International Journal of System and Process Modeling, Vol. # No.# 2005 1

Modelling Web Services in the
Agent-Oriented Modelling
Language and Environment
CAMLE

Hong Zhu*

Department of Computing

Oxford Brookes University, Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk

*Corresponding author

Lijun Shan

Department of Computer Science

National University of Defence Technology, Changsha, 410073, P.R. China
Email: lijunshancn@yahoo.com

Abstract. Web services (WS) provide a technology for integrating applications over the Internet,
which may be performed during execution through dynamic service discovery and invocation. A
particular difficulty in the development of WS applications is caused by the lack of
communications between developers from different vendors. This paper investigates how
modelling can help solve the problem in the context of model-driven software development using
the caste-centric agent-oriented modelling language and environment CAMLE. One of the main
features of the method is the separation of perspectives so that models are built separately by
different groups of software developers for service providers and requesters with different
perspectives. Each model only represents the software system in one particular perspective, but
it is self-contained so that it can be checked for consistency, transformed into formal
specifications, and further used to derive implementations, test its validity and prove its
properties, etc. Connections between the models are realised through common castes. The paper
illustrates the method by an example of online auction service. The use of the modelling
language and environment CAMLE in model consistency check and specification generation is
also discussed. It is shown that semi-formal models and formal specifications enable software
engineers to specify not only the service provider’s functionality and behaviour, but also the
requirements and restrictions on service requesters’ behaviours. Such semantic information is
crucial for the success of dynamic integration of WS.

Keywords: Web Services, Service-oriented computing, Software development methodology,
Agent-oriented software engineering, Model-driven software development, Modelling,
Modelling languages and tools, Generation of formal specifications, Consistency check.

Biographical notes: H. Zhu received his BSc, MSc and PhD degrees in Computer Science from
Nanjing University, P.R. China, in 1982, 1984 and 1987, respectively. He is currently a professor
of computer science at the Department of Computing, Oxford Brookes University, England. His
current research interests include agent-oriented software development methodology, Web-based
applications, software testing and quality assurance, etc.

L. Shan received her BSc and MSc degrees in Computer Science from the National University
of Defence Technology, P.R. China, in 2001 and 2004, respectively. She is currently a PhD
candidate at the Department of Computer Science at the National University of Defence
Technology, P.R. China. Her current research focuses on software development methodology
for Web Services.



1 INTRODUCTION

Web services (WS) is characterised by the dominant of
program-to-program interactions (Gottschalk et al., 2002). In
view of the infrastructure of WS becoming pervasive, a new
paradigm of service-oriented computing is emerging. It is
widely recognised that WS technologies will profoundly
change the ways that computer systems and software are
developed and used. This paper is concerned with the
methodology for the development of WS applications with
focus on the modelling and specifications of such systems.

1.1 Motivation

In comparison with other distributed computing techniques
such as CORBA, Java RMI and DCOM, WS technology offers
more flexibility and looser coupling so that it is more suitable
for internet computing (Lau and Ryman, 2002). However, as
Stal (2002) pointed out, it is fundamentally different from the
others. The components of WS applications, such as service
providers, are autonomous, active and persistent computational
entities that control their own resources and their own
behaviours. They have social ability and collaborate with each
other through dynamic discovery and invocation of services.
They cannot be simply considered as objects. Instead, entities
with these features have been studied in Al community as
agents; c.f. (Huhns and Singh, 1997). However, software
engineering for developing such systems has been only a
recent research topic with the recognition of the inadequacy of
object-oriented software development methodology (Jennings,
1999, 2000). A particular difficult issue in the development of
WS applications is the problem of trustworthiness. Because a
service provider and its service requester software systems are
often developed, operated and maintained by different
vendors, the service requesters have to reply on the service
provider to ensure the correct behaviour of the application.
The software systems that provide the services are commonly
open to the public. The correct execution of a service
provider’s software system depends on the requesters’
software to behave as expected. How to ensure both service
provider’s and requester’s software systems behave as
expected, how to detect, deny and recover from unexpected
behaviours are the key issues for the successful collaborations
between them. The foundation to solve the trustworthy
problem is the specification of what are expected form both
sides of service providers and service requesters. This is the
theme of the paper.

The existing software engineering methodologies are
inadequate to address the problems due to the following
features of WS. First, the components in a WS application are
usually developed by different vendors. Developers of the
service providers and those of the service requesters are usually

H. Zhu and L. Shan

separated geographically and temporally. There is typically a
lack of communication between them. The most effective
channel of communications between them is perhaps through
documentation. Second, WS technology enables dynamic
software integration at runtime. It does not only require the
interfaces between integrated entities syntactically compatible,
but more importantly, the interactions must be semantically
correct. For example, the meaning of a message passed
between a service provider and a service requester must be
interpreted exactly the same. The effects of an action taken by
either the provider or a requester must be exactly the same as
both sides expected. The order of the events happened in the
interactions between a service provider and a requester (or
requesters) must also be the same as all parties expected. To
enable dynamic search of services, informal documentation of
services is insufficient because currently natural language
processing techniques are not mature enough to understand
informally presented documents that specify a software system.
It has been recognised that in addition to the descriptions of the
syntactical aspects of WS, such as the formats of the messages
and the parameter types of each service, the description of
semantic aspects is of significant importance for the success of
WS technology (Lambros, 2001; Leymann et al. 2002). Even
for manual composition of WS applications, informal
documentation suffers from the weakness of ambiguity,
incompleteness and inconsistency. This weakness could be a
major problem in the development of trustworthy WS
applications even for composition by human developers. From
the perspective of a service provider, a clear, unambiguous and
consistent specification of what the service provides and what
are expected of the service requesters’ behaviours is the
foundation to ensure the correctness of the provided services.
From the perspectives of a service requester, in addition to the
functional and non-functional requirements of the requester
application, a well-written specification of the services that it
uses and what are expected in its interactions with the service
providers is the foundation of their successful uses of the
services. Moreover, the specifications from these two
perspectives must be consistent to enable correct interactions at
runtime, and must also be flexible enough to give the other side
the freedom in implementation. Formal documentation can
facilitate not only more rigorous development of WS
applications, but also facilitate more systematic and automatic
validation and verification of the systems. Hence, it is helpful
to address the trustworthy problem of WS.

1.2 Related work

There have been several efforts of defining languages and/or
standards to enable software to use WS without much explicit a
priori knowledge on how to use them. Proposals to the
description of semantic aspects of WS have been advanced in
the literature that rely on ontology for taxonomic descriptions
of the functionality of each service, and workflow descriptions



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE 3

for the restrictions on the orders that services are called.
Leymann at IBM (2001) has published WSFL based on Petri
Net theory, which can be used to aggregate Web Services. As a
counterpart, Microsoft rejuvenated the Pi-Calculus model with
its XLANG (Thatte, 2001). These two approaches are unified
in BPML 1.0 (BPML.org, 2004). Later on, BEA, IBM, and
Microsoft published BPEL4WS. Other organizations
advocated radically different approaches for business process
modelling, such as OWL-S (DAML.org, 2004), and its
predecessor DAML-S (DAML.org, 2001).

WSFL, XLANG, BPML and BPEL4WS can be categorized as
workflow description standards that aim at automating the
execution of multiple interrelated WS that can be aggregated to
form a business process. WSFL consist of two types of models:
the flow model and the global model. A flow model describes
how to use the functionality provided by a collection of
composed WS. A global model describes how the composed
WS interact. These models enable the separation of the abstract
definitions of a workflow process (the flow model) from the
implementation details of the process (the global model).
XLANG is very similar to WSFL in its functionality. It has
become a part of the Microsoft BizTalk infrastructure. BPML
and BPEL4WS share the same roots in SOAP, WSDL and
UDDI. They take the same advantage of XML technologies,
especially XPath and XSDL. They are designed to leverage
other specifications such as WS-Security and WS-Trans-
actions. Beyond these areas of commonality, BPML also
provides support for advanced semantics such as nested
processes and complex compensated transactions, which are
capabilities that BPEL4WS has yet to address. OWL-S
provides a machine-interpretable, ontology-backed semantic
description of both atomic and composite WS. As described
above, WSFL and XLANG, etc. are designed to define the flow
of a composition of services. Similarly, OWL-S has the
expressive power to encapsulate the composition of several
services within a single service description. In OWL-S, a
composite service can be recursively decomposed into a set of
atomic services. Control constructs, such as Sequence,
Concurrent, SplittJoin, If-Then-Else, are provided to
orchestrate the services that compose a workflow. However,
having not achieved the full power of formal specification
techniques, ontology and workflow descriptions are not
expressive enough to provide all the required semantic
information for dynamic discovery and invocation of WS.
Second, their representations are not readable and precise
enough to be used as the vehicle to bridge the gap between the
service providers and requesters. In particular, they do not
support modularity in the definition of the semantic aspects of
WS in the way that is required by the features of WS
applications especially when the developers from different
vendors are separated geographically and temporally.
Moreover, as Tsai et al. pointed out (2004), existing WS
technologies have not taken into consideration of the real-time
and dependability requirements. A framework of service-

oriented dynamic reconfiguration was proposed by Tsai et al.
(2004). It explored the feasibility of developing a new service
specification technique ISC (Interface, Scenarios and Con-
straints) that extends WSDL to specify the static and dynamic
structure of services. Based on ISC, a framework for dynamic
service reconfiguration (DRS) was proposed to enable service
registration, de-registration, look up, verification, binding,
execution, monitoring at runtime, especially the re-selection
and rebinding of services in case of failures or overload.

