INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

Information and Software Technology 44 (2002) 473-489

A methodology of testing high-level Petri nets

Hong Zhu™*, Xudong He®

School of Computing and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, Oxford OX3 OBP, UK
SSchool of Computer Science, Florida International University, University Park, Miami, FL 33199, USA

Received 25 May 2000; revised 17 March 2002; accepted 22 March 2002

Abstract

Petri nets have been extensively used in the modelling and analysis of concurrent and distributed systems. The verification and validation
of Petri nets are of particular importance in the development of concurrent and distributed systems. As a complement to formal analysis
techniques, testing has been proven to be effective in detecting system errors and is easy to apply. An open problem is how to test Petri nets
systematically, effectively and efficiently. An approach to solve this problem is to develop test criteria so that test adequacy can be measured
objectively and test cases can be generated efficiently, even automatically. In this paper, we present a methodology of testing high-level Petri
nets based on our general theory of testing concurrent software systems. Four types of testing strategies are investigated, which include state-
oriented testing, transition-oriented testing, flow-oriented testing and specification-oriented testing. For each strategy, a set of schemes to
observe and record testing results and a set of coverage criteria to measure test adequacy are defined. The subsumption relationships and
extraction relationships among the proposed testing methods are systematically investigated and formally proved. © 2002 Published by

Elsevier Science B.V.

Keywords: Software testing methods; Concurrent systems; High-level Petri nets; Test criteria; Behaviour observation

1. Introduction

Since 1970s, Petri nets have been extensively used in the
modelling and analysis of concurrent and distributed
systems. Although there are several formal analysis techni-
ques of Petri nets such as coverability tree (or graph) tech-
nique and invariant techniques, formal verification and
validation are not always applicable or effective, and are
often very difficult to use. On the other hand, testing has
been proven to be effective in detecting system errors and is
easy to apply. We believe that a testing technique for Petri
nets can be a cost-effective approach complementing other
more formal analysis techniques in revealing errors in Petri
nets. An open problem is how to test Petri nets systemati-
cally and effectively. An approach to solve this problem is to
develop test criteria so that test adequacy can be measured
objectively, test cases can be generated efficiently even
automatically, and testing processes can be controlled effec-
tively. It is the theme of this paper.

Generally speaking, testing methods can be classified into
program-based, which select test cases according to the

* Corresponding author. Tel.: +44-1865-484580; fax: +44-1865-
484545.

E-mail addresses: hzhu@brookes.ac.uk (H. Zhu), hex@cs.fiu.edu
(X. He).

0950-5849/02/$ - see front matter © 2002 Published by Elsevier Science B.V.

PII: S0950-5849(02)00048-4

information contained in the program, and specification-
based, which derive test cases from the requirements speci-
fication. Petri nets can play two different roles in the devel-
opment of concurrent systems. A Petri net can be used as a
formal specification of a concurrent system. Testing a
concurrent system against a Petri net belongs to the catalo-
gue of specification-based methods. In the past few decades,
a great amount of research has been reported in the literature
on specification-based testing methods. There are works on
derivation of test cases from algebraic specifications [1-6],
Z specifications [7-9], finite state machines cf. Ref. [12],
and other specification languages such as Estelle, LOTOS,
and SDL in conformance testing of communication proto-
cols [16]. On the other hand, a Petri net can be considered as
an executable model of a concurrent system. It can also be
tested against another specification. In this sense, a Petri net
testing method also has the features of program-based test-
ing. There are extensive literatures on program-based test-
ing. Existing program-based testing methods include
structural testing methods such as control flow testing and
data flow testing, fault-based testing methods such as muta-
tion testing, and error-based testing. Readers are referred to
Ref. [10] for a survey of researches on software testing
methods.

However, there are very few works on testing concurrent
systems, especially testing Petri nets. In Ref. [11], a

474 H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489

hierarchy of test criteria of structural testing of concurrent
programs was proposed. The criteria were defined on the
basis of concurrency graphs. A concurrency graph is a direc-
ted graph whose nodes represent concurrency states and
edges represent state transitions. An edge from concurrency
state A to B represents that the execution of the program can
progress directly from state A to state B. A concurrency state
is a vector of the synchronisation related nodes in the flow
graph of the concurrent tasks of the program. The strongest
criterion in the hierarchy is the all-concurrency-path criter-
ion, which requires that an adequate test of a concurrent
program should cover all paths in the concurrency graph.
It subsumes the all-proper-cc-histories criterion, which
requires that an adequate test should cover all elementary
paths (i.e. the paths on which no node occurs more than
once) in the concurrency graph. The all-edges-between-cc-
states criterion is less strict than the all-proper-cc-histories
criterion. It requires an adequate test should cover all edges
in the concurrency graph. An even less strict test criterion is
the all-cc-states criterion, which requires that an adequate
test should cover all states in the concurrency graph. These
criteria resemble the path coverage, elementary path cover-
age, branching coverage and statement coverage criteria of
control flow testing of sequential programs. An additional
criterion, called the all-possible-rendezvous criterion, speci-
fic to Ada programs was also proposed, which requires that
an adequate test should cover those particular nodes in the
concurrency graph which involve a rendezvous. This criter-
ion is, therefore, subsumed by the all-cc-states criterion.
State oriented testing methods can also be found in the
research on testing finite state machines. The development
of such testing methods has initially been driven by
problems arising from functional testing of sequential
circuits, and later re-boosted in the need of testing commu-
nication protocols [12]. More recently, such testing methods
attracted much attention of researchers of object-oriented
software testing, cf. Ref. [13]. Traditional testing methods
based on finite state machines rely on the model of comple-
tely specified deterministic finite state machines [14].
Recently, more complex models of finite state machines
have been studied such as communicating finite state
machines [15]. Two types of testing problems have been
studied in the theory of testing finite state machines. The
first is the state identification and verification problem,
which tests a finite state machine whose description is
known to the tester. It intends to identify which state it is
in or to verify it is in a certain state. The second is the
conformance testing problem, which tests an implementa-
tion modelled by a finite state machine, whose description is
unknown, against a specification which is modelled by
another finite state machine whose description is known
by the tester. It intends to verify that the implementation
is isomorphic to the specification. For example, in the
conformance testing of communication protocols, a finite
state machine as implementation of a protocol is often tested
against another finite state machine that serves as the speci-

fication [16]. A common feature of conformance testing
methods is that they are fault-based, that is, they are targeted
to detect or eliminate a specific type of faults, such as transi-
tion faults, and rely on a fault model. Test adequacy criteria
are almost all defined (usually implicitly) as completeness
with respect to certain fault models. For both state identifi-
cation and verification testing problems and conformance
testing problems, a common assumption is that the tester can
only observe the input and output sequences of the finite
state machine under test. Therefore, solutions of testing
problems cannot be based on direct observations on which
state the machine is in. Although these theories and methods
are relevant to the testing of Petri nets, the characteristics of
black-box testing of the testing problems and the simplicity
of the computation model of finite state machine limited
their applicability to solve complicated problems in testing
concurrent software systems, such as Petri nets. There are
three fundamental differences between the models of finite
state machines and Petri nets. First, Petri nets treat both state
and state transitions equally, which thus can be dealt with
explicitly in testing. Second, Petri nets define states distri-
butedly while finite state machines define states globally.
Third, the basic models of finite state machine are sequential
while Petri nets are concurrent. Although, in recent years,
research on testing communicating finite state machines
starts to appear in the literature [15], the concurrent nature
of such models has not been fully explored because of the
state explosion problem.

In Ref. [17], a set of coverage criteria for ER nets (a type
of high-level Petri nets) was proposed and their subsump-
tion relations were proved. These criteria include: (1) Firing
sequences: an adequate testing must include all possible
firing sequences from the given initial marking. A firing
sequence is defined by control and data flows. This amounts
to the exhaustive testing and is thus impractical; (2) Firing:
each possible firing of any transition must belong to some
firing sequence in test executions; (3) Transition sequences:
all possible transition sequences must be covered. A transi-
tion sequence concerns only the control flow. It may corre-
spond to multiple firing sequences. Thus, a testing only
needs to contain one of the firing sequences corresponding
to the same transition sequence. The multiple firing
sequences can be viewed as an equivalent class of a
common transition sequence; (4) N-times: an adequate test-
ing covers only those transition sequences such that none of
them contains the same transition more than » times; (5) N-
notable: an adequate testing covers only those transition
sequences such that none of them contains the same transi-
tion more than n times and no more than one contains a
notable subsequence of interest. Here, a subsequence vy of
a firing sequence o is called a notable firing subsequence of
o, if and only if, for all firing sequence ¢’ containing y we
have that ¢’ has the same length as o and ¢’ has the same
initial marking as o imply that ¢’ is a permutation of o. A
notable subsequence identifies a class of firing sequences
that can be considered equivalent from the testing point of

H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489 475

Thi&k&g fl Picku 0 Ci,jmtick
3
Eati
fs aHne f6
4
| I
Putdown

Fig. 1. A PrT net specification of dining philosophers’ problem.

view. Thus, only one representative is included in testing
from a set of firing sequences such that their underlying
transition sequences contain the same notable subsequence;
and (6) Transition: an adequate testing contains enough
firing sequences that contain at least one firing of all transi-
tions.

