
<owl:Class rdf:ID="HTTPRequest"/>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>
<owl:Class rdf:ID="CommonParameter"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>
<owl:Class rdf:ID="ListofString"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:ObjectProperty rdf:about="#GetRequest.para">
<rdfs:domain rdf:resource="#GetRequest"/>
<rdfs:range rdf:resource="#CommonParameter"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#HTTPRequest.id">
<rdfs:domain rdf:resource="#GetRequest"/>
<rdfs:range rdf:resource="#ListofString"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#HTTPRequest.name">
<rdfs:domain rdf:resource="#GetRequest"/>
<rdfs:range rdf:resource="#ListofString"/>
</owl:ObjectProperty>

Similarly, here is a fragment of the ontology profile for

the GLB sort. It has, in order, one class for the sort, ten

properties for the uses relations, five properties for

isDomainOf and fiveproperties for isCodomainOf,.five

classes for general operators, and three properties for the

attributes, defined as ObjectProperty.
<owl:Class rdf:ID="GLB">
<rdfs:subClassOf rdf:resource=
 "http://www.w3.org/2002/07/owl#Thing"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>
<owl:Class rdf:ID="LBListRequest"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#uses"/>
<owl:allValuesFrom>
<owl:Class rdf:ID="LBListResponse"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
… //the other 8 properties for the uses relation
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isDomainOf"/>
<owl:allValuesFrom rdf:resource="#GLB.List "/>
</owl:Restriction>
</rdfs:subClassOf>
 …//the other 4 properties for isDomainOf

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#isCodomainOf"/>
<owl:allValuesFrom rdf:resource="#GLB.List "/>
</owl:Restriction>

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

69

</rdfs:subClassOf>
…//the other 4 properties for isCodomainOf
</owl:Class>
<owl:Class rdf:ID="GLB.List">
<rdfs:subClassOf rdf:resource=
 "http://www.w3.org/2002/07/owl#Thing"/>
</owl:Class>
…//the other 4 classes for general operators
<owl:ObjectProperty rdf:about="#GLB.clockTime">
<rdfs:domain rdf:resource="#GLB"/>
<rdfs:range rdf:resource="#Integer"/>
</owl:ObjectProperty>

 …//the other two properties for variable operators

5.4 GoGrid Server Profile.
With the TrS2O tool, we have also generateda service

profile. Here it is for the example of GLB.
<rdf:RDF>
<owl:Ontology rdf:about="">
<owl:imports rdf:resource=
 "http://www.daml.org/services/owl-s/1.0/Profile.owl"/>
<owl:imports rdf:resource="#GLBOntology.owl"/>
</owl:Ontology>
<profile:serviceName>GLB.List</profile:serviceName>
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/>
<profile:hasInput rdf:resource=
 "GLBOntology.owl#GLBListRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/>
<profile:hasOutput rdf:resource=
 "GLBOntology.owl#GLBListResponse"/>
<profile:serviceName>GLB.Get</profile:serviceName>
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/>
<profile:hasInput rdf:resource=
 "GLBOntology.owl#GLBGetRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/>
<profile:hasOutput rdf:resource=
 "GLBOntology.owl#GLBGetResponse"/>
<profile:serviceName>GLB.Add</profile:serviceName>
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/>
<profile:hasInput rdf:resource=
 "GLBOntology.owl#GLBAddRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/>
<profile:hasOutput rdf:resource=
 "GLBOntology.owl#GLBAddResponse"/>
<profile:serviceName>GLB.Edit</profile:serviceName>
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/>
<profile:hasInput rdf:resource=
 "GLBOntology.owl#GLBEditRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/>
<profile:hasOutput rdf:resource=
 "GLBOntology.owl#GLBEditResponse"/>
<profile:serviceName>GLB.Delete</profile:serviceName>
<profile:hasInput rdf:resource= "GLBOntology.owl#GLB"/>
<profile:hasInput rdf:resource=
 "GLBOntology.owl#GLBDeleteRequest"/>
<profile:hasOutput rdf:resource="GLBOntology.owl#GLB"/>
<profile:hasOutput rdf:resource=
 "GLBOntology.owl#GLBDeleteResponse"/>
</rdf:RDF>

6 CONCLUSIONS AND FUTURE WORK
In this paper, we propose an approach that bridges the

gap between formal specification and ontological

description of service semantics. We do this by transforming

formal specifications into domain ontology and ontological

descriptions of services. The former is capable of providing

verifiable and testable specifications of service semantics,

whilst the latter has the advantage of being practically

usable and easy for software developers to understand. The

prototype tool is built for the specification language SOFIA,

and the output is in OWL. A case study with the tool

demonstrates the feasibility of the proposed approach.