There is only a little effort that has directly gone into the
research on methodologies for developing WS applications.
Among the most closely related works are agent-oriented
software development methodologies; see e.g. (Dam and
Winikoff, 2003; Zambonelli and Omicini, 2004; Ciancarini and
Wooldridge, 2001; WeiBl and Ciancarini, 2002; Giunchiglia,
Odell and Weil}, 2003; Giorgini, Muller and Odell, 2004;
Odell, Giorgini and Muller, 2005; Garcia et al., 2003; Lucena,
et al., 2004; Choren, et al., 2005). Existing agent-oriented
methodologies vary in how to describe agents and MAS at a
higher abstraction level as well as how to obtain such a
description. For example, Gaia (Zambonelli, et al., 2003)
provides software engineers with the organization-oriented
abstraction in which software systems are conceived as
organized societies and agents are seen as role players.
Although Gaia was regarded as probably the most mature
agent-oriented software development method, it has no
modelling language and no modelling tools. Tropos
(Bresciani, 2002) emphasizes the use of notions related to
mental states during all software development phases. The
notions like belief, desire, intention, plan, goals, etc., represent
the abstraction of agent’s state and capability. It is less directly
applicable to WS although they may have potential to be
adapted. A number of proposals of extending UML for the
development of agent-based systems have also been advanced.
Among them the most notable one is the work by FIPA’s
Agent UML Technical Committee and known as AUML
(http://www.auml.org). It extends UML with notations to
represent agents (Bauer et al., 2001; Odell et al., 2001).
However, the semantics of the notation is left open. There is
no well-defined meta-model of the modelling language. How
to use the notation in software development is also an open
problem. Tsai et al. (2005) proposed the WebStrar framework
for developing trustworthy WS. The framework starts with the
development of specification of WS in OWL-S. It applies
completeness and consistency analysis, model checking and
software testing techniques to ensure the quality of WS. Tsai
at el. (2003, 2005b) have also been researching on the
techniques of developing trustworthy WS including testing,
simulation, and verification, etc.

1.3 Proposed approach

Addressing the problems discussed above, based on their
caste-centric approach to agent-oriented software development



4

methodology, Zhu et al. (2004) used an agent-oriented formal
specification language SLABS (Zhu, 2001a, 2003) to formally
specify the semantics of WS applications. Such a formal
specification can be used as a solid foundation to implement
WS in agent-oriented programming languages such as
SLABSp (Wang, Shen and Zhu 2004, 2005a, 2005b). The
correctness of the implementations as well as other properties
of WS application systems such as emergent behaviours can
be formally proved by reasoning about the specifications
(Zhu, 2005). However, formal specifications are difficult to
develop without tool support. This problem was addressed in
(Zhu and Shan, 2005a), which proposed the use of the
agent-oriented modelling language CAMLE and its automated
tools (Shan and Zhu, 2004a, 2005; Zhu and Shan, 2005b) to
develop formal specifications of WS. Graphic models are
easier to construct and more readable than formal specifica-
tions. They are then automatically transformed into formal
specifications in SLABS by using CAMLE’s automated tools.
This naturally leads to a model-driven development methodol-
ogy for WS applications. In this paper, we further develop the
approach by investigating the structure of agent-oriented
models of WS applications and the uses of automated
consistency check tools to ensure the quality of such models.
Our approach has the following distinctive features.

A. Caste-centric agent-orientation

In (Zhu and Shan, 2005a), we studied the conceptual model of
WS. At a high level of abstraction, the computational entities
that constitute a WS application and provide or request services
can be regarded as agents in our meta-model of multi-agent
systems (MAS) (Zhu, 2001a). In our meta-model, the notion
of agent is defined as the computational entities that encapsu-
late states, operations, and behaviour rules and situate in their
designated environments; also see section 2. Intuitively, our
definition of the word ‘agent’ has the same meaning as in the
context of ‘real estate agents’ where agents provide services to
clients for buying or selling properties, and ‘travel agents’
where agents provide clients with the services of purchasing
transportation tickets and booking hotels, etc. In this sense,
our agent-oriented methodology is actually a service-oriented
methodology with emphasis on the entities that provide and
use services rather than the functionality of these entities, i.e.
the services. This enables us to model, analyse, specify,
design, and implement WS at a very high level of abstraction
rather than focusing on syntactic details of messages, etc. It is
also worth noting that our meta-model is an extension of
object-orientation with a uniformed semantics. Our model
differs from existing ones in the way that caste plays the
central role in the modular construction of software systems.
Caste is the classifier of agents like class is the classifier of
objects. It is the modular unit in a MAS. It can be used to
implement various notions in MAS such as roles, agent
societies, mnormative behaviours, interaction protocols,
communication languages, etc. (Zhu, 2001b). As we will see

H. Zhu and L. Shan

later in this paper, caste also provides a nice language facility
for modular construction of WS applications.

B. Model-driven process

In our method, modelling is the driving force of the
development process shown in Figure 1. The construction of a
model of the required system is the most important milestone
of requirements elicitation and analysis, design and
specification, etc. Models are the most important document at
various stages of software development. It is also one of the
most important software artefacts for various development
activities. For example, models that represent the requirements
can be transformed into design models and formal
specifications (Shan and Zhu, 2004a, 2005) so that efficient
implementations can be derived. Models can be automatically
checked for its consistency (Shan and Zhu, 2004b), validated
and tested against the users’ requirements, and formally
proved for its dynamic and static properties such as emergent
properties (Zhu, 2005), etc. However, due to the limitation of
space, this paper will focus on the construction of models for
WS applications, checking models’ consistency and the
transformation of models into formal specifications. These
development activities are effectively supported by the
CAMLE language and automated tools. The implementation,
testing, verification, validation, and maintenance issues will
be addressed separately in other papers.

|

| Requirements
elicitation and

| analysis via modelling

|

|

1

Feedback 4 T T T T T T T T T T T T T T T T T T T T N Feedback

N
—_"I Model of required system and its environment

i e

Model validation and

Transformation of

model into formal property checking
specification
checking)

F:;n;a;rz;r:;lgzls \Formal specification!

model propertics ) of required system |

;_V_ " :ﬂ:.: .'_H:.V_ ....... _|

|M0dcl-drivcn Tcst| | Implementation |

|

|

|

h |

(e.g. consistency |
|

|

|

J— ]

Verification

ITest cases, Test oraclc: |
! Test harness

__________

Feedback

Testing

Figure 1 Process of model-driven development of WS applications

C. Separation of Perspectives

As discussed in subsection 1.1, the lack of communications is
the heart of the problem in the development of WS



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE 5

applications. Our approach directly addresses the heart of the
problem through the separation of perspectives. We recognise
that the perspective from a service provider is different from
those of service requesters. Even different types of service
requesters may have different perspectives as well. Models
thus developed from one perspective may not be complete in
the traditional sense. Internal detailed information may need to
be hidden from the users of different perspectives. Yet,
sufficient information must be provided to the developers of
other perspectives so that such partial models make sense and
facilitate implementation, validation, verification and testing.

In order to achieve this objective, we propose the following
two principles to organise the structure of models and
specifications. As it will be shown in the paper, the modelling
language and environment CAMLE supports such separation
of perspectives.

o The autonomy principle

As discussed in section 1.1, software systems on both provider
and requester sides are autonomous. They should be regarded
as and implemented to be agents so that the interaction between
them can be established dynamically as discussed above.
Moreover, the developers of a WS provider and the
developers of its service requesters may be from different
vendors and separated by space and time. These groups of
developers are also autonomous in the sense that they are not
under the same management control structure. In other words,
the developers of a WS provider are not always able to
enforce how requester software is to be developed and how
their service will be used. Similarly, developers of a service
requester are not always able to enforce the developers of a
service provider to change the service according to their
requirements. The developers from different perspectives may
have their own concerns and design decisions in their
development processes. Models from both service provider
and requester’s perspectives, therefore, must allow flexibility
for the other to make their own design decisions. The
collaboration between these developers may have to be
postponed to runtime and rely on the collaboration between
the software systems. Our methodology respects the autonomy
of the groups of WS developers as well as the autonomy of the
software systems in WS.

o The explicitness principle

The assumptions made about the service requesters must be
explicitly specified and published with the service itself. By
‘the assumptions made by the service provider’ we meant, for
example, what the service provider expects a requester to
respond to the service provider’s actions, the orders of the
events in the interactions with the requesters, the interpretations
of the meanings of the messages, etc. Some of such semantic
correctness conditions can be formally specified by traces,
invariant conditions and pre/post-conditions, and their
combinations. Some may relate to the real world events, such

as to switch on the intruder detector of a house, which is
probably not as simple as to maintain an invariant of the
program state or to satisfy a pre/post-condition of a
procedure/method. In some cases, traditional formal
specification techniques may not be powerful enough to
specify such assumptions. For example, in English auction, a
buyer must submit a bid with a price that is higher than all other
buyers’ bidding prices made so far. This condition cannot be
specified straightforwardly as a pre/post-condition pair of the
input/output of a ‘bidding’ method/procedure in the service
requester’s program or an invariant condition of the internal
state of the requester’s program, because it involves other
buyers’ behaviours, in particular, what have been done by all
other buyers. What important is that these assumptions must be
grouped and encapsulated into a modular unit so that
developers from different perspectives only need to access the
related parts. The structure of models and formal specifications
of WS proposed in this paper and supported by CAMLE
language and tools enables explicit specifications of the service
provider’s assumptions about the service requesters’
behaviours in such a way. Hence, the environment of the
service provider software can be clearly stated for software
developers. The same specification can also be used by
developers on the service requester side so that the application
can be smoothly integrated without too much demand of
technique supports from the service provider side.