In the testing of concurrent systems, observing dynamic
behaviour is of particular importance, but is more compli-
cated than testing sequential systems. As pointed out by
Carver and Tai [18], the non-deterministic behaviour of
concurrent programs makes the replay of a testing process
and regression testing uncertain. Observing various possible
dynamic behaviours on test cases and controlling the execu-
tions of non-deterministic programs to demonstrate all
possible behaviours have been a major research topic in
testing concurrent systems [18]. Despite the practical diffi-
culties in observing and controlling the dynamic behaviours
of concurrent systems, behaviour observations were used in
the theoretical studies of process algebra, such as in defining
equivalence relations between CCS processes [19]. This
idea was developed into a formal framework for defining
an equivalence relation based on testing [20] and further
extended in Ref. [21]. These theoretical works only use
the externally observable behaviours in the form of event
sequences, and thus correspond to the practical methods of
black-box testing.

Our work shares the same viewpoint with the above
research that the semantics of a concurrent process can
neither be simply defined nor adequately tested as a partial
function from inputs to outputs although it is appropriate for
a sequential program. Instead, it must be defined in terms of
its dynamic behaviour and tested by observing the dynamic
behaviour. Unfortunately, existing theories of software test-
ing have mostly focused on test adequacy criteria [22—-30],
but neglected the aspect of behaviour observation in soft-
ware testing. Many important and fundamental questions
still remain unanswered. For example, what should be
observed, i.e. in what sense an observation method is appro-
priate? What can be observed, i.e. what are the varieties of
observation methods? What are the implications of using
different observation methods and how to compare them?
etc. In Ref. [31], we developed a general theory of testing
concurrent systems to answer such questions. We argued

that a well-defined testing method should contain at least
two components, a method of observing a system’s dynamic
behaviour during a testing process and a criterion for select-
ing test cases and determining when testing can stop. We
used complete partially ordered sets to formally define what
are appropriate methods of behaviour observation and
recording, and introduced the notion of observation
schemes. We proposed and investigated the desirable prop-
erties that a scheme needs to satisfy. We also identified
some common constructions of observation schemes in
existing software testing methods and studied their proper-
ties [32]. Test criteria were defined as predicates or
measurement functions on observed behaviour during test-
ing.

The above work forms the basis of the work reported
here. In this paper, the formal theory of observation scheme
[31] is applied to testing high-level Petri nets. Four testing
strategies are systematically investigated with various test
adequacy criteria and behaviour observation schemes. The
subsumption and extraction relationships among various
proposed testing methods are proved. The paper is organised
as follows. Section 2 gives the preliminaries of predicate
transition nets, which is a kind of high-level Petri nets.
Section 3 develops the work proposed in Ref. [17] into
transition-oriented testing strategy. Section 4 abstracts and
generalises the work of Ref. [11] into state-oriented testing
strategy. Section 5 adapts and generalises data flow testing
results from sequential software systems [33—36] for testing
Petri nets. Section 6 discusses specification-oriented testing.
Section 7 is the conclusion of the paper.

2. Testing predicate transition nets

The high-level Petri net model used in this paper is predi-
cate transition net (PrT nets in the sequel) [37]. However,
the results presented in this paper are also directly applic-
able to other high-level Petri net models as well as low-level
Petri nets. In a PrT net, tokens can have structures and can
be individually distinguished. Labels can be expressions
containing variables, and constraints can be logical expres-
sions. Thus, PrT nets are powerful enough to define control,
data, functionality, and dynamic behaviour of underlying
concurrent systems. Many variants and extensions of PrT
nets have been proposed in the past decade. In this paper,
PrT nets are defined with an underlying algebraic specifica-
tion, which is also called algebraic Petri nets elsewhere [38].

2.1. The syntax and static semantics

A PrT net consists of (1) a finite net structure (P, T, F), (2)
an algebraic specification SPEC, and (3) a net inscription
(9,L,R,M,). (P,T,F) is the essential net structure, where
P U T is the set of nodes satisfying the condition P N T =
(. P is called the set of predicates (graphically represented
by circles) and T is called the set of transitions (represented

476 H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489

by boxes). F is the set of arcs and is called the flow relation,
which satisfies the condition: F C PXT U T X P.

For example, Fig. 1 shows a PrT net of the well-known
problem of dining philosophers. There are three predicate
nodes: Thinking, Eating and Chopstick. Tokens at the predi-
cate node Thinking represent the philosophers in the state of
thinking. Tokens at the predicate node Chopstick represent
the chopsticks available for use. Each token at predicate
node Eating consists of one philosopher and two chopsticks
and represents the state that the philosopher is eating using
the chopsticks. There are two transition nodes: Pickup and
Putdown. The transition Pickup changes the state of a philo-
sopher from Thinking to Eating and at the same time
changes the state of two chopsticks from available to occu-
pied. The transition Putdown represents that a philosopher
finishes eating and puts down a pair of chopsticks. It
changes the state that a philosopher is eating using a pair
of chopsticks to the state that the philosopher is thinking and
that the chopsticks become available. This example will be
used throughout the remainder of the paper to illustrate the
testing methods.

The algebraic specification SPEC is a meta-language to
define the tokens, labels, and constraints of a PrT net. The
underlying specification SPEC = (S, OP, Eq) consists of a
signature 3 = (S, OP) and a set Eq of Y-equations. Signa-
ture 3 = (S, OP) includes a set of sorts S and a family OP =
(OPy,) of sorted operations for sy,...,s,,s € S. For
each s € §, we use CON; to denote OP.; (the 0-ary opera-
tion of sort s), i.e. the set of constant symbols of sort s. The
3-equations in Eq define the meanings and properties of
operations in OP. In this paper, we often simply use familiar
operations and their properties without explicitly listing the
relevant equations in the examples.

For example, the specification SPEC = (S, OP, Eq)
underlying the dining philosophers’ PrT net contains the
following elements.

1. § includes elementary sorts PHIL to represent philoso-
phers, CHOP to represent chopsticks and Boolean. PHIL
and CHOP are derived from Integer. S also includes
structured sorts such as set and tuple obtained from the
Cartesian product of the elementary sorts.

2. OP includes standard arithmetic and relational operations
on Integer, logical connectives on Boolean, set opera-
tions, and selection operation on tuples.'

3. Eq includes known properties of the above operators.

The net inscription (9, L, R, M)) associates each graphical
symbol of the net structure (P, T, F) with an entity in the
underlying SPEC, and thus defines the static semantics of a
PrT net.

Each predicate in a PrT net is a data structure and a
component of the overall system state. The sort of each
predicate is a member of S in SPEC. It defines its valid

! We use A[i] to denote the ith component of tuple A.

values, i.e. proper tokens, which are ground terms of the
signature 3, written MCONjg. Therefore, we associate
each predicate p in P with a subset of sorts in S, and give
the sort assignment ¥ : P — ().

The flows in a PrT net are labelled with the sorts of the
tokens that can pass through. The set of labels is denoted by
Label(X), where X is a set of sorted variables disjoint with
OP. Each label can be an expression of the form (k;x; +
-+ + k,x,). Mapping L : F — Labelg(X) is a sort-respecting
labelling of PrT net.

Each transition in a PrT net is associated with a constraint
to define its functionality and processing. Constraints of a
PrT net belong to a subset of first order logic formulas
whose quantifiers range over finite domains and free vari-
ables appear in the label of some connecting arc of the
transition. Thus, constraints are essentially propositional
logic formulas defined in the underlying algebraic specifica-
tion. In particular, the subset of first order logical formulas
contains the X-terms of sort bool over X, denoted as
Termpppoo(X). In general, a constraint contains two
parts—the pre-condition part involving only label variables
in incoming arcs and the post-condition part specifying the
relationships between the variables of the incoming arcs and
label variables of the outgoing arcs. The pre-condition
specifies the required tokens and the post-condition defines
the values of generated token in terms of the selected tokens.
Therefore the pre-condition is essentially the guard of the
functionality (processing) defined by the post-condition.
The canonical form of the constraint R(#) of a transition ¢
can be written as Pre(s) A Post(r). Mapping R:T —
Termgp poo (X) is a well-defined constraining mapping.

M, : {my: P— MCONg} is a set of sort-respecting
initial markings. Each initial marking assigns a multi-set
of tokens to each predicate p in P. We view M, as a set of
markings instead of a single marking for two reasons. First,
we have the complete input domain explicitly. Second, we
can easily distinguish multiple markings and study them
separately.

For example, the net inscription (9,L,R,M,) for the
dining philosophers problem given in Fig. 1 is as follows.

1. Sorts of predicates:
¥(Thinking) = J(Eating) = p(PHIL),
U(Chopstick) = p(CHOP).
2. Arc definitions:
L(f1) = {ph},
L(f2) = {chl,ch2},
L(f3) = {ph, chl, ch2),
L(f4) = {(ph, chl, ch2),
L(f5) = {ph},
L(f6) = {chl,ch2}.
3. Constraints of transitions:
R(Pickup) = (chl = ph) A (ch2 =ph ® 1),
R(Putdown) = true.