We are pursuing a formal approach for specifying and

testing service-oriented systems. Currently, we are

developing a tool that uses specifications in SOFIA as input

to perform automated testing and verification of web

services. Another possible avenue for future work is to

check the consistency of specification using both

ontological reasoning and equational logic inferences.

ACKNOWLEDGMENT
The work reported in this paper is partially supported by

EU FP7 project MONICA on Mobile Cloud Computing

(Grant No.: PIRSES-GA-2011-295222), National Natural

Science Foundation of China (Grant No. 61272420),

National Natural Science Foundation of Jiangsu Province

(Grant No. BK2011022) and Jiangsu Qinglan Project.

REFERENCES
Bonchi, F., & Montanari, U. (2008). A coalgebraic theory of
reactive systems. Electronic Notes in Theoretical Computer
Science, 209, 201-215.

Bruijn, J., et al. (2006). The web service modelling language
WSML: An overview, Proceedings of the 3rd European Semantic
Web Conference (pp. 590-604): Springer-Verlag.

Bruijn, J. d., et al. (2005). Web service modeling ontology
(WSMO), (W3C member submission): W3C.

Chen, H. Y., Tse, T. H., Chan, F. T., & Chen, T. Y. (1998). In black
and white: An integrated approach to class-level testing of
object-oriented programs. ACM Transactions on Software
Engineering and Methodology, 7(3), 250-295.

Chen, H. Y., Tse, T. H., & Chen, T. Y. (2001). TACCLE: A
methodology for object-oriented software testing at the class
and cluster levels. ACM Transactions on Software Engineering
and Methodology, 10(4), 56-109.

Cirstea, C. (1997). Coalgebra semantics for hidden algebra:
Parameterised objects and inheritance, Proceedings of the 12th
International Workshop on Recent Trends in Algebraic
Development Techniques (pp. 174-189).

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

70

Cirstea, C. (2002). A coalgebraic equational approach to
specifying observational structures. Theoretical Computer
Science, 280(1-2), 35-68.

Doell, B., & Dosch, W. (2005). Transforming functional
signatures of algebraic specifications into object-oriented class
signatures, Proceedings of the 12th Asia-Pacific Software
Engineering Conference (pp. 323-332): IEEE CS Press.

Ehrich, H.-D. (1982). On the theory of specification,
implementation, and parametrization of abstract data types.
Journal of ACM, 29(1), 206-227.

Gaudel, M.-C.,& Le Gall, P. (2007). Testing data types
implementations from algebraic specifications. In Formal
Methods and Testing, R. Hierons, J. Bowen, and M. Harman,eds,
Lecture Notes in Computer Science, Vol. 4949, (209-239)
Springer-Verlag.

Goguen, J. A., & Malcolm, G. (2000). A hidden agenda.
Theoretical Computer Science, 245(1), 55-101.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., & Wright, J. B.
(1977). Initial algebra semantics and continuous algebras.
Journal of ACM, 24(1), 68 - 95

Hadley, M. J. (2006). Web application description language
(WADL) (SMLI TR-2006-153). CA, USA: Sun Microsystems Inc.,.

Kong, L., Zhu, H., & Zhou, B. (2007). Automated testing
components based on algebraic specifications, Proceedings of
the 31th IEEE International Conference on Computer Software
and Applications (COMPSAC 2007) (pp. 717-722).

Kopecky, J., Gomadam, K., & Vitvar, T. (2008). hRESTS: An
HTML microformat for describing RESTful web services,
Proceedings of theIEEE/WIC/ACM 2008 International
Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT'08) (pp. 619-625). Sydney, Australia.

Lathem, J., Gomadam, K., & Sheth, A. P. (2007). SA-REST and
(S)mashups: Adding semantics to RESTful services,
Proceedings of ICSC (pp. 469-476).