There are two most important differences between our
approach and the existing works on WS techniques. First,
WSFL, BPML and OWL-S focus on the workflow
management of multiple Web Services, where the basic
elements are individual services and the relationships between
them, e.g. the execution orders and transactional issues.
CAMLE and SLABS can specify these issues as well as the
semantic information of each single WS, for example, through
the uses of patterns, scenarios, behaviour rules. Second, while
the related works are on a more operational level that develops
enabling technology for the declaration of the orchestration
among multiple services, CAMLE and SLABS are on a more
abstract level of software development methodology aiming at
effective uses of such technology. The features of our
approach in comparison with existing software development
methods include agent-oriented development methodologies
have been discussed above. In comparison with Tsai, et al.’s
WebStrar framework, the work reported in this paper focuses
on the development of models and formal specifications of
WS applications, which form the foundation for other quality
assurance activities, while WebStrar emphasises the testing,
completeness and consistency analysis, verification and
validation and other quality assurance activities.

1.4 Organisation of the paper

The paper is organised as follows. Section 2 briefly reviews the
modelling language CAMLE and its modelling environment



6

as well as the underlying meta-model of MAS. Section 3 is
devoted to the construction of models of WS applications in
CAMLE. The process of model construction is illustrated using
the example of online auction services. Section 4 is concerned
with the consistency between service providers and service
requesters. It discusses the use of the modelling environment
CAMLE in the consistency check of the models. Section 6
demonstrates the use of CAMLE’s automated tools to generate
formal specifications from graphic models. Section 6
concludes the paper with a summary of the proposed method
and a discussion of the directions for future research.

2. MODELLING LANGUAGE AND ENVIRONMENT CAMLE

In this section, we briefly review the modelling language
CAMLE, its modelling environment and the underlying
meta-model in the context of WS. More details can be found
in (Shan and Zhu, 2004a, 2005; Zhu and Shan, 2005b).

2.1 Modelling language CAMLE

Agent is the most important but controversial notion in
agent-based computing. It is often characterised by certain
properties, see e.g. (Jennings, 2000; Lange, 1998). The
following properties have been widely considered as the most
important ones.

®  Autonomy: the capability of performing actions without
explicit commands and having control over their state as
well as their behaviour (Jennings, 1999, 2000; Bauer,
Muller, and Odell, 2001; Odell, Parunak and Bauer, 2001).

®  Pro-activity: the capability of exhibiting opportunistic and
goal-directed behaviour and taking initiative.

®  Responsiveness: the capability of perceiving the
environment and responding in a timely fashion.

®  Sociality: the capability of interacting with other agents
and humans to complete their own tasks and to help others.

These properties match the features of software systems that
constitute a WS application. Service providers, requesters and
registries perform their tasks autonomously in the sense that
none of them should be considered as commanding the others.
For example, a provider can refuse a service request. A
requester can also stop further participation in the service
process if the service provider does not satisfy the requester’s
business criteria. Each side has no control over the other. The
interactions between two components of WS are essentially
collaborations. A service requester may initiate the interaction
with a service request. However, a service provider by no
means has to be passive during the whole process of service. It
may also take initiative actions from time to time. Therefore, at
this very abstract level, agent technology is suitable for WS
applications.

However, not all agent models developed in Al research are

H. Zhu and L. Shan

suitable for WS. For example, in the BDI models, agents have
mental states consisting of belief, desire and intension that
control their behaviours (Rao and Geogreff, 1991;
Wooldridge, 2000). Game theory models define agents as
computational entities that aim at maximising their utility
functions. It is questionable if ordinary programmers can
produce WS systems productively through thinking of belief,
desire and intention, or games and utility functions. Moreover,
WS has been considered as an attractive technology for
wrapping existing IT assets so that new solutions can be
deployed quickly and recomposed to address new opportunities
(Gottschalk, et al., 2002). Few of existing IT assets can be
considered as agents in these models.

Our agent model is from a software engineering perspective.
We define agents as active and persistent computational
entities that encapsulate data, operations and behaviours and
situate in their designated environments. Here, data represents
an agent's state. Operations are the actions that an agent can
take to modify its state and/or to affect the environment.
Behaviours are sequences of state changes and operations
performed by the agent in the context of its environment. By
encapsulation, we mean that an agent's state can only be
changed by the agent itself, and an agent has its own rules that
govern its behaviour. Each agent must also have an explicit
specification of its designated environment. Therefore, agents
have a structure containing the following elements.

®  Agent name. It is the identity of the agent.

® Environment description. It specifies a set of agents that
influence the agent.

®  State space. It defines the states that the agent can be in. It
is divided into two parts. The visible part consists of a set
of variables whose values are visible but cannot be
changed by other computational entities. The internal part
consists of a set of variables which are not visible by other
entities.

® Actions. They are the atomic actions that the agent can
take. Each action has a name and may have parameters. An
action can be either visible or internal. Visible actions
generate events visible by other agents, while internal
actions are not visible to any other agent.

®  Behaviour rules. 1t is the agent’s body that determines its

behaviour and has the following structure.
Begin
Initialisation of internal state;
Loop
Perception of the situation in its environment;
Decision on the action to take, which can be
(1) visible or internal actions;
(2) changes of visible or internal state;
(3) joining into or retreating from a caste;
end of loop;
end

In the context of WS, the components in a WS application can
be modelled by a number of agents. For example, a WS
provider can be considered as an agent, whose services as the



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE 7

visible actions. The information that a WS publishes on the
Internet can be considered as visible state, while an invisible
state represents the internal state of the software system. The
behaviour rules determine the way that the WS fulfils its tasks.

A MAS consists of a set of interactive agents that are grouped
into castes. Caste is a new concept first introduced by SLABS.
It is a natural evolution of the concepts of classes in
object-orientation and data types in procedural programming. It
can play a significant role in agent-oriented software
development (Zhu, 2001). The notion of caste is defined as a
set of agents with the same structural and behavioural
characteristics. Agents are instances of castes. It has the
structure and behaviour characteristics defined by the caste. An
example of behaviour characteristics is that an agent follows a
specific communication protocol to communicate with other
agents. Therefore, such a communication protocol can be
specified by defining a caste with the protocol as behaviour
characteristic. For example, we can define the caste WS Agent
as those using TCP/IP protocols with messages encoded
compliant with SOAP. The relationship between agents and
castes is similar to what is between objects and classes. What is
different is that an agent can join a caste or retreat from a caste
at run-time dynamically. In the modelling language CAMLE,
how agents change their casteship is described by migration
relations. There are two kinds of migration relationships:
migrate and participate. A migrate relation from caste A to B
means that an agent of caste A can retreat from caste A and join
caste B. A participate relation from caste A to B means that an
agent of caste A can join caste B while retaining casteship of A.

Inheritance relationships can also be defined between castes. A
sub-caste inherits the structure and behaviour from its
super-castes. But, a sub-caste cannot overwrite the structures
and behaviour rules of its super-castes. Multiple inheritances
are allowed to enable an agent to belong to more than one
society and play more than one role at the same time.

Our model of agents also allows agents to be formed from a
group of other agents. The former are called compound agents
and the latter component agents. In such a case, a whole-part
relationship exists between the compound and the component
agents, which is represented as an aggregate relation between
castes in CAMLE. In the design of CAMLE language, we
identified three types of commonly used whole-part
relationships between agents according to the ways a
component agent is bound to the compound agent and the ways
a compound agent controls its components. The strongest
binding is composition in which the compound agent is
responsible for creation and destruction of its components. If
the compound agent is destroyed, the components no longer
exist. The weakest binding is aggregation, in which the
lifetimes of the compound and the component are independent,
so that the component agent will not be affected at all when the
compound agent is destroyed. Between these two is the
congregation whole-part relation. With such a relation, when

the compound agent is destroyed, the component agents will
still exist, but they will lose the membership to the component
caste. This is a novel type of whole-part relationship that has
not been investigated in the literature so far to our knowledge.
The organisational structure of a MAS is represented in a caste
model in CAMLE. It describes the castes and their inheritance,
whole-part and migration relations. Figure 2 below summaries
the graphical notation of caste diagrams in CAMLE.

=

Caste node

—<> Congregate
—@ Composite

—< Aggregate

> Inherit

---->  Migrate
@®---> Participate

Figure 2 Graphical notation of caste diagrams

In the context of WS, service providers and requesters are
grouped into castes. Different castes represent different types
of service requesters and different types of service providers.
An agent can join a caste to become a valid requester and quit
from the caste after receiving the services or when it is
unsatisfied with the services. When it is a member of the caste,
it must obey the behaviour rules in order to obtain the required
services. However, it has no obligations to follow the rules after
quitting from the caste. Figure 3 shows the architecture of WS
in a caste model at a very high level of abstraction. It states
that a WS application may consist of a number of WS
providers, WS requesters and a set of business agents that
implement business rules and processes. A business agent can
participate in service provider and/or service requester castes.
The providers and requesters must be WS agents that comply
with SOAP protocol.

WS Requester "~

%
rj}l
|

WS Application

I
" Registry

Figure 3 Caste diagram of WS architecture

Communication plays a crucial role in MAS as well as in WS.
Components of a WS application must communicate to
collaborate with each other. There are two means of
communication in our meta-model of MAS: visible actions and
visible states. Communication by visible actions is similar to
sending a message through the Internet (or broadcasting a
message on a network), which requires the sender to take an
action (i.e. to send the message) and the receiver(s) to observe
the action (i.e. to catch the message). Communication by
visible states matches the way of communication by publishing
information on the web. These are the basic modes of
communications through the Internet. Our meta-model does
not give details about the communication protocols, syntactic



8

formats and the meanings of the messages. Of course, such
details are important in the development of WS. The modelling
language provides software engineers with collaboration
diagrams to specify such details about communications. It
enables engineers to work at a very high level of abstraction
and to focus on the functionality and behaviour aspects rather
than at syntactic levels. The communications and
collaborations between agents are described in collaboration
models in CAMLE.