2 p(X) is the power set of X.

Table 1

A flat execution of the dining philosophers’ PrT net

H. Zhu, X. He / Information and Software Technology 44 (2002) 473—489 477

Markings m; Transitions #;

Thinking Eating Chopstick Fired Transition Set Token(s) consumed

{1,2,3,4,5} {1} {1,2,3,4,5} Pickup ph=1,chl=1,ch2=2

(2,34,5) (1,1,2)} (3.4,5) Putdown (ph, chl, ch2) =(1,1,2)

{1,2,3.4,5}) {1,2,3.4,5) Pickup ph=2,chl =2, ch2 =3

(1,34,5) 1(2,2,3)) (14,5} Pickup ph=4,chl =4, ch2=5

{1,3,5} {(2,2,3),(4,4,5)} {1} Putdown (ph, chl, ch2) =(2,2,3)

{1,2,3,5} {(4,4,5)} {1,2,3} Putdown (ph, chl, ch2) =(4,4,5)

{1,2,3,4,5} {} {1,2,3,4,5} Pickup ph=5,chl =5,ch2=1

(1,2,3,4) 1(5,5,1)) (2,3.4) Pickup ph=3,chl =3, ch2=4

{1,2,4} {(5,5,1),(3,3,4)} {2} Putdown (ph,chl, ch2) =(3,3,4)

(12,34} 1(5,5,1)) (2,3.4) Putdown (ph, chl, ch2) =(5,5,1)

{1,2,3,4,5} {} {1,2,3,4,5}

4. The initial marking: ings from the initial marking, in which a successor marking is
My = {mlk=2,3,...}, where my; is defined as obtained through firing of a subset of enabled non-conflicting

follows.

m(Thinking) = {1,2,...,

my(Eating) = { },

my(Chopstick) = {1,2, ..., k}.

Where @ is modulus k addition.

2.2. Dynamic semantics and observable behaviour

A marking m of a PrT net is a mapping P — MCONj from
the set of predicates to multi-sets of tokens. A transition is
enabled if its pre-set contains enough tokens and its constraint
is satisfied with an occurrence mode. The firing of an enabled
transition consumes the tokens in the pre-set and produces
tokens in the post-set. Two transitions including the same
transition with two different occurrence modes can fire concur-
rently if they are not in conflict, where two transitions are
conflict if the firing of one transition disables another.
Conflicts are resolved non-deterministically. The firing of an
enabled transition is atomic. We define the behaviour of a Pr'T
net to be the set of all possible execution sequences. Each
execution sequence represents consecutively reachable mark-

Table 2
A non-flat execution of the dining philosophers’ PrT net

transitions from the predecessor marking. The semantic model
used in this paper is thus the interleaving-set model (also called
step sequence model in Ref. [39], which is capable to capture
the non-sequential behaviours. Other well-known semantic
models of Petri nets include interleaving and partial order [39].

For example, the specification of dining philosophers’
problem in PrT net given in Fig. 1 allows concurrent execu-
tions such as multiple non-conflicting (non-neighbouring)
philosophers picking up chopsticks simultaneously, and
some philosophers picking up chopsticks while others
putting down chopsticks. The constraints associated with
transitions Pickup and Putdown also ensure that a philoso-
pher can only use two designated chopsticks defined by the
implicit adjacent relationships. Tables 1 and 2 give the
details of two partial executions of the five dining philoso-
phers’ PrT net. The partial execution given in Table 1 only
involves firing one transition in each step. In the sequel, we
call such executions flat. The execution given in Table 2
contains steps that two transitions are fired simultaneously.

Definition 1 (Interleaving-set semantics of PrT nets). Let
N be a PrT net, and M, be the set of initial markings of N,

Markings m; Transitions #;
Thinking Eating Chopstick Fired transitions Token(s) consumed
{1,2,3,4,5} {} {1,2,3.4,5} Pickup ph=1,chl=1,ch2=2
{2,3,4,5} {(1,1,2)} {3,4,5} Putdown (ph, chl, ch2) =(1,1,2)
{1,2,3,4,5} {} {1,2,3,4,5} Pickup ph=2,chl =2,ch2=3
Pickup ph=4,chl =4,ch2=5
{1,3,5} {(2,2,3),(4,4,5)} {1} Putdown (ph, chl, ch2) =(2,2,3)
Putdown (ph, chl, ch2) = (4,4,5)
{1,2,3,4,5} {} {1,2,3,4,5} Pickup ph=3,chl=3,ch2=4
{1,2,4,5} {(3,3.4)} {1,2,5} Pickup ph=5,chl=5ch2=1
Putdown (ph, chl, ch2) =(3,3,4)
{1,2,3,4} {(5,5,1)} {2,3,4} Putdown (ph, chl, ch2) =(5,5,1)
{1,2,3,4,5} {} {1,2,3.4,5}

478 H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489

which is thus the set of test cases for N. An execution of N on
a test case my is a sequence of reachable markings starting
from mg and linked by transition firings. We denote such an
execution as follows:
e:moﬂmlﬂmzﬁ) o
where n;, called steps, are non-empty subsets of transitions that
are not in conflict with each other, my € M, is an initial mark-
ing,m;,i = 1,2,..., are markings such that m; is obtained from
m;_, by firing transitions in the subset n;_;. (ng, ny, ..., g, ...)
is called a step sequence. An execution is flat, if the subsets n;,
i =0,1,..., are singleton sets and {(ng, n, ..., 1, ...) is called a
transition sequence. A flat execution e can be obtained from a
non-flat execution ¢’ by flattening, if
o ny n Ny —1 e

(@) e:my=my—=my= - = m—ny-

N R S S g

(c) there are natural numbers j, < j; <--- <j, <---such

that ng = U2 n;, mo = mo, njyy = Ui L Mgy My =

mjk+1, k= 0, 1,2,

Informally, flattening an execution into a flat execution is
to execute the concurrent firings of transitions by interleav-
ing. Of course, there may exist many different orders to
execute concurrent transition firings by interleaving. The
relationship between the interleaving semantics (transition
sequences) and interleaving-set semantics (step sequences)
was studied and given in Ref. [39].

As an important activity in software testing practice, the
observation and recording of system’s dynamic behaviour
during testing process must be systematically and consis-
tently performed.

Definition 2 (Observation scheme [31]). A scheme of beha-
viour observation and recording, or simply an observation
scheme, is an ordered pair (B, u), where B = {(B,,=, Mp is
aconcurrent system}, and u = {p, |p is a concurrent system}.
B is called the universe of phenomena. For all concurrent
systems p, (B,, =,) is a complete partially ordered set. B, is
called the universe of phenomena on p. The mappings in u are
called the recording functions. For all concurrent systems p,
the recording function w, maps a test set 7' to a non-empty
consistent subset of B,,.

Informally, each element in B, is a phenomenon obser-
vable from testing a concurrent system p. o =<, 0, means
that phenomenon o is a part of phenomenon o,. The least
element 1, of B, denotes that nothing is observed. Notice
that, because of the non-determinism and concurrency, two
execution of a concurrent system on the same input may
demonstrate two different behaviours and produce two
different results. Sometimes, it is necessary to execute the
system on the same test case twice or even more times in
order to test all possible behaviours and outputs. Therefore,
we define a test set of a concurrent system p as a multi-set of

input to p to represent multiple executions on test cases. In
particular, a test set of a PrT net is a multi-set of its initial
markings M, which is the input domain of the PrT. Given a
concurrent p and a test set 7, the phenomenon observable by
executing p on test set 7' may not be unique. We use u,(T) to
denote the set of all such possible phenomena. In other
words, o € mp(T) means that o is a phenomenon that is
observable by an execution of p on test set 7. As a theory of
testing PrT nets, we define the observable phenomena
directly on the bases of dynamic semantics.

Definition 3 (Complete scheme of behaviour observation). In
the complete observation scheme W, the universe of phenom-
ena B Nq/ and recording function ¥y, for any given PrT net N are
defined as follows:

I. LetRy,, = {e]e is an execution of N onm} forallm € M,,
and Ry = Unem, Ry,n We define:
(a) BN = p(Ry) (the power set of Ry and
(b) The partial ordering = on Bg’ is the set inclusion
relation C .
2. Forallm € My, Yy({m}) = {{e}|le € Ry}
3. For any test set M C My and m € M, Vy(M U {m}) =
{uU {e}u € Un(M) A e € Ry,,}.

Intuitively, the complete scheme records every detail of
the executions of a concurrent system.

For many concurrent systems, a maximum sequence of
markings can be infinite, i.e. the execution does not termi-
nate. However, in software testing practice, we cannot
observe and record an infinite execution within a finite
period of time. Therefore, we often stop execution manually
and observe and record a partial execution. This practice can
be defined as an observation scheme. We first define a
mapping Truncation as follows:

ny my Mo

Truncation, (e) = m, —»ml — My — Iy,
ny n nz ny—q ng
where k=n, if e=my—m —my—- — m—-- or
n ny N5 —1 .
e=my—m —my—- —m, s=n; and k=ys, if

ng n ny ng_q
S mg and s <n.