Liu, D., Zhu, H., & Bayley, I. (2012). Applying algebraic
specification to cloud computing -- a case study of
Infrastructure-as-a-Service GoGrid, Proceedings of The Seventh
International Conference on Software Engineering Advances (pp.
407-414).

Liu, D., Zhu, H., & Bayley, I. (2013a). A case study on algebraic
specification of cloud computing, Proceedings of the 21st
Enuromicro International Conference on Parallel, Distributed
and Network-Based Processing (pp.269-273). Queen's
University, Belfast, Northern Ireland.

Liu, D., Zhu, H., & Bayley, I. (2013b). From algebraic
specification to ontological description of service semantics,
Proceedings of the 20th International Conference on Web
Services (ICWS 2013). Santa Clara, CA.

Mallraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web
services. IEEE Intelligent Systems(March/April), 46-53.

Martin, D., al., e. (2004). Semantic Markup for Web Services
(W3C member submission): W3C.

Papazoglou, M. P. (2012). Web Services and SOA: Principles and
Technology (2nd ed.): Pearson.

Richardson, L., & Ruby, S. (2007). RESTful Web Services: O'Reily.

Rutten, J. M. (2000). Universal coalgebra: a theory of systems.
Theoretical Computer Science, 249(1), 3-80.

Singh, M. P., & Huhns, M. N. (2005). Service-Oriented Computing:
Semantics, Processes, Agents: John Wiley & Sons.

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles,
methods, and applications. Knowledge Engineering Review,
11(2), 93-155.

Yu, B., Kong, L., Zhang, Y., & Zhu, H. (2008). Testing java
components based on algebraic specifications, Proceedings of
the First International Conference on Software Testing,
Verification, and Validation (ICST 2008) (pp.190-199).
Lillehammer, Norway: IEEE CS Press.

Zhu, H. (2003). A note on test oracles and semantics of
algebraic specifications, Proceedings of the 3rd International
Conference on Quality Software (QSIC 2003) (pp. 91-98). Dallas,
TX.

Zhu, H., Liu, D., & Bayley, I. (2013). Reference manual of the
SOFIA algebraic specification language (TR-CCT-AFM-01-2013).
Oxford, UK: Department of Computing and Communication
Technologies, Oxford Brookes University.

Liu, D., Zhu, H. & Bayley, I. (2014). SOFIA: An Algebraic
Specification Language for Developing Services, In Proc. of The
8th IEEE International Symposium on Service-Oriented
Systems Engineering (SOSE 2014). (pp.70-75) Oxford, UK.

Zhu, H., & Yu, B. (2010). Algebraic specification of web services,
Proceedings of the 10th International Conference on Quality
Software (QSIC 2010) (pp. 457-464): IEEE CS Press.

Authors

Dongmei Liu received the BS degree in

Computer Applied Technology, the MS

degree in Computer Architecture, and the

PhD degree in Computer Software and

Theory from Wuhan University, China, in

1999, 2001 and 2004, respectively.

Currently, she is an associate professor at Nanjing

University of Science and Technology, China. Her research

interests include software testing, software reliability

modeling, formal specification methods and intelligent

computation.

Hong Zhu is a full professor of computer

science at the Oxford Brookes University,

UK, where he chairs the Applied Formal

Methods research group. He received a

BSc, MSc and PhD degree in Computer

Science from Nanjing University, China, in 1982, 1984 and

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 1, January - March 2014

71

1987, respectively. He was with Nanjing University from

August 1987 to November 1998 and joined Oxford Brookes

University in Nov. 1998. His main research interests are in

software engineering, including software testing, modeling,

design and development methodologies. He has published

two books and more than 170 research papers in journals

and international conferences and chapters in peer reviewed

edited books. He is a senior member of IEEE and a member

of ACM and BCS.

Ian Bayley was born in Liverpool, studied

for an MEng Computing (Mathematical

Foundations and Formal Methods) at

Imperial College London and earned a

DPhil Computation at Balliol College Oxford with research

into the semantics of functional programming languages.

Since 2005, he has been a lecturer at Oxford Brookes

University. His research interests include software

engineering, formal methods, and programming paradigms.