Actions

AgentName: Caste CasteName

Agent node Communication link

Caste node

Figure 4 Graphical notation of collaboration diagrams

There are two types of nodes in a collaboration diagram. An
agent node represents a specific agent. A caste node represents
any agent in a caste. An arrow from node A to node B
represents that the visible behaviour of agent A is observed by
agent B. Therefore, agent A influences agent B. When agent B
is particularly interested in certain activities of agent A, the
activities can also be annotated to the arrow from A to B.

It is worthy noting that although this model looks similar to the
collaboration diagrams in UML, there are significant
differences in the semantics. In OO paradigm, what is
annotated on the arrow from A to B is a method of B. It
represents a method call from object A to object B, and
consequently, object B must execute the method. In contrast, in
CAMLE the action annotated on an arrow from A to B is a
visible action of A. Moreover, agent B does not necessarily
respond to agent A’s action. The distinction indicates the shift
of modelling focus from controls represented by the method
calls in OO paradigm to collaborations represented by
signalling and observation of visible actions. It fits well with
the autonomous nature of agents.

One of the complications in the development of collaboration
models is to deal with agents’ various behaviours in different
scenarios. By scenario, we mean a typical situation in the
operation of the system. In different scenarios, agents may take
different actions, pass around different sequences of messages
even communicate with different agents. Therefore, it is better
to describe different scenarios separately. The collaboration
model in CAMLE supports the separation of scenarios by
including a set of collaboration diagrams. Each diagram
represents one scenario. In such a scenario-specific
collaboration diagram, actions annotated on arrows can be
numbered by their temporal sequence. In addition to
scenario-specific ~ collaboration  diagrams, a  general
collaboration diagram is also associated to each compound
caste to give an overall picture of the communications between
all the component agents by describing all visible actions that
the component agents may take and all possible observers of
the actions. Figure 5 shows the general collaboration diagram

H. Zhu and L. Shan

of WS architecture.

ServiceProvider

Reqgistre[Address:URL, Service:WSDL]
Unregistre[Address:URL, Service:\WSDL]

’_)‘ ServiceRegistry —‘

Search(Service:WSDL)

Reply(Address:URL, Service:WSDL)

ServiceRequester A

Figure 5 Collaboration model of WS architecture

In our models of MAS, the behaviours of agents are defined in
terms of agents’ responses to environment scenarios. A
scenario represents the observation of an agent towards its
environment at a particular time. Figure 6 gives the format and
an example of scenario diagrams, which depicts the situation
that an auctioneer informs the agent that its bid failed.

. i .
Scenario Name i Quantifier

Swim Lane 1 Swim Lane N

Logic connection network

AuctioneerBidFailed

[ T T T -

Auctioneer:AuctionServiceProvider 4

BidFailed(Self, AuctionlD, Membershipld, BidID] ‘

\
| I |
\

Figure 6 Format and example of scenario diagram

Behaviour diagrams describe agents’ designed behaviour in
certain scenarios. Figure 7 shows an example of behaviour
diagram. It specifies a simple behaviour rule of the Service
Registry that when there is a WS requester that sends a Search
request to the registry with description of services C, the
registry will reply with a list of services that matches the
description.

Premise
A
4 A
Environment scenario
Previous

pattern Pre-condition
—
A

ServiceRe uester‘ o (ol 1ot o Mot Al 1
L 9 @ | Any S bxList and Matchix, ) |

%{m bar

Figure 7 Example behaviour rule of service registry

Response
activity



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE 9

The power of agent-based systems has been best demonstrated
in dynamic environments (Jennings and Wooldridge, 1998;
Huhns and Singh, 1997), which is also a basic property of
Internet-based computing. Usually, the environment of an
agent consists of a set of different types of entities, such as
software objects, equipments, devices, human beings, and
software systems, etc. As argued in (Zhu, 2001a, 2001c), all of
these types of entities can be considered as agents as defined
above. Therefore, in our agent model, the environment of an
agent contains a subset of the agents that may affect the
behaviour of the agent. Moreover, we emphasizes that agents
are situated in their designated environments, which is
specified as the set of agents in a caste, or a specific agent in a
caste, or a parameter the represent an agent in a caste, or a
combination of the above. It differs from a completely open
environment, where every element in the system can always
affect the behaviour of an agent. It also differs from a fixed
environment, where an agent can only be affected by a fix set of
entities in the system. In either fixed or open environments, the
agent cannot change its environment. The concept of
designated environment gives software developers more power
of control over the environment so that software agents have
more protection in dynamic environments. It is worth noting
that both open and fixed environments are special cases of the
designated environments.

!—?—\

L]

I
(a) Example of Caste Model with Whole-Part Relations

Syster
I Collsboration Model _: I Behaviour Iodel |
: Genezal Specific [)I : Behaviour| [ Scenario
|L Disgram || Dingrars _Ii || Disgrem | | Dingreems
[
[ |
______ A I - S
"Collaharation | | Behaiour | iCallaboration | | Behaviowr |
|_ Model _ 1j_ Model _ |||l Model | Model ]
_ M R I At
| Behaviour | Behaviour | | Bohaviour| | Behavicur |
| Model | I Model || |1 Nodel ! | Model |
e e | e 0] |e=-===d] [

(b) Collaboration Models and Behaviour models
Figure 8 Relationship between different kinds of CAMLE Models

The modelling language CAMLE supports modelling complex
systems at various levels of abstraction. Models of coarse
granularity at a high level of abstraction can be refined into
more detailed fine granularity models. At the top level, a
system can be viewed as an agent that interacts with users
and/or other systems in its external environment. This system

can be decomposed into a number of subsystems interacting
with each other. A sub-system can also be viewed as an agent
and further decomposed. As analysis deepens, a hierarchical
structure of the system emerges. In this way, the compound
agent has its functionality decomposed through the
decomposition of its structure. Such a refinement can be carried
on until the problem is specified adequately in detail. Thus, a
collaboration model at system level that specifies the
boundaries of the application can be eventually refined into a
hierarchy of collaboration models at various abstraction levels.
Of course, the hierarchical structure of collaboration diagrams
can also be used for bottom-up design and composition of
existing components to form a system. As illustrated in Figure
8, the hierarchical relationship between the collaboration and
behaviour diagrams associated to the castes are isomorphic to
the whole-part relations between castes as defined in the caste
diagram. Readers are referred to (Zhu, 2001a, 2003; Shan and
Zhu, 2003, 2004a, 2005; Zhu and Shan, 2005a, 2005b) for
more details of the CAMLE language and its meta-model.

2.2 CAMLE’s modelling environment and tools

A software environment to support the process of system
analysis and modelling in CAMLE has been designed and
implemented (Zhu and Shan, 2005b). The main functionalities
of the environment are:

(1) Model construction. It consists of a set of graphical editors
to support the construction of models and tools for version
control and configuration management.

(2) Model consistency check. A set of consistency constraints
on CAMLE models is formally defined as an integral part of
CAMLE language (Shan and Zhu, 2004b). These consistency
constraints are checked by the CAMLE environment where
automated tools are implemented.

(3) Automated generation of formal specifications. It
transforms graphic models into the corresponding formal
specifications in SLABS.

Figure 9 shows the architecture of the environment. The
modelling environment provides a graphical user interface
shown in Figure 10 to support the construction of models
progressively and evolutionarily. The diagram editor supports
manual editing of models through a graphic user interface. The
well-formedness checker ensures that the user entered models
are well-formed. The diagram generator can generate partial
models (incomplete diagrams) from existing diagrams to help
users in model construction. The rules to generate partial
models are based on the consistency constraints so that the
generated partial diagrams are consistent with existing ones
according to the consistency conditions. The details of the
consistency checkers and the formal specification generator are
presented in (Shan and Zhu, 2004b) and (Zhu and Shan,
2005b), respectively.



10

H. Zhu and L. Shan

Formal

B8 RirTicketing
=) (1) Specification

®15 TicketSeller

1% AirTickethdnin

12 AirTicksting

Users’
Requirements Specifications

Model
Manager

Graphic User
Interface

pecification
Generator

onsistenc
Checker
Controller

Behaviour/
Collaboration
Checker

Collaboration

Caste/
Collaboration
Checker

Behaviour
Checker

Specific
Checker

Graphic

> Models

Check
Result

Figure 9 The Architecture of CAMLE Environment

R

q ion(Aucti g
Productinfo, FlightDate-7,

AUML’s website V.

S AEn CAMLE. Their formal specifications in SLABS are generated.
[JEle gt Yier Toods Yindo Help S[EE These systems include the following.
DEHE X & 2
il A. United Nations’ Security Council: The organisational
=) - MASModel =) .
“ Qe - structure and the work procedure to pass resolutions were
= C'E;tz‘::“““ L modelled and a formal specification of the system in SLABS
2 Dfé“?ﬂiilseu“ ; was generated. Details of the case study as well as modelling in
™12 AirTicksthdnin | | _
B

other agent-oriented modelling notations can be found on

FlightDate-1, FlightMinPrice, 10%4)

48 e (30

ResetState()

=3

Ready

Figure 10 CAMLE'’s Graphical User Interface for model construction

CAMLE’s project management functionality enables grouping
diagrams into various projects so that models that from
different perspectives are separated. Each model can be
processed and transformed independently.