Definition 4 (Partial executions up to n steps). In the
partial execution up to n steps observation scheme II,,
the universe of phenomena B(H" and recording functions
11y for any given PrT net N are defined as follows.

1. BEVH’") = Truncation, (By)>;
2. For any test set M C M,, IT(M) = {Truncation, (u)|u €
Yn(M)}.

3 Notice that, here we extended the function to apply on a set of execu-
tions, i.e. Truncationn(B,‘\I,') = {Truncation,(x)|x € BNW }. In general, let f be
any given function defined on a domain D, for all X C D, we write f(X) to
denote the set {f(x)|x € X}. Such extensions of functions will be used in the
sequel when there is no risk of confusion.

H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489 479

The universal scheme (25 defined below contains both
complete and partial executions.

Definition 5 (Universal scheme). In the universal obser-
vation scheme (2, the universe of phenomena B]{,) and
recording function {2 for any given PrT net N are defined
as follows.

1. B = p(Rly), where Ry = |Jo, Truncation,(Ry). The
partial ordering =, is the set inclusion relation C .

2. For any m € My, Qy({m}) = {{e}le € Ry }-

3. For any test set M C M and m € My, Qny(M U {m}) =
{uU {e}|lu € Oy(M)Ae € Ry,,}.

In the universal scheme, an observable phenomenon is a
set of complete or partial executions of the PrT net under
test. It is worth noting that partial executions in such a
phenomenon can have different number of steps, which
are determined by the tester. This forms an additional
dimension of non-determinism of testing. Without loss of
generality, we call both complete executions and partial
executions as test executions in the sequel. The scheme
given in Definition 5 is universal in the sense that every
observation scheme can be extracted from it. The notion
of extraction is formally defined as follows [31]. Let .o/ =
(A, 1) and 2 = (B, u®) be two schemes.

Definition 6 (Extraction relation between schemes
[31]). Scheme .o is an extraction of scheme %, written
o/ < 4, iffor all p € P, there is a homomorphism 1, from
(B,,=<p,) to{A,, =4,), such that (1) ¢,(0) = J_Ap 1f and
only if o=1p,, and (2) for all test sets 7, /.Lp(T)
qDp(l’“p (1))

Informally, scheme .o/ is an extraction of scheme %
means that scheme % observes and records more detailed
information about dynamic behaviours than scheme .o/
does. The phenomena that scheme .o/ observes can be
extracted from the phenomena that 4 observes.

3. Transition-oriented testing

As argued in Ref. [31], a test method contains two main
components, an observation scheme and an adequacy criter-
ion. The adequacy criterion determines how to select test
cases before testing and how to analyse test results after test
executions. The observation scheme determines how to
observe and record a system’s dynamic behaviour during
the test executions. A transition-oriented testing method
observes the transitions fired during test executions and
analyses test adequacy according to the transitions covered
by the testing.

The most basic transition-oriented testing method
uses the following observation scheme and adequacy
criterion.

Definition 7 (Fired transitions scheme). The fired transi-
tions” scheme 5y is extracted from the universal scheme
by the mapplng Flrlng(e) Ui=o1...m;, where e=
Its recording function

m0—>m1—>m2 .—>mk—>

Ay is

xXEu

EyM) = { |J Firing(x)

ue .(ZN(M)}, for any M C M,.

The following is the transition coverage criterion for
adequacy analysis.

Definition 8 (Transition coverage). Let E be a collection
of test executions of a PrT net N. E satisfies transition cover-
age criterion if . Firing(e) = Ty, where Ty is the set of
transitions of N. The following function is called the
transition coverage measurement:

U Firing(e)

eEE
17l

TransitionCoverage(N, E) =

For example, both executions of the dining philosophers’
PrT net given in Tables 1 and 2 satisfy the transition cover-
age criterion. All the transitions in the PrT net (i.e. Pickup
and Putdown) are fired.

Multiple transitions may be enabled in a marking and
fired in one step of execution due to the existence of non-
determinism and concurrency. However, not all subsets of
transitions can be fired. The following defines the notion of
feasibility of a subset of transitions and the feasibility of a
sequence of such subsets.

Definition 9 (Feasibility and concurrency degrees of transi-
tion traces). Let n C T be a subset of the transitions of a
PrT net N. The subset n is feaszble 1f and only 1f there exists
an execution e = m0—0>m1 =y = ! my— - of the
PrT net N such that for some i € {O, 1,....k,...}, n C n,.
The concurrency degree of a feasible transition subset n is
the size of the set.

A transition trace is a sequence (n},n%, ...,n}), L > 0, of
subsets of the transitions of a PrT net N. A transition trace
(ny,nh,...,n}), is feasible, if and only if there is an execu-
tion e = m0—0>m1 ﬂ»mz 5L my— --- of the PrT net N
such that for some i € {0,1,...,k,...}, nj = Nitjs for all j =
1,2,...,L, and we say that the execution e covers the transi-
tion trace. The concurrency degree of transition trace is the
maximum of the concurrency degrees of its elements.

When a transition trace’s concurrency degree equals to 1,
that is, the subsets in a transition trace (n,n5, ...,n}), L >
0, are all singleton sets, it is a transition sequence. For
example, consider the partial execution in Table 1 of the
dining philosophers’ PrT net. The set of length-2 feasible

480 H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489

transition sequences includes (Pickup, Putdown), (Pickup,
Pickup), (Putdown, Putdown), and (Putdown, Pickup). The
set of feasible length-3 sequences of transitions includes
(Pickup, Pickup, Putdown), (Putdown, Pickup, Putdown),
(Putdown, Pickup, Pickup), (Pickup, Putdown, Pickup),
(Pickup, Putdown, Putdown), and (Putdown, Putdown,
Pickup). The transition trace of the partial execution of
the dining philosophers’ PrT net given in Table 2 is
({Pickup}, {Putdown}, {Pickup, Pickup}, {Putdown,
Putdown}, {Pickup}, {Pickup, Putdown}, {Putdown}).
Let Trace be the mapping defined as follows:

Trace(e) = (Mg, My .eer Mps -2),

ny n n, ny_y n

where e = mg—m|; —my— - — m—---.

The following scheme records the sequences of transition
firings in the executions of a concurrent system.

Definition 10 (Transition trace scheme). The transition
trace scheme Iy is extracted from the universal scheme
by the mapping Trace defined above. Its recording function
has the property that for any test set M C My, I'y(M) =
{ele = {Trace(®)|x € u} Au € Qy(M)}.

The transition trace testing method requires the sequence
of transition subsets fired during test executions be recorded.
That is, it requires the transition trace scheme to be used. A
hierarchy of adequacy criteria can be defined for transition
trace testing.

Definition 11 (K-concurrency length-L trace coverage).
Let E be a collection of executions of PrT net N. Let K, L >
0 be natural numbers. E is said to satisfy the K-concurrency
length-L transition trace coverage criterion, if and only if
for any feasible transition trace g with length less than or
equal to L and concurrency degree less than or equal to K,
there is at least one e € E, such that g is covered by e. In
particular, K-concurrency length-1 trace coverage is called
K-concurrency transition coverage. The K-concurrency
length-L trace coverage measurement is defined by the
formula:

ICV Nk (B

ConTraceCyg 1 (N, E) = [Treg (WI|

where Trcg ; (V) is the set of all feasible transition traces
with length less than or equal to L and concurrency degree
less than or equal to K, and CV y ¢ ;(E) is the set of transition
traces in Trcg ;(E) that is covered by at least one element
in E.

For example, the partial execution in Table 1 satisfies the
1-concurrency length-2 transition trace coverage criterion.
However, it does not satisfy the 1-concurrency length-3
transition trace coverage criterion because the sequence of
transitions (Putdown, Pickup, Putdown) is not covered by
the partial execution. The 1-concurrency length-2 adequacy

measurement of the partial execution is 5/6. The partial
execution given in Table 2 satisfies the 2-concurrency
transition coverage criterion (i.e. 2-concurrency length-1
coverage).

The following lemmas prove the subsumption relation-
ships between k-concurrency length-/ adequacy criteria. An
adequacy criterion A subsumes criterion B if for all test
executions E, E satisfies criterion A implies that E also
satisfies criterion B. The subsumption relationships between
test adequacy criteria are closely related to testing methods’
fault detecting ability and test cost [40].

Lemma 1. For all natural numbers k, 1; and 1, 1, =1,
implies that k-concurrency length-1; transition trace cover-
age subsumes k-concurrency length-l, transition trace
coverage.

Proof. Let k>0 be any given natural number. By
Definition 9, for natural numbers [; = I,, the set S| of feasi-
ble k-concurrency length-/; transition traces is a subset of
the set S, of feasible k-concurrency length-/, transition
traces. By Definition 9, for all sets E of executions, E covers
S, implies E also covers S;. By Definition 11, E is adequate
according to k-concurrency length-I, coverage implies that
E is also adequate according to k-concurrency length-/;.
Therefore, the statement is true. [

Lemma 2. For all natural numbers 1, k; and k;, k; = k;
implies that k;-concurrency length-I transition trace cover-
age subsumes kj-concurrency length-l transition trace
coverage.