In the case studies, a number of systems have been modelled in

B. Amalthaea: Amalthaea is an evolutionary multi-agent
system developed at MIT’s Media Lab to help the users to
retrieve information from the Internet (Moukas, 1997). The
system was modelled and a formal specification was generated.
C. University: This is a partial model of the university
organisation and work procedures. The objective of the case
study was not to provide a complete model; instead, it aims at
providing illustrative examples to demonstrate the style of
modelling in CAMLE. Details of the example can be found in
(Shan and Zhu, 2004a).

In this paper, we will also demonstrate the use of the CAMLE
language and modeling environment in the development of
WS applications.

! URL: http://www.auml.org/



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE 11

3. CONSTRUCTION OF MODELS

The CAMLE methodology of agent oriented software
development is model-driven (Zhu and Shan, 2005b). It
consists of a number of steps that involve model construction,
model analysis, model transformation, and model-based
validation verification and testing, etc. In this section, we
investigate the construction of models in agent-oriented
modelling language and environment CAMLE for the
development of WS application systems.

As shown in Figure 11, the process of the construction of WS
application models consists of three main iterative phases. The
first phase is structural modelling aiming at developing a caste
model of the structure of the system. The second phase is
collaboration modelling aiming at a macro-level model of the
dynamic behaviour of the system in terms of collaborations
between various parts of the systems as well as the service
requesters and other service providers. The final phase is
behaviour modelling aiming at a clear specification of the
behaviours of the individual elements of the system that
implements the services.

The following will illustrate the process of model construction
with an example of online auction services. We will
demonstrate that CAMLE supports the requirements analysis,
specification and design of WS applications for developing
both service provider software and service requester systems.
In particular, it supports modelling from service provider’s
perspective to explicitly model the service provider system
without giving away internal information, to explicitly specify
the service provider’s assumptions on the requester without
the over-restricting the uses of the services. It also supports
modelling from service requester’s perspective to design the
requester software in the context of service provider with
access to the design knowledge provided by the service
provider, to combine the requester’s internal business logic
with the required services.

3.1 Service provider’s perspective

As shown in Figure 11, the first step in the requirements
analysis and model construction is to identify the types of
agents that participate in the operation of the system and
specify them as castes. Sub-caste, whole-part and migration
relations between these castes are then identified so that a caste
model can be constructed. For example, from the online auction
service provider’s point of view, there are two types of agents
that will interact with their software. Sellers can ask for the
service provider to set up an online auction to sell its goods
with certain conditions. Buyers can then bid for the goods
online. Therefore, we have three different castes in this
application: (a) Auction Service Providers, (b) Sellers, (c)
Buyers. Sellers and buyers are service requesters; hence they
are sub-castes of Service Requesters defined in the previous

Structural .
rch :l.r‘j, | Identify agents/castes |
8

VAT

F-=——=—====-=-=-=-- [t ]
! Agents/castes that i 1Agents/castes that,

1

1

1 .
! represents the , irealize the systems, |
1 service requesters |
1

1 Agents/castes that
provide the |
1 required services !
| <!

4

©

services

Analyze relations between agents/castes

.

1 Caste model i

_________ s~

Collaboration modeling

Identify and analyze
collaboration scenarios

If the agent is decomposed into components TT

Scenario-specific
collaboration diagrams

Synthesize general
collaboration diagram

mmmmmmm oo
1 General collaboration diagram |
-

_________________ —

For each caste
in caste model

Behaviour modeling

Analyze agent’s
environment scenarios

Analyze and specify agent’s
behaviours in environment scenarios

1 Behaviour diagram |

___________ -

Figure 11 The process of model construction in the development
of web services applications

section. Auction service providers are service providers for
sellers and buyers, hence, a sub-caste of Service Providers.
This leads to the caste diagram from the auction service
provider’s perspective shown in Figure 12. Of course, the



12

Auction Service Providers can be compound and more
complicated than what is depicted in the diagram. However, its
internal structure is hidden from the users of the system.

H ServiceProvider || || ServiceRequester H || ServiceRegistry H

H AuctionServiceProvider || H Buyer H || Seller ||

Figure 12 Caste diagram from provider’s perspective

Scenario analysis plays an important role in the requirements
analysis and the construction of detailed system behaviour
models. There are two types of services that an online auction
provider provides to different types of service requesters. It sets
up online auctions according to a seller’s request. It also
conducts online auctions via accepting bids from buyers. There
are, therefore, two scenarios in the collaboration between the
service provider and its requesters. The first is to set an auction
for a seller. The second is to run the online auction to sell the
item to buyers. The outcome of the interactions between a
buyer and the auctioneer can be successful or not successful.
Therefore, two sub-cases of the second scenario can be
identified. Each scenario is modelled by a scenario-specific
collaboration diagram, as shown in Figure 13.

From these scenario-specific collaboration diagrams, a general
collaboration diagram can be derived to summarise the
communications between the agents. The communications of
the auction service provider with the sellers and buyers are
depicted in the generic collaboration diagram in Figure 14.
Collaboration model provides a system level global model of
the system.

Collaboration diagrams are expressive enough to describe
workflows in the form of action sequences. However, it cannot
express the semantics of business rules. For example, in the
interaction with buyers, an auction service provider must
follow the following rules.

(1) When a buyer requests to join the auction,
its credit must be

H. Zhu and L. Shan

(4) By the scheduled finish time of the auction, an acceptance
message must be sent to the winner;

(5) Payment from the bid winner must be cleared and fund
transferred to the seller with commission charged with the
agreed commission rate.

The sequence of actions in the above statements is clearly
specified by the collaboration model given in Figure 13.
However, the collaboration model does not define what meant
by a bid is beaten by another and who is the final winner. To
clarify such semantics associated to each action in a
collaboration model, it is necessary to define the rules that
govern the behaviour of each agent. Therefore, our next step
of development is to find out the behaviour rules and specify
them in the form of behaviour models.

In the example of online auction services, the above set of
behaviour rules specifies how the auction service provider
should behaviour in the interaction with buyers. It can be

1.Requesthuction(lteminfo, StartDate, EndDate, MinPrice, CommissionRate]

AuctionServiceProvider

2.Acceptiuction[Seller, AuctionlD)
3.Transter[Seller. Payment]

(a) Scenario of setting up an auction for a seller

A AuctionfltemInfo, AuctioniD]
A Member[Buyer, A ID,MembershiplD]
BidReceived[Buyer, MembershiplD, BidlD]
BidFailed[Buyer, MembershiplD,BidID)

1.
3.
5.
6.

” AuctionServiceprovider ”

X,

2.JoinAuctionjAuctionServiceProvider, AuctionlD]
4.5ubmitBid{AuctionlD, MembershiplD, BidID)

1.AnnounceAuction[ltemInfo,AuchlD]

3. ptember[Buyer,AuctionID.MembershiplD]
5.BidReceived[Buyer.MembershiplD,BidID]
6.BidAccpeted[Buyer, MembershiplD, BidID)

1.ClearPayment(Buyer, Payment]
AuctionServiceProvider
.

2_JoinAuctionfAuctionService Provider, AuctionlD)
4.5ubmitBid{AuctionlD, MembershiplD,BidID)
8.Pay(BidID,Payment]

i

(b) Scenarios of running an auction

Figure 13 Scenario-specific collaboration diagrams

AnnounceAuction[lteminfo, AuctionlD]

checked and the AcceptMember(B

{Buyer, A

ID, MembershiplD)

BidReceived{Buyer, MembershiplD, BidID)

membership issued if its credit is OK;
(2) When receives a bid from a member

ClearPayment[Buyer, Payment]
BidAccepted[Buyer, MembershiplD, BidlD]
BidFailed(Buyer, MembershiplD, BidID)

AcceptAuction[Seller, AuctionlD]
Transfer(Seller, Payment]

buyer, the auctioneer must acknowledge the
receipt of the bid with a unique bid identifier;
(3) Every received bid must be compared

AuctionServiceProvider

TN =

with the current best bid. If the new bid beats
the current best bid, the new bid becomes the
current best bid; otherwise, a failure message
is sent to the bidder;

SubmitBid{AuctionID, MembershiplD, BidID) RequestAuction(lteminfo, StartDate, EndDate, MinPrice, CommissionRate]

Pay[BidID, Payment]
JoinAuction[AuctionService Provider, AuctionlD]

Figure 14 Generic collaboration diagram from auction service provider’s perspective



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE

specified in CAMLE by the behaviour diagram for the Auction
Service Providers caste as shown in Figure 15. Similarly, there
are also behaviour rules for the service provider to interact
with Sellers, also shown in the behaviour diagram.

In the development of a service, certain assumptions on the
service requesters’ behaviour must be made. For example, in
the interactions with the auction service provider, the buyers
must follow an interaction protocol that consists of the
following rules.

BidReceived[Buyer.
( MembershiplD, BidlD]

| Auct IN Auctioninfo, |
\\ Z—| Auct.ID=AID, |
Beat[Bid, Auct.CurrentBid)]
— L

|

E:Buyer

13

(1) A buyer must join an auction before the scheduled start date
of the auction and become a member of the auction before it
submits any bid;

(2) A buyer’s bid for an item must be better than the current
best bid for the item;

(3) By the scheduled finish time of the auction, only the best
bid is accepted and its buyer must buy the item;

(4) If a buyer’s bid is beaten by another bid, the beaten bid is
failed;

(5) A buyer can quit from the auction only after its bid failed.

Auct.CurrentBid=Bid, [

Auct.CurrentBidder=4,
Auct.CurrentBidID=BidID
et e

RequestAuction(ltemlInfo,
StartDate, EndDate,
‘ MinPrice, CommissionRate]

|
| A:Buyer ‘
W | LCheckCredil[AFOK |
| | IuctionServiceProvider, [l 5NT / e =
| AuctionID] ‘
_________ —
AcceptMember|Buyer.
———— - AuctionlD, MembershiplD)
| Auct.ltemD: - |
| Auct.ID=AID,
Auct.Start=sd, ‘ /i\
Auct.MinPrice=mp, ‘

‘ Auct.CommisionRate=cr

[ BidReceived(Buyer,
MembershiplD,

’:ucl IN Auctionlnfo,

_“ 2 ¥ £ AuctiD=AID,

@umiunlnftF
uctioninfo+[Auct)
e T

v

AnnounceAuction[lteminfo,
AuctionID])

uct IN Auctioninfo, ‘
Auct.ID=AID,
PaymentOK([BidID, Payment]

=
As

ClearPayment[Buyer,
Payment]
Transfer[Seller, Payment]

777777777 el p —_—
SubmitBid{Auction, MID, Bid) || Auct IN Auctioncer Auctioninfo, | [facicnecEy . | [ AuctIN ‘
| Auct.ID ion, | ’junlnnS:Mnavaldﬂl Auctioner.Auctioninfo, |
Beat(Bid, Auct.CurrentBid), ‘ A time<Auct.Start,
BidID=bidID, | | AuctID=AID \
( itime| JoinAuction
————————— 7 [AuctionServiceProvider,
‘ Auctioneer: H AuctionID)
| Aucti iceProvider ||
— ‘ AcceptMember(Buyer, ‘ &*
D-action, | | | AuctioniD. MembershipiD) | | S
BidiD=bidiD, = = — | —
¥ LME:Edi J es, ‘ Beat(Bid, Auctioneer.Auct.CurrentBid), ‘
Auction=AID, MID=mid Auct IN Auctioneer.Auctioninfo,
\‘T’/ Auction.Auct.ID=Auction |
—

ip=Yes

AuctioneerBidFailed \L

QuitAuctionfAuctioniD)

Membership=No

Auctioneer:
‘ AuctionServiceProvider

Figure 16 Behaviour diagram for the Buyer caste



14

The complete protocol is expressed as two sets of rules; one for
the auctioneer and one for the buyers. Thus, a behaviour
diagram is also associated to the Buyer caste as a part of the
model from the provider’s perspective, which is shown in
Figure 16.

Similarly, there is a set of behaviour rules for the Seller caste as
well, shown in Figure 17.

‘ | Req Auction DR R R R
1 [lteminfo, StartDate, uudinnSeNiceFruvider ‘

4 EndDate, MinPrice, | (5|  |———————"—| ‘

CommissionRate] \ Transfer(Seller, Paymong) | |

SetUpAuction[AuctionlD) ‘

AcceptPayment]) ‘

Figure 17 Behaviour diagram for Seller caste

3.2 Service requester’s perspective

We now discuss how CAMLE can be used to develop models
from the requester’s perspective. Generally speaking, the
development of service requester software follows the same
process of developing service providers. In many cases, a
service requester is also a service provider and vice versa. For
example, the auction service provider may well be a service
requester of banking service and advertisement service, credit
checking service, etc. Therefore, in the following discussion
we omit the details that repeat what we have discussed in
section 3.1.

Consider an online flight ticketing service that sells air tickets
via an e-commerce website. It operates according to a set of
business rules to determine how to set the prices for each
ticket and when the change the price. For example, for each
flight, it will try to sell the unsold tickets by online auction
when the time reaches 7 days before the scheduled date of
flight with a discount price. Suppose that the normal business
rules and process of the software is specified as a caste Ticket
Seller. For the sack of space, the detail of the caste is omitted in
this paper. When a ticket seller wants to sell air tickets by
auction, it will become a member of the Seller caste and obey
the behaviour rules specified in the service provider’s model.
Such agents, which are called Sell By Auction in the sequel,
must satisfy all the structure and behaviour requirements
specified in the castes Ticket Sellers and Sellers. They can be
specified as a sub-caste of Ticket Sellers and Seller to model
their behaviours as shown in Figure 18. In the development of
the caste Sell By Auction, software developers need to have
access to the specifications of the castes of Auction Service
Provider and Seller. It is not necessary to have access to the
specification of the caste Buyer.

As shown in Figure 19, an alternative caste model that enables
a Ticket Seller to use the auction WS is to have a participation

H. Zhu and L. Shan

relation from Ticket Seller to Seller. In this case, an agent of the
caste Ticket Seller joins the Seller caste dynamically and uses
the auction service after joining the caste. Such dynamic
integration is what WS meant to be. Hence, it is a better model
than the static model. However, how to evaluate different
designs is beyond the scope of this paper.

H ServiceProvider H H ServiceRequester H ” ServiceRegistry ”

H AuctionServiceProvider ” ” Buyer H || Seller || || TicketSeller

Wz <

SellByAuction

Figure 18 A4 design of auction service user

——

H ServiceRequester H

|| ServiceProvider || || ServiceRegistry ||

|| AuctionServiceProvider || || Buyer H | Seller TicketSeller

Figure 19 Caste model from requester’s perspective

For the castes shown in Figure 19, the behaviour diagrams for
caste WS Agents, Service Provider, Service Requester and
Service Registry are common to all WS applications. Hence,
they should be treated as the public information and ideally as a
part of the WS standard. The models and specification of caste
Auction Service Provider, Buyer and Seller are provided by the
WS providers. They define the syntax, semantics as well as the
pragmatics of the auction WS. They are also public and should
be stored with the WS registration.

It is worth noting that to implement this design, there are two
posible approaches. First, the service provider of the auction
service could implemented a caste of Seller so that when
Ticket Seller joins the caste it will be able to access the
auction service. Second, the developers of the service
requester, i.e. the Ticket Seller, could also implement the caste
Seller as a part of their system and integrate the caste with the
service provider software. It is an open problem that which
approach is better.



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE 15

4. CONSISTENCY CHECK

Assume that three services 4, B and C were developed by three
different vendors with interdependency relationships illustrated
in Figure 20. Here, service 4 is used by services B and C.
Service A also uses service B; while service B uses both
services 4 and C.

Service |
7 A
\4
Service o| Service
B e

Figure 20 An example of interdependence between services

In the development of each service, the developer will
construct a model that consists of three parts: (a) modelling the
agents that provide the service, (b) modelling the agents that
request its service, and (c) modelling the agents that implement
its internal business logic of the service. The first two parts
should be public to the users of the service. The last part should
be hidden from the public as the internal information. These
three parts are not adequate for the development of the service
if it also uses other services. In that case, the public parts of
models of the requested services are used. This leads to a
‘jigsaw puzzle’ like structure of the system as illustrated in
Figure 21.

Model of the

Model of the agents | |  agents that
that provide service A| i| implement the
+i | internal business
Model of the agents | ; | logic of service
"\ | that request service A | /¢ A

Model of the agents
that provide service B

1

1

1

1

1

| Model of the agents
1 - | that request service B
1
1
1
|
1
1

~,

Modalofthe | ' et e,
agents that 4
implement the Praad . | Model of the
¥ internal business ﬂl]\/l todel Ofithe aggntsc | agents that
k logic of service B a7 provide service - implement the
\ P 1 .
1 . »+= . | Model of the agents | internal
\‘\MOdel 10 !)evelopmg £ * | that request service C | * | business logic
Service B i \ 1| ofservice C

Figure 21 [llustration of the fjigsaw’ structures of the models

In section 3, we have discussed and demonstrated by a
non-trivial example how the ‘jigsaw puzzle’ can be built in the
agent-oriented modelling language CAMLE and its automated
modelling environment. The question is now how to ensure

the system will work, especially the consistency between the
models from different perspectives. Because the whole
‘jigsaw puzzle’ is developed by different vendors, it is
impossible to check the consistency of the whole system via
analysis of the whole structure (e.g. all the elements in Figure
21), because each service provider or requester has only
limited access to the information. Fortunately, the caste
language facility enables us to achieve the whole systems’
consistency through maintaining the consistency of each piece
of the jigsaws.

CAMLE’s consistency check facility provides a strong
support to ensure the consistency between models.

First, a set of consistency constraints are defined on CAMLE
models. These explicitly defined consistency constraints and
the automated consistency checking tools help to ensure the
quality of the model from one perspective, i.e. the consistency
of each jigsaw piece. A very important feature of CAMLE
language and its modelling environment is that it supports the
separation of perspectives in the way that the model from each
perspective is self-contained and satisfies all consistency
conditions. In our case study, it is noticed that the consistency
constraints are effective to identify the missing assumptions of
the requesters in the development of a model from the
provider’s perspective. For example, in the development of
the models for auction services, 2 projects were developed
separately. The first project was the model from auction
service provider’s perspective. The model was constructed,
consistency checked and formal specification generated. The
project of ticket seller as the auction service requester was
developed after the auction service provider project is
finished. A part of models developed in the auction service
provider project was imported. The caste model was revised to
represent the perspective of the WS application from the
auction service provider’s point of view. Consistency of the
model is then checked and when it passed the consistency
checking, the formal specification is generated.

Second, and most importantly, inconsistency between models
of different perspectives can be effective identified so that the
consistency of all jigsaw pieces implies the consistency of the
whole system. That is, the design of the consistency
constraints has the feature that if every jigsaw piece of a
system passes the consistency check, the system obtained by
putting all pieces together can also pass the consistency check.
This set of constraints includes the following types.

® [ntra-model consistency constraints: the consistency
conditions impose on each type of caste, collaboration
and behaviour models. This kind of constraints can be
further divided into the following two sub-types.
- Intra-diagram consistency constraints: the consistency
conditions imposed on each diagram.
- Inter-diagram consistency constraints: the consistency
condition the imposed on the relationships among a set



16

of diagrams that form a specific type of model.
® [nter-model consistency constraints: the constraints
imposed on the relationships between models. This kind
of consistency constraints can be further divided into the
following two types.