Proof. It is similar to the proof of Lemma 1. O

Note: (1) k-concurrency transition coverage is k-concur-
rency length-1 trace coverage. Therefore, by Lemma 2, for
all k,1 > 0, k-concurrency length-/ transition trace coverage
criterion subsumes k-concurrency transition coverage. (2)
Transition coverage is 1-concurrency length-1 trace cover-
age. Therefore, by Lemma 1 and Lemma 2, all £,/ > 0, k-
concurrency length-/ transition trace coverage criterion
subsumes transition coverage.

Moreover, the following all transition trace coverage
criterion subsumes all these criteria.

Definition 12 (All transition trace coverage). Let E be a
collection of executions of a PrT net N. The test execution E
is said to satisfy the all transition traces coverage criterion,
if and only if for any feasible transition trace g of N, there is
at least one e € E such that g is covered by e. The transition
trace coverage measurement is defined by the formula,
TTC(N, E) = |CVN(E)|/|Tre(N)|, where Trc(N) is the set
of all feasible transition traces of N, and CVy(E) is the set
of feasible transition traces of N that is covered by at least
one element in E.

H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489 481

Lemma 3. Forall k, | > 0, the all transition traces cover-
age criterion subsumes the k-concurrency length-I transi-
tion trace coverage criterion.

Proof. It is similar to the proof of Lemma 1. [

It is worth noting that most concurrent systems in
practical use contain an infinite number of feasible tran-
sition traces. To satisfy such an adequacy criterion, we
may need an infinite amount of computational
resources.

In software testing, one may consider one concurrent
execution of a PrT net as several interleaved executions
of the same PrT net. Let g = {fy,ty,...,%;), L >0, be a
sequence of transitions. We say that an execution e
logically covers sequence g, if a flattening of e contains
q as a consecutive subsequence of transition firings. For
example, the transition trace of the partial execution
given in Table 2 logically covers the following two
transition sequences.

(Pickup, Putdown, Pickup, Pickup, Putdown, Putdown,
Pickup, Pickup, Putdown, Putdown)

(Pickup, Putdown, Pickup, Pickup, Putdown, Putdown,
Pickup, Putdown, Pickup, Putdown)

Definition 13 (Interleaving length-L transition sequence
coverage). Let E be a collection of executions of PrT net
N. Let L > 0 be any natural number. E is said to satisfy the
Interleaving length-L transition sequence coverage criter-
ion, if and only if for any feasible transition sequence ¢ with
length less than or equal to L, there is at least one e € E that
logically covers g.

The interleaving length-L transition sequence coverage
measurement is defined by the formula

|InterleaveCVy , (E)||
ISeqz (V)|

InterleaveC, (N, E) =

[}

where Seq; (V) is the set of all feasible transition sequences
with length less than or equal to L, and InterleaveCVy ; (E)
is the set of transition sequences in Seq; (E) that is logically
covered by at least one element in E.

For example, the partial execution given in Table 2 satis-
fies the interleaving length-3 transition coverage criterion.
The two transition sequences that are logically covered by
the execution contain all transition subsequences of length
less than or equal to 3. The partial execution given in Table
1 does not satisfy the interleaving length-3 transition cover-
age criterion.

Notice that, in interleaving semantics, the interleaving
length-L transition sequence coverage criterion is equivalent
to the length-L trace coverage criterion proposed and inves-

tigated in Ref. [41]. Also, interleaving length-1 transition
sequence coverage is transition coverage.

Lemma 4. For all natural numbers l; and 1, 1, =1,
implies that interleaving length-l; transition sequence
coverage subsumes interleaving length-l, transition
sequence coverage.

Proof. It is similar to the proof of Lemma 1. [

Lemma S. For all natural numbers | > 0, that I-concur-
rency length-l transition trace coverage subsumes interleav-
ing length-1 transition sequence coverage.

Proof. Let g = (ny,n,,...,n;) be any l-concurrency tran-
sition trace of length less than or equal to L. By Definition 9,
every element n; of ¢ is a singleton set. Let n; = {t;}, i =
1,2,....L. Let ¢’ = {t;,1,,...,1;). An execution e covers ¢
implies that there is a consecutive subsequence of transition
firings My, Mhsan,..sfjyey such that n;=nj., i=
1,2,..., L. Therefore, a flattening of e contains a consecutive
subsequence of transitions f,f,...,¢f;. The statement
follows due to the fact that a sequence ¢’ of transitions is
feasible if and only if the corresponding concurrency degree
1 transition trace is feasible. [

Notice that, l-concurrency length-L transition trace
coverage is not equivalent to interleaving length-L transition
sequence coverage criterion, because the former forces test
executions to fire one transition at a time to cover a 1-
concurrency transition trace while the latter does not. For
example, the partial execution given in Table 2 does not
satisfy 1-concurrency length-3 transition trace coverage
criterion, but it satisfies interleaving length-3 transition
sequence coverage criterion.

The diagram in Fig. 2 summarises the subsumption
relationships between the transition oriented testing
methods.

4. State-oriented testing

In contrast to transition-oriented testing, a state-oriented
testing method records the states (i.e. the markings of a PrT
net) of the concurrent system under test and analyses test
adequacy according to such recorded information.

Definition 14 (State scheme). The state scheme Y is
extracted from the universal scheme by the mapping
Markings(e) = {mg, my,...,my, ...},

ny n ny n ny
where e = mg—m; —nmy— - — m— -

482 H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489

All Transition
Trace Coverage
AK+1-concurrency K-concurrency I-concurrency Interleaving
Length-Z+1 — Length-Z+1 +—— Length-Z+1 — Length-Z +1
Transition Trace Transition Tracc Transition Tracc Transition Sequence
K+1-concurrency K-concurrency 1-concurrency Interlcaving
Length-Z —» Length-L — Length-L | — Length-L
Transition Trace Transition Tracc Transition Trace Transition Scquence
K+1-concurrency K-concurrency 1-concurrency Transition
Transition > Transition ‘ g Transition ’ Coverage

Fig. 2. The hierarchy of transition oriented testing methods.

Its recording function has the property

Sy(M) = {U Marking(x)|u € Q2y(M)}

xXEu

for any test set M C M,,.

Let N be a given PrT net. Mark(N) is defined to be the
set of reachable markings on N, i.e. m € Mark(N) if and
only if there is an initial marking my € M, and an
execution e of N on m; such that m € Markings(e).
The concept of abstract states of a concurrent system
consists of: (1) a finite set ASy of abstract states of N,
and (2) a mapping Statey : Mark(N) — ASy that defines
how markings are associated to states.

For example, as shown in Fig. 3 we can define ASpp =
{0,1,2,...,[k/2]} to be the set of abstract states in the dining
philosophers PrT net (k is a given natural number), where
n € ASpp means that ‘n philosophers are eating’. The
mapping Statepp is defined as follows: Statepp(m) = n, if
the predicate Eating contains n tokens in the marking m. It is
worth noting that for a given PrT net, we can define more
than one abstract state space. For example, the following is
another abstract state space for the dining philosophers PrT
net. Let ASpp = {think, eat}, and the mapping

Stateyp(m) =

{think, if the token “1” is included in the predicate Thinking;

eat, if the token “(1,1,2)” is included in the predicate Eating.

where, informally, the state ‘think’ represents the situation
that philosopher 1 is thinking, and the state ‘eat’ represents
that philosopher 1 is eating.

The state testing method uses the state scheme and the
following state coverage criterion.

Definition 15 (State coverage). A collection E of

executions of N satisfies the state coverage criterion
with respect to the concept of state (ASy, Statey), if
for all feasible state s € ASy, there is at least one
execution e in E such that there is at least one m &
Markings(e) such that Statey(m) = s. The state coverage
measurement is defined by the formula

For example, the partial execution given in Table 1 satisfies
the state coverage criterion with respect to Statepp. It also
satisfies the state coverage criterion with respect to State pp.

A pair (s}, s,) of states, 5,5, € ASy, is a feasible state

StateN(U Markings(e))

eEFE
IASll

StateCoverage(N, E) =

transition, if there is an execution
o n ny Ny —1 Ny .
mo—m; —my— -+ — my— -~ such that for some j,

State(m;) = s, and State(m;,) = s,. For example, the feasi-
ble state transitions for the five dining philosophers’ PrT net
(k =5) is given in the following diagrams.

Definition 16 (State trace scheme). The state trace scheme
@y, is extracted from the universal scheme by the mapping

MarkingTrace(e) = {(mg, my, ..., my, ...),

ny n n, n_y n
where e = my—m|; —nmy— - — m—---.

Its recording mapping has the property

@\ (M) = {MarkingTrace(u)|u € Qy(M)}

for any test set M C M,.

The state transition testing method uses the state trace
scheme. The adequacy criterion is defined as follows.

Definition 17. State transition coverage

H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489 483

{Putdown, Putdown {Pickup, Pickup}
— P
{Pickup}

{Putdown} -
{Pickup, putdown} — Think
Pickup(1,1,2)
L — Putdown(<1,1,2>)
{Putdown} {Pickup}
Eat
— 2 f—
(@ (b)

Fig. 3. State transition diagrams for the dining philosophers PrT net.