- Horizontal consistency: the consistency between
models of different types but on the same level of
abstraction.

- Vertical consistency: the consistency between models
of the same type, but on the different level of
abstraction. Vertical consistency constraints can be a
local constraint, which is imposed on the relationships
between models on two adjacent levels of abstraction.
It can also be or a global constraint, which is imposed
on the overall structure of the models as they are
related to each other.

The following table summarises the number of consistency
conditions defined on CAMLE models and checked by
automated consistency checking tools in CAMLE modelling
environment.

Table 1 Summary of CAMLE’s consistency constraints

Horizontal Vertical Consistency
Consistency Local Global
3 -
3 {m‘m 10 B B
s |diagram
§ Inter-
S |diagram 8 8 -
Inter-model 4 1 4

Readers are referred to (Shan and Zhu, 2004a) for details of
the consistency constraints and the automated consistency
checking tools.

5. GENERATION OF FORMAL SPECIFICATIONS

Using CAMLE’s specification generator, a model that passed
consistency check can be automatically transformed into a
formal specification in SLABS.

In SLABS, each caste is specified in the following syntax,
which can also be in the equivalent graphic format shown in
Figure 22.
Caste-description ::=
Caste name [ <= { caste-name [ (instantiation ) ],}" ;]
[ environment-description ; |
[ structure-description ; |
[ behavior-description ; |
end name

H. Zhu and L. Shan

Name <= castes (instantiation)
||=Visible state-variables and actions
" Invisible state-variables and actions

1
Environment
description
|

Behaviour-specification

Figure 22 Format of caste description in SLABS

The SLABS language uses transition rules as a facility to
explicitly specify how an agent’s observations on the
environment are related to its behaviour. Each rule consists of a
description of a scenario of the environment, the action to be
taken by the agent in the scenario and a condition of the agent’s
internal state and its previous behaviour.
Behaviour-rule ::=
[< rule-name >: | pattern | [ prob ] —> event,
[ if Scenario]
[where pre-cond] ;

The formal specification of caste Buyer given in Figure 23 is
generated from the CAMLE models. Similarly, the
specifications of other castes can be generated. Details are
omitted for the sake of space.

Using the formal specification, we can formally prove the
properties of a WS if it satisfies the specification. For example,
the following are some examples of the properties that can be
inferred from the specification of the auction service system.

e If a buyer submits a bid, the auctioneer will send an
acknowledgement message BidRecieved.

e Buyer only submits a bid that beats the current best bid.

e By the end of auction, the current bid is the winner, which
must be the best bid, and that bid will be accepted by the
auctioneer. In that case, an acceptance message
BidAccepted will be send to the buyer who submitted the
bid.

e Once a buyer receives an acceptance message, it will pay
for the item.

e Any bid submitted to the auction that failed must be beaten
by at least one bid.

These properties are important for the auction service
requesters. However, they are deeply related to the semantics of
the service description that are inadequately specified in
existing WS description methods.

Readers are referred to (Zhu, 2005) for the details of a formal
system called Scenario Calculus that enables formal reasoning
about the properties of multi-agent systems.



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE

Buyers <= Service Requesters

VAR BusinessInfo: UDDI;
ACTION  Submit_Bid(AuctionID, MembershipID, BID);
Pay(BID_ID, PAYMENT); Join_Auction(Auction Service Providers, AuctionID);

VAR Membership: {Yes, No}; MID: MembershipID; Auction: AuctionID; Bid ID: BID ID;

<Join Auction>: [!Membership=No ] |- time: Join_Auction(Auctioneer, AID);

Auctio

Service Provider

if Auctioneer:[Announce_Auction(d, AID)];

: Aucti
neer: Auction where Aucte Auctioner.AuctionInfo & time < Auct.Start & Auct.ID=AID

<Get Membership ID>: [Join_Auction(Auctioneer, AID)] | > !Membership’=Yes & Auction’=AID, MID’=mid
if Auctioneer:[Accept Member(Self, AID, mid)
<Submit Bid>: [!Membership=Yes] |- Submit_Bid(Auction, MID, Bid);
where Beat(Bid, Auctioneer.auct.Current Bid) & Aucte Auctioneer.AuctionInfo & Auction.Auct.ID=Auction
<Receive Acknowledge Of Bid>: [Submit_Bid(Auction, MID, Bid)] |»>!Bid_ID’=bidID;
if Auctioneer:[ Bid_Received (Self, AID, mid, bidID)], = where AID=Auction & mid = MID;

17

<Revise Bid After Failure>:

& Bid_ID = bidID & MID=mid;

<Quit From Auction>:

[Submit Bid(Auction, MID, Bid)] |—; Submit Bid(Auction, MID, Bid2)
If Auctioneer:[Bid_Failed(Self, AID, mid, bidID), $"k],
where Auct € Auctioneer.AuctionInfo & Auct.ID=Auction & Beat(Bid, Auct.Current Bid)

<Pay Accepted Bid>: [Submit_Bid(Auction, MID, Bid)] |—; Pay(Bid_ID, Payment)

If Auctioneer:[ Bid_Accepted (Self, AID, mid, bidID)], Where AID=Auction & Bid_ID=bidID & MID = mid
['Membership=Yes] |- Quit_Auction(AuctionID)!Membership’=No,
if Auctioneer:[Bid_Failed(Self, AID, bidID), $"k], where Auction=AID & Bid_ID = bidID

Figure 23 Specifications generated from models

6. CONCLUSION

In this paper, we proposed a model-driven approach to the
development of WS applications. We investigated the uses of
the graphic agent-oriented modelling language CAMLE and its
automated modelling environment to model WS applications.
It is illustrated by an example of online auction service to
demonstrate how models of WS in CAMLE can help
developers from both service provider and service requester’s
perspectives. Another advantage of modelling WS in CAMLE
is that formal specifications can be automatically generated so
that properties of a WS can be formally proved.

The structure of modelling and formal specification of WS
proposed in this paper provides a modular description of the
semantics of the services provided as well as the context in
which the services are used. The models from different
perspectives are separated so that internal information is
hidden, yet the models are self-contained. This enables
consistency checking, specification generation as well as other
processes and analysis of the models. The explicit
specification of the service provider’s assumptions on the
service requester’s behaviours also enables proofs of the
properties of the system without full knowledge of the
requester’s system, which is usually unavailable to the service
providers. Hence, the designated environment of the service
provider can be clearly stated for developers on both sides. The
same specification can also be used by developers of service

requesters so that the application can be smoothly integrated
without too much demand of technique supports from the
service provider.

This paper has focused on the structure of the models, the
model construction process, model consistency check and the
generation of formal specifications. We have designed and
implemented an experimental agent-oriented programming
language called SLABSp based on the meta-model underlying
the formal specification language SLABS (Wang, Shen and
Zhu, 2004, 2005a, 2005b). The language extends Java with the
caste facility that allows agents to dynamically join into and
quit from castes. It also implements the scenario description
and environment description facilities so that programming
distributed and concurrent systems can be at a very high level
of abstraction. The language is implemented with a runtime
support system based on Java Virtual Machine. The source
code of a SLABSp program is compiled into Java code with
components that implement the runtime support system. As
shown in (Wang, Shen and Zhu, 2005b), formal specifications
in SLABS can be translated into SLABSp executable programs
straightforwardly. Therefore, once a model of WS application
is constructed, a formal specification of the system can be
generated as demonstrated in this paper using the CAMLE
automated tools. The formal specification can then be
implemented in SLABSp fairly straightforwardly. The research
on this topic will be reported separately.

Another use of formal specifications is to reasoning about the
properties of the systems. A formal logic called Scenario



18

Calculus has been developed (Zhu, 2005). It can be used to
reasoning about how a multi-agent system will behave in
certain scenarios. In particular, it can be used to reason about
whether a scenario will occur, whether a state of a system
expressed in the form of a scenario will be stable once it
reaches the state, etc. More details of the formal logic system
can be found in (Zhu, 2005).

There are a number of issues worthy further research. We are
investigating how formal specifications of WS can be
represented in a format that complies with XML standard and
can be used to describe WS and facilitate the dynamic search
and integration of WS applications. We are developing a
method and formal logic based on the Scenario Calculus to
enable formal specifications to be used in service search and
query. Formal specifications should also be helpful in quality
assurance in the development of WS applications through
validation, verification and testing. We are working on
automated testing of WS applications based on formal
specifications.

ACKNOWLEDGEMENT

The work reported in this paper is partly supported by China
High-Technology Research and Development Programme
under the grant 2002AA116070.

REFERENCES

Bauer, B., Muller, J.P. and Odell, J. (2001) ‘Agent UML: a formalism
for specifying multiagent software systems’, in Wooldridge, M.
(Eds):  Agent-Oriented  Sofiware  Engineering,  Springer,
pp-91-103.

BPML.org (2004) The BPML specification version 1.0, URL:
http://www.bpmi.org, accessed on 2™ August 2004.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini,
A. (2002) TROPOS: An Agent-Oriented Software Development
Methodology. Technical Report DIT-02-015, Informatica
Telecomunicazioni, Universita degli Studi di Trento, 2002.

Choren, R., Garcia, A., Lucena, C. and Romanovsky, A. (Eds.) (2005)
Software Engineering for Multi-Agent Systems II1, Lecture Notes
in Computer Science, Vol. 3390, Springer.