Let E be a collection of test executions. E is said to satisfy
the state transition coverage criterion, if for all feasible state
transitions (s}, s,), there is at least one execution e in E such
that e covers the state transition, i.e. there is j such that
State(m;) = s; and State(m;;) = s,. The state coverage
measurement is defined by the following formula:

CTy(E
STC(N,E) = w

STy
where CTy(E) is the set of state transitions that are covered
by the collection e of test executions, STy is the set of
feasible state transitions.

For example, the partial execution given in Table 1 satis-
fies the state transition coverage criterion with respect to the
state space Statepp. It does not satisfy the state transition
coverage criterion with respect to the state space Statepp
because it does not cover the state transition from O to 2
and transition from state 2 to 0.

Compared with state testing, state transition testing
requires to record not only more detailed information during
the testing process, but also more test executions because
state transition coverage subsumes state coverage.

Lemma 6. Provided that for all states s; in ASy, there is
sy € ASy such that either (s;,s;) or {s,5,) is a feasible state
transition, we have that a collection E of test executions
satisfies the state transition coverage criterion implies that
E also satisfies the state coverage criterion.

Proof. It is straightforward from the definition. [

A sequence g of states (s|,s,,...,5;) is a state transition
path of length k, if for all i = 1,2,...,k — 1, {s;,5;.1) is a
state transition. An execution moﬂmlﬂ»nnk” %
covers the path, if and only if for some u, State(m, ;) =
s;, 1 =1,2,..., k. If there is an execution e such that e covers
q, we say that the path ¢ is feasible. For example, the set of
length 3 ASpp state transition paths of include (0, 1,2),
0,1,0), (1,0, 1), (1,2,1), (2,1,0), and (2, 1, 2).

State transition path testing also uses the state trace

— my— -

scheme. There is a hierarchy of adequacy criteria that can
be used for its adequacy analysis.

Definition 18 (State transition path coverage). Let k > 1
be a given natural number. Let E be a collection of test
executions, we say that E satisfies the length-k state transi-
tion path coverage criterion, if and only if for any feasible
state transition path g of length less than or equal to k, there
is an execution e in E such that e covers the path g. The
length-k state transition path coverage measurement is
defined by the following formula:

CUy (E

LSTP,(N, E) = ICUN(E)| ’
[STPath, (V)]

where STPath,(N) is the set of feasible state transition paths

of length less than or equal to k, CUy x(E) is the subset of

STPath,(N) that is covered by test executions in E.

For example, the partial execution given in Table 2 does
not cover the state transition path (2, 1,2).

Lemma 7. For all natural numbers k; and k,, k; =k,
implies that length-k; state transition path coverage
subsumes length-k, state transition path coverage.

Proof. It is similar to the proof of Lemma 1. [

5. Flow-oriented testing

In transition oriented and state oriented testing, informa-
tion about the flows of tokens in the system is ignored,
which are reflected in the definitions of the relevant obser-
vation schemes. To consider token flows in testing, we
develop a new type of testing method based on the similar
ideas of data flow testing of sequential programs [33—-36].

A flow-oriented testing method requires the recording of
tokens passing through the arcs in a PrT net.

Let (P, T, F) be the net structure of a given PrT net N and
t € T be a transition node of N, a flow f € F is called an
inward flow of t, if f = (¢, t) for some predicate node ' €
P. A flow f € F is called an outward flow of t, if f = (t,1')
for some predicate node t' € P. An inward flow fof ¢ is said
to be covered by an execution if the execution contains a
firing of ¢ such that at least one token on flow fis consumed
by the firing. An outward flow f of # is said to be covered by
an execution if the execution contains a firing of transition ¢
such that at least one token is produced on the flow f as the
result of the firing.

Definition 19 (Inward flow, outward flow and flow sche-
mes). Let e= moﬁ»ml ﬂ»mz—zw- f mkﬂ»m be any
given execution, F; and G; be the sets of inward flows and
outward flows participated in the transition firing of n;, i =

1,2,...,k,..., respectively. We define the following

484 H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489

mappings:

InwardFlow(e) = <F0, Fl’ ceey Fk’ >,
OutwardFlow(e) = (G, G4, ..., Gy, ...),
FlOW(@) = <F0 U G()?Fl U Gl?""Fk U Gk"">'

1. The inward flow scheme IN is extracted from the univer-
sal scheme by the mapping InwardFlow, and the record-
ing function is

INy(M) = {e|e = {InwardFlow(x)|x € u} A u
€ Oy(M)},

for any test set M C M,,.

2. The outward flow scheme OUT is extracted from the
universal scheme by the mapping OutwardFlow, and
the recording function is

OUTy(M) = {e|le = {OutwardFlow(x)|x € u} A u
€ OyM)},

for any test set M C M,.

3. The flow scheme FL is extracted from the universal
scheme by the mapping Flow, and the recording function
is
FLy(M) = {e|e = {Flow(x)|x Eul Au€ QyM)},

for any test set M C M,.

Definition 20 (Inward flow, outward flow, and flow cover-
age). Let E be a set of executions of PrT net N.

1. E is said to satisfy the inward flow coverage criterion if
for all inward flow fin N, f is covered by at least one
execution in E.

2. E is said to satisfy the outward flow coverage criterion if
for all outward flow fin N, f is covered by at least one
execution in E.

3. E is said to satisfy the flow coverage criterion, if it satis-
fies both inward flow coverage criterion and outward
flow coverage criterion.

From the definition, it is easy to see the following lemma.

Lemma 8. The flow coverage criterion subsumes both
inward flow coverage and outward flow coverage criteria.

In hierarchical predicate transition nets (HPrT nets [42]),
a flow can be labelled with an expression in the form of X +

Y + .- + Z, hence allow different types of tokens to flow
through. The label constructor + indicates non-determinis-
tic flow relation. The expression X + Y means that either a
token X, or a token Y, or both tokens of X and Y may pass
through the flow. Each term X in the expression is called a
possible choice of tokens on the flow.

Definition 21. Let expression X; + X, + -+ + X} be the
label of an inward flow f of a transition #in a PrT net N. If an
execution of N contains at least one firing of transition ¢ that
consumes at least one token of X; type on the flow f, we say
that the execution covers the X; choice of tokens on the
inward flow f.

Let expression X; + X, +--- + X, be the label of an
outward flow fof a transition ¢ in a PrT net N. If an execution
of N contains at least one firing of transition ¢ that produces
at least one token of X; type on the flow f, we say that the
execution covers the X; choice of tokens on the outward
flow f.

Let expression X; + X, + --- + X} be the label of a flow f
of a transition ¢ in a PrT net N. Let {X;;, Xj5,..., X5}, 0 <
s=k, be a subset of ({X;,X,,....,X;}. The set
{Xi1, Xin, ..., X}, 0<s =k, is called a combination of
tokens on the flow f. An execution of N covers the combina-
tion {X;1, Xj, ..., Xis}, 0 < s = k, of tokens on inward flow f
of transition ¢, if there is at least one firing of transition 7 that
consumes tokens X;;, X, ..., and Xj,. Similarly, we define
the notion of covering a combination of tokens on an
outward flow.

Definition 22 (Input token output token and token sche-
mes). Let e= mo—vml—>m2 S my,— be any
given execution, U; and V; be the set of input tokens and
output tokens of the transition firing of n;, i = 1,2,...,k, ...,
respectively. We define mappings InputToken, OutputTo-
ken and Token as follows.

InputToken(e) = (Uy, Uy, ..., U, ...),
OutputToken(e) = (Vy, Vi, ..., Vi, ...),

Token(e) = <U0 U V(), U] U Vl7"" Uk @) Vk,...>.

1. The Input Token scheme TIN is extracted from the
universal scheme by the mapping InputToken and the
recording function is

TINy(M) = {e|e = {InputToken(x)|x € u} A u
€ Oy(M)},
for any test set M C M,.

2. The Output Token scheme TOUT is extracted from the
universal scheme by the mapping OutputToken, and the

H. Zhu, X. He / Information and Software Technology 44 (2002) 473—489 485

Flow combination

Input
combination

Output
combination

Flow choice

A 4

Input choice

.

Output choice

Flow coverage

AR

Inward flow

Outward flow

Transition coverage

Fig. 4. The hierarchy of data flow test adequacy criteria.

recording function is

TOUTy(M) = {ele = {OutputToken(x)|x € u} A u
€ OQyM)},

for any test set M C M,.

3. The Token scheme TK is extracted from the universal
scheme by the mapping Token, and the recording func-
tion is
TKy(M) = {e|le = {Token(x)|x € u} Au € Qy(M)},

for any test set M C M,.

Definition 23 (Flow choice coverage, and flow combination
coverage). Let E be a set of executions.

1. E satisfies the input choice coverage criterion, if
and only if for all inward flow f and all possible
choices X of tokens on f, there is at least one
execution in E that covers the choice of tokens
on f.