Ciancarini, P. and Wooldridge, M. J. (eds.) (2001) Agent-Oriented
Software Engineering, Lecture Notes in Computer Science, Vol.
1957, Springer-Verlag, April.

Dam, K. H. and Winikoff, M. (2003) ‘Comparing agent-oriented
methodologies’, in Proc. of 5" International Bi-Conference
Workshop on Agent-Oriented Information Systems, Melbourne,
Australia, July.

DAML.org (2004) OWL-S 1.1 Release, URL:
http://www.daml.org/services/owl-s/1.1/, accessed on 25
November 2004.

DAML.org (2001) The DAML Services Coalition. DAML-S: A
Semantic  Markup  For  Web  Services, = URL:
http://www.daml.org/services/daml-s/2001/10/daml-s.pdf.

Garcia, A., Lucena, C., Zambonelli, F., Omicini, A. and Castro, J.
(Eds) (2003) Software Engineering for Large-Scale Multi-Agent

H. Zhu and L. Shan

Systems, Lecture Notes in Computer Science, Vol. 2603,
Springer; November.

Giorgini, P., Muller, J. P. and Odell, J., (Eds.) (2004) Agent-Oriented
Software Engineering 1V, Lecture Notes in Computer Science,
Vol. 2935, Springer-Verlag, March.

Giunchiglia, F., Odell, J. and WeiB, G. (Eds.) (2003) Agent-Oriented
Software Engineering III, Lecture Notes in Computer Science,
Vol. 2585, Springer-Verlag, December.

Gottschalk, K. et al (2002) ‘Introduction to web services
architecture’, IBM Systems Journal, Vol.41, No.2, pp.170-177.
Huhns, M. and Singh M. P. (Eds.) (1997) Readings in Agents, Morgan

Kaufmann, San Francisco.

Jennings, N. R. (1999) ‘Agent-oriented software engineering’,
Multi-Agent System Engineering, Proceedings of 9th European
Workshop on Modelling Autonomous Agents in a Multi-Agent
World, Valencia, Spain, Springer, pp.1-7.

Jennings, N. R. (2000) ‘On agent-based software engineering’,
Artificial Intelligence, Vol.117, pp.277-296.

Jennings, N. R. and Wooldridge, M. J. (1998) Agent Technology:
Foundations, Applications, And Markets, Springer.

Lambros, P., Schmidt, M.-T. and Zentner, C. (2001) Combine
Business Process Management Technology and Business Services
to Implement Complex Web Services, IBM Corporation.

Lange, D.B. (1998) ‘Mobile objects and mobile agents: the future of
distributed computing?’  Proceedings of The FEuropean
Conference on Object-Oriented Programming.

Lau, C. and Ryman, A. (2002) ‘Developing XML Web services with
WebSphere studio application developer’, IBM Systems Journal,
Vol. 41, No.2, pp.178-197.

Leymann, F. (2001) Web Services Flow Language, IBM Corporation.

Leymann, F., Roller, D. and Schmidt, M.-T. (2002) ‘Web services and
business process management’, IBM Systems Journal, Vol. 41,
No.2, pp.198-211.

Lucena, C., Garcia, A., Romanovsky, A., Castro, J. and Alencar, P. S.
C. (Eds.) (2004) Software Engineering for Multi-Agent Systems II,
Lecture Notes in Computer Science, Vol. 2940, Springer, March.

Moukas, A. (1997) ‘Amalthaea: information discovery and filtering
using a multi-agent evolving ecosystem’, Journal of Applied
Artificial Intelligence, Vol.11, No.5, pp.437-457.

Odell, J., Giorgini, P., and Muller, J. P. (Eds.) (2005) Agent-Oriented
Software Engineering V, Lecture Notes in Computer Science,
Vol. 3382, Springer; January.

Odell, J., Van Dyke Parunak, H. and Bauer, B. (2001) ‘Representing
agent interaction protocols in UML’, Wooldridge, M. (Eds):
Agent-Oriented Software Engineering, Springer, pp.121-140.

Rao, A.S. and Georgreff, M.P. (1991) ‘Modeling rational agents
within a BDI-architecture’, Proc. of the International Conference
on Principles of Knowledge Representation and Reasoning,
pp.473-484.

Shan, L. and Zhu, H. (2003) ‘Modelling and specification of scenarios
and agent behaviour’, IEEE/WIC conference on Intelligent Agent
Technology (IAT’03), Halifax, Canada, IEEE CS, pp32-38.

Shan, L. and Zhu, H. (2004a) ‘CAMLE: a caste-centric agent-oriented
modelling language and environment’, Proc. of SELMAS'04 at
ICSE'04, Edinburgh, UK, IEE, pp.66-73.

Shan, L. and Zhu, H. (2004b) ‘Consistency check in modeling
multi-agent systems’, Proc. of COMPSAC 04, IEEE CS, Hong
Kong, September, pp.114-121.

Shan, L. and Zhu, H. (2005) ‘CAMLE: A caste-centric agent-oriented
modelling language and environment’, in Choren, R., Garcia, A.,
Lucena, C. and Romanovsky, A. (Eds.): Software Engineering for
Multi-Agent  Systems III: Research Issues and Practical
Applications, Lecture Notes in Computer Science, Vol. 3390,
Springer, pp.144-161.



MODELLING WEB SERVICES IN AGENT-ORIENTED MODELLING LANGUAGE AND ENVIRONMENT CAMLE 19

Stal, M. (2002) ‘Web Services: beyond component-based computing’,
Communications of ACM, Vol.45, No.10, pp.71-76.

Thatte, S. (2001) XLANG-Web Services for Business Process Design,
Microsoft Corporation.

Tsai, W. T., Paul, R, Yu, L., Saimi, A.,, Cao, Z. (2003)
‘Scenario-based Web Service testing with distributed agents’,
IEICE Transactions on Information and Systems, Vol. E86-D, No.
10, pp2130-2144.

Tsai, W. T., Song, W., Paul, R., Cao, Z. and Huang, H. (2004)
‘Service-oriented dynamic reconfiguration framework for
dependable distributed computing, Proc. of 28" Annual
International Computer Software and Applications Conference
(COMPSAC’04).

Tsai, W. T., Wei, X., Chen, Y., Xiao, B., Paul, R., and Huang, H.
(2005a) ‘Developing and assuring trustworthy Web Services’,
Proc. of 7™ International Symposium on Autonomous
Decentralized Systems (ISADS’05).

Tsai, W. T., Liu, X., Chen, Y. and Paul, R. (2005b) ‘Simulation
verification and validation by dynamic policy enforcement’, Proc.
of 38" Annual Simulation Symposium (ANSS*05), IEEE Computer
Society.

Wang, J., Shen, R. and Zhu, H. (2004) ‘Scenario Mechanism in
Agent-Oriented Programming’, Proc. of APSEC (4.

Wang, J., Shen, R. and Zhu, H. (2005a) ‘Agent oriented programming
based on SLABS’, Proc. of COMPSAC’05, Edinburgh, UK,
pp127-132.

Wang, J., Shen, R. and Zhu, H. (2005b) ‘Towards an agent-oriented
programming language with caste and scenario mechanisms’,
Proc. of AAMAS 05, Utrecht, Netherlands. (fo appear)

WeiB, G. and Ciancarini, P. (eds.) (2002) Agent-Oriented Software
Engineering 11, Lecture Notes in Computer Science, Vol. 2222,
Springer-Verlag, March.

Wooldrighe, M. (2000) Reasoning About Rational Agents, The MIT
Press.

Zambonelli, F., Jennings, N. R. and Wooldridge, M. (2003)
‘Developing multiagent systems: the Gaia methodology’, ACM
Transactions on Software Engineering and Methodology, Vol.12,
No.3, pp.317-370.

Zambonelli, F. and Omicini, A. (2004) ‘Challenges and research
directions in agent-oriented software engineering’, Autonomous
Agents and Multi-Agent Systems, Vol. 9, pp.253-283.

Zhu, H. (2001a) ‘SLABS: a formal specification language for
agent-based systems’, Int. J. of Software Engineering and
Knowledge Engineering, Vol.11, No.5, pp.529-558.

Zhu, H. (2001b) ‘The role of caste in formal specification of MAS’,
Proc. of PRIMA 2001, Springer, pp.1-15.

Zhu, H. (2001c) ‘Formal specification of agent behaviour through
environment scenarios’, in Rash, J. et al. (Eds): Formal Aspects of
Agent-Based Systems, Lecture Notes in Computer Science,
Springer, pp.263-277.

Zhu, H. (2003) 4 Formal Specification Language for Agent-Oriented
Software  Engineering, Technical Report DoC-TR-03-01,
Department of Computing, Oxford Brookes University, Oxford,
UK.

Zhu, H. (2005) ‘Towards formal reasoning of emergent behaviour in
multi-agent systems’, Proc. of SEKE 05, Taipei, pp280-285.

Zhu, H. and Shan, L. (2005a) ‘Agent-oriented modelling and
specification of web services’, Proc. of Tenth IEEE International
Workshop on Object-oriented Real-time Dependable Systems
(WORDS’05), IEEE CS Press, February, Sedona, Arizona, USA,
pp152-159.

Zhu, H. and Shan, L. (2005b) ‘Caste-centric modelling of multi-agent
systems: the CAMLE modelling language and automated tools’,
in Beydeda, S. and Gruhn, V. (Eds.): Model-driven Software

Development, Research and Practice in Sofiware Engineering,
Vol. 11, Springer, pp57-89.

Zhu, H., Zhou, B., Mao, X., Shan, L., and Duce, D. (2004)
‘Agent-oriented formal specification of Web Services’, Proc. of
the AAC-GEVO’04 Workshop at GCC’04, Springer, October.