2. E satisfies the output choice coverage criterion, if
and only if for all outward flow f and all possible
choices X of tokens on f, there is at least one
execution in E that covers the choice of tokens
on f.

3. E satisfies the flow choice coverage criterion, if it
satisfies both the inward choice coverage criteria
and the outward choice coverage criterion.

4. E satisfies the input combination coverage criterion,
if for all inward flow f and all combinations of
tokens on f there is at least one execution in E
that covers the combination of tokens on f.

5. E satisfies the output combination coverage criter-
ion, if for all outward flow f and all combinations
of tokens on f there is at least one execution in E
that covers the combination of tokens on f.

6. E satisfies the flow combination coverage criterion, if it
satisfies both input combination coverage criterion and
the output combination coverage criterion.

Lemma 9.

1. The input choice coverage subsumes the inward flow
coverage;

2. The output choice coverage subsumes the outward flow
coverage;

3. The input combination coverage subsumes the input
choice coverage;

4. The output combination coverage subsumes the output
choice coverage;

5. The flow choice coverage subsumes both the input choice
coverage and the output choice coverage;

6. The flow combination coverage subsumes both the input
combination coverage and the output combination cover-
age;

7. The flow choice coverage subsumes the flow coverage;

8. The flow combination coverage subsumes the flow choice
coverage.

Proof. 1t is straightforward from the definitions. [

Lemma 10. The flow coverage subsumes the transition
coverage.

Proof. Inawell-formed PrT net, each transition must have
at least one inward flow or one outward flow. Therefore, by
definition, covering all flows implies covering all transi-
tions. [
o ny n Ny —1 1

Let e = my—m; —my—-- — my—--- be an execu-
tion. We say that a token ¢ is defined by transition firing
n; and used by transition firing n;, if (a) ¢ is an output of
transition firing ny, (b) £ is also an input of transition firing
of n;, and (c) & does not participate in any transition n;, k <
i <Jj, where j > k. Let n; ,n; n;, be a sub-sequence of

ig> "Pipo e

486 H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489

the firings of execution e. It is called a data flow chain, if
there are tokens &, &, ..., §,— such that &; is defined by n;
and used by i, s j=0,1,..,K—1. A path
(Try, Pry, Try, Pry, ..., Try, > in a PrT net N is covered by a
data flow chain n;,n; , ..., m;, if n; is a firing of transition
node Tr;,j=1,2,..., k. For example, the first two transition
firings in Table 1 cover the paths (Pickup, Eating, Putdown)

in the dining philosophers’ PrT net.

Definition 24 (Flow path coverage). Letk > 1 be a given
natural number. Let E be a collection of test executions, E
satisfies the length-k data flow path coverage criterion, if
and only if for any path ¢ in the PrT net N of length less than
or equal to k, there is an execution e in E such that e contains
at least one data flow chain that covers the path g. The
length-k flow path coverage measurement is defined by
the following formula.

|[CDFy 4 (E)|

DFP,(N,E) = ——,
KB = ot V]

where Path,(N) is the set of paths in PrT net N of length less
than or equal to k, CDFy 4(E) is the subset of Path, () that is
covered by data flow chains of test executions in E.

Lemma 11. For all natural numbers k;, k, > 0, k; >k,
implies that length-k; flow path coverage subsumes
length-k, flow path coverage.

Proof. It is similar to the proof of Lemma 1. [

The diagram in Fig. 4 summarises the subsumption rela-
tion between data flow adequacy criteria.

6. Specification-oriented testing

The testing methods discussed above only concern with
the structure of PrT nets. In this section, we discuss speci-
fication-oriented testing methods. By specification-oriented
testing, we mean both specification-based testing and testing
the specification itself. The discussion below will be applic-
able to both types of testing.

The formal algebraic specification of a PrT net defines a
meta-language for the net. Each transition is associated with
a constraint in the language to define its function. It can be
considered as a function that takes tokens on the inward
flows as input and produces tokens on the outward flows
as output. The operators used in the specification of the
transitions are defined by an algebraic specification. There-
fore, testing a PrT net or a concurrent system that imple-
ments a PrT net can be carried out at two levels.

At the lower level, the correctness of the algebraic speci-
fication or the implementation of the operations used in the
PrT nets is tested. Software testing methods based on alge-
braic specifications have been proposed by Gaudel et al.
[1,2] and further developed for testing object-oriented soft-

ware by Doong and Frankl [3,4] and Chen et al. [5,6]. These
methods assumed that each operator in the signature of an
algebraic specification is implemented by a corresponding
function/procedure of an abstract data type or a method of a
class in object-oriented systems. The basic idea of the meth-
ods is to use each equation of an algebraic specification to
generate two sequences of method (or procedure/function)
calls and then to check the equivalence between the two
results. This method can achieve a high degree of test auto-
mation in the validation of object-oriented software systems
against the final algebra semantics of algebraic specifica-
tions [6,43]. Therefore, the method can be applied if the
implementation of the algebraic specification uses abstract
data types or object-oriented techniques. However, it is not
always valid for testing against initial algebra semantics
[6,43]. Other methods for testing algebraic specifications
have also been proposed in the literature, such as mutation
testing of algebraic specifications proposed and investigated
in Refs. [44,45].

At a higher level, once the correctness of the operations is
verified, the correctness of the functions associated to the
transitions is tested. Since the function of a transition is
specified by an expression constructed from the operators
of the algebraic specification, i.e. a term of the signature,
functional testing methods and adequacy criteria can be
applied. Let n be a transition node in a PrT net N. Each
time the transition » is fired, it consumes a number of tokens
ai,ay,...,a; from its inward flows and produces tokens
bi,b,,...,b,, on its outward flows. The tuple of tokens
{a;,ay,...,a;) then constitutes an input to the function F,
associated to the transition node n, and tuple {b;, b, ..., b,,)
forms the corresponding output. The set X,, of the inputs that
a transition node n consumed during the test executions of
PrT net NV is then the test set of the function F,,. Let C be an
adequacy criterion that is applicable to the testing of the
functions associated to transitions in a PrT net.

Definition 25 (Criterion of transition constraint adequacy).
Let E be a collection of executions of PrT net N, E is transi-
tion constraint adequate with respect to C, if and only if for
any feasible transition node » in N, C(F,,X,,) is adequate,
where F,, is the function associated with transition node n,
X, is the set of inputs consumed by the firings of the node n
in the executions E.

An important property of test adequacy criteria is the
axiom of inadequacy of empty testing [23,27], which
requires that it is inadequate according to the criterion if
the software is not tested.

Lemma 12. The criterion of transitional adequacy with
respect to C subsumes transition coverage, if C satisfies the
axioms of inadequacy of empty testing.

Proof. Assume that E is transition constraint adequate
with respect to C. By the definition of inadequacy of

H. Zhu, X. He / Information and Software Technology 44 (2002) 473-489

487

Universal

I

Tokens

/

\

Input tokens

Output tokens

Transition traces

State traces

SN

Inward flow

Outward flow

A

States

Fired transitions

Fig. 5. Extraction relationships between of behaviour observation schemes.

empty testing, each feasible transition node is fired at least
once in E. Therefore, by Definition 8, E is adequate
according to transition coverage. [J

The application of this adequacy criterion requires a
tester to observe and record the computation of the output
tokens inside each transition firing. For example, to analyse
if the underlying algebraic formal specification has been
adequately tested, we can record the equations used in the
computation of output tokens and/or in the proof of the
correctness of the transitions fired during test executions.
The following adequacy criterion can then be defined
based on such observations.

Definition 26 (Equation coverage). Let Eq be the set of
equations of the formal specification SPEC underlying a PrT
net N. A set E of executions of N is said to satisfy the
equation coverage criterion, if and only if for all equations
w in Eq, there is at least one execution e in E such that e
contains at least one transition firing that the equation w is
used in the proof of the correctness of the output tokens of
the transition firing (or used in the evaluation of the output
tokens in the transition firing).

Notice that, it is possible that the proof of the correctness
of a transition firing can be done using different equations in
the algebraic specification. There is non-determinism in the
select and use of the equations in such cases. The test
adequacy criterion defined in Definition 26 requires that
each equation is actually used at least once in one proof
as observed during a testing process.

In general, let C be any given adequacy criterion for
testing algebraic specification.

Definition 27 (Specification coverage with respect to

C). Let SPEC be the algebraic formal specification under-
lying a PrT net N. A set E of executions of N is said to be
Specification adequate with respect to C, if and only if the
specification SPEC is adequately tested according to C in
the executions of the transition firings in e € E.

This family of adequacy criteria links the testing of PrT
nets at two different levels. It also enables the application of
existing works on testing algebraic specifications to testing
PrT nets. An obvious shortcoming of the method is that it
neglected the network structure of PrT nets. Therefore, it
should be used together with the methods discussed in
Sections 3-5.

7. Conclusion

In this paper, we proposed a methodology of testing high-
level Petri nets based on our general theory of testing
concurrent systems. We presented four groups of testing
methods for high-level Petri nets: transition-oriented test-
ing, state-oriented testing, data flow oriented testing and
specification-oriented testing. Each method is formally
defined by an observation scheme and an adequacy criter-
ion. In addition to the subsuming relationships among the
criteria, there are extraction relations between the observa-
tion schemes, which are summarised in Fig. 5.

Our work shares the same viewpoint with the researchers
on testing finite state machines and testing theories of
process algebra that equivalence relations between two
computation systems, i.e. finite state machines in the former
and concurrent processes in the latter, cannot be simply
defined as a partial function from inputs to outputs (although
this is appropriate for testing sequential programs), rather it
must be defined in terms of its dynamic behaviour.

488 H. Zhu, X. He / Information and Software Technology 44 (2002) 473—-489

However, there are several significant differences, including
the goals, methods, and results, between our work and the
above works. First, as discussed in Section 1, the above
works focused on a specific goal-behaviour equivalences
defined in a formal specification technique such as CCS,
LOTUS, or finite state machine using black-box testing
approach. Our work is based on a general formal framework
for testing concurrent systems, which covers black-box test-
ing and white-box testing approaches as well as the testing
of different software artefacts including formal specifica-
tions with an underlying operational semantics and
programs. In this paper, we have applied our framework
to high-level predicate transition nets and developed a hier-
archy of white-box testing methods. Second, the above
works used a very simple observation scheme with the
assumption that a program will provide a simple yet intel-
ligent response such as a stable state being reached from
each external stimulus. Our work provides extensive results
on observation schemes and explores relationships
(strengths and weaknesses) among the observation schemes.
The observable behaviours are determined by the chosen
observation scheme. By designing an appropriate observa-
tion scheme, we can cover known behaviour or semantic
models such as the ones used in the above works and others
such as failure semantics [46].

Although the testing methods are defined in terms of
algebraic predicate transition nets with interleaving-set
semantics, we believe that the testing methods should also
be applicable to other models of Petri nets and other seman-
tic models including the partial order semantics [39].

Acknowledgements

This work was partially supported by the National
Science Foundation of the USA under grant INT-0096143.

References

[1] L. Bouge, N. Choquet, L. Fribourg, M.C. Gaudel, Test set generation
from algebraic specifications using logic programming, Journal of
System and Software 6 (1986) 343-360.

[2] G. Beront, M.C. Gaudel, B. Marre, Software testing based on formal
specifications: a theory and a tool, Software Engineering Journal
November (1991) 387-405.

[3] R.K. Doong, P.G. Frankl, Case studies on testing object-oriented
programs, Proceedings of the Symposium on Testing, Analysis, and
Verification (1991) 165-177.

[4] R.K. Doong, P.G. Frankl, The ASTOOT approach to testing object-
oriented programs, ACM Transactions on Software Engineering and
Methodology 3 (2) (1994) 101-130.

[5] H.Y. Chen, T.H. Tse, T.Y. Chen, TACCLE: a methodology for
object-oriented software testing at the class and cluster levels, ACM
Transactions on Software Engineering and Methodology 10 (1)
(2001).

[6] H.Y. Chen, T.H. Tse, Y.T. Deng, ROCS: an object-oriented class-
level testing system based on the relevant observable contexts tech-
nique, Information and Software Technology 42 (10) (2000) 677-
686.

[7] N. Amla, P. Ammann, Using Z specifications in category partition
testing, Proceedings of the Seventh IEEE Annual Conference on
Computer Assurance June (1992) 3-10.

[8] P.A. Stocks, D.A. Carrington, Test templates: a specification-based
testing framework, Proceedings of the 15th International Conference
on Software Engineering May (1993) 405-414.

[9] P. Ammann, J. Offutt, Using formal methods to derive test frames in
category-partition testing, Proceedings of the 9th IEEE Annual
Conference on Computer Assurance June (1994) 69—79.

[10] H. Zhu, P. Hall, J. May, Software unit test coverage and adequacy,
ACM Computing Survey 29 (4) (1997) 366-427.

[11] R. Taylor, D. Levine, C. Kelly, Structural testing of concurrent
programs, IEEE TSE 18 (3) (1992) 206-215.

[12] D. Lee, M. Yannakakis, Principles and methods of testing finite state
machines—a survey, Proceedings of the IEEE 84 (1996) 1090—1123.

[13] R. Binder, Testing Object-oriented Systems: Models, Patterns and
Tools, Addison-Wesley, Reading, MA, 2000.

[14] S. Fujiwara, G. Bockmann, F. Khendek, M. Amalou, A. Ghedamsi,
Test selection based on finite state models, IEEE TSE 17 (6) (1991)
591-603.

[15] R.M. Hierons, Checking states and transitions of a set of communi-
cating finite state machines, Microprocessors and Microsystems,
Special Issue on Testing and Testing Techniques for Real-time
Embedded Software Systems 24 (9) (2001) 443-452.

[16] G. Bochmann, A. Petrenko, Protocol testing: review of methods and
relevance for software testing, Proceedings of ISSTA’94, August
1994, Seattle, Washington, USA, 1994, pp. 109-124.

[17] S. Morasca, M. Pezze, Using high-level Petri nets for testing concur-
rent and real-time systems, in: H. Zedan (Ed.), Real-Time Systems,
Theory and Applications, North-Holland, Amsterdam, 1990.

[18] R.H. Carver, K.C. Tai, Replay and testing for concurrent programs,
IEEE Software March (1991) 66-74.

[19] M. Hennessy, R. Milner, Algebraic laws for nondeterminism and
concurrency, Journal of ACM 32 (1) (1985) 137-161.

[20] R. De Nicola, M.C.B. Hennessy, Testing equivalences for processes,
Theoretical Computer Science 34 (1984) 83—133.

[21] 1. Phillips, Refusal testing, Theoretical Computer Science 50 (1987)
241-284.

[22] A.L.Baker, J.W. Howatt, J.M. Bieman, Criteria for finite sets of paths
that characterize control flow, Proceedings of the 19th Annual Hawaii
International Conference on System (1986).

[23] E.J. Weyuker, Axiomatizing software test data adequacy, IEEE TSE
SE_12 (12) (1986) 1128-1138.

[24] E.J. Weyuker, The evaluation of program-based software test data
adequacy criteria, Communications of the ACM 31 (6) (1988) 668—
675.

[25] A. Parrish, S.H. Zweben, Analysis and refinement of software test
data adequacy properties, IEEE TSE SE_17 (6) (1991) 565-581.

[26] A.S. Parrish, S.H. Zweben, Clarifying some fundamental concepts in
software testing, IEEE TSE 19 (7) (1993) 742—746.

[27] H. Zhu, P. Hall, Test data adequacy measurement, SEJ 8 (1) (1993)
21-30.

[28] H. Zhu, P. Hall, J. May, Understanding software test adequacy—an
axiomatic and measurement approach, in: C. Mitchell, V. Stavridou
(Eds.), Mathematics of Dependable Systems, Oxford University
Press, New York, 1995, pp. 275-295.

[29] H. Zhu, Axiomatic assessment of control flow based software test
adequacy criteria, Software Engineering Journal 10 (9) (1995) 194—
204.

[30] H. Zhu, A formal interpretation of software testing as inductive infer-
ence, Journal of Software Testing, Verification and Reliability 6 (1)
(1996) 3-31.

[31] H. Zhu, X. He, A theory of behaviour observation in software testing,
Technical Report CMS-TR-99-05, School of Computing and Mathe-
matical Sciences, Oxford Brookes University, September 1999.

[32] H. Zhu, X. He, Constructions of behaviour observation schemes in
software testing, Proceedings of Fifth IEEE Symposium on

H. Zhu, X. He / Information and Software Technology 44 (2002) 473—489 489

HASE’2000, 15-17 November 2000, Albuquerque, New Mexico,
USA, 2000, pp. 7-16.

[33] J. Laski, B. Korel, A data flow oriented program testing strategy,
IEEE Transaction on Software Engineering SE_9 (1983) 33-43.

[34] S.C. Ntafos, On required element testing, IEEE Transaction on Soft-
ware Engineering SE_10 (6) (1984) 795-803.

[35] S. Rapps, E.J. Weyuker, Selecting software test data using data flow
information, IEEE TSE SE_11 (4) (1985) 367-375.

[36] P.G. Frankl, J.E. Weyuker, An applicable family of data flow testing
criteria, IEEE TSE SE_14 (10) (1988) 1483—1498.

[37] H. Genrich, K. Lautenbach, System modeling with high-level Petri
nets, Theoretical Computer Science 13 (1981) 109-136.

[38] C. Kan, X. He, High-level algebraic Petri nets, Information and Soft-
ware Technology 37 (1) (1995) 23-30.

[39] W. Reisig, in: E. Neuhold, G. Chroust (Eds.), On Semantics of Petri
Nets, Formal Models in Programming, Elsevier/North Holland, New
York, 1985, pp. 347-372.

[40] H. Zhu, A formal analysis of the subsume relation between software

test adequacy criteria, IEEE Transactions on Software Engineering 22
(4) (1996) 248-255.

[41] H. Zhu, X. He, A theory of testing high-level Petri nets, Proceedings
of International Conference on Software—Theory and Practice, IFIP
World Computer Congress 2000, Beijing, August 21-25, 2000, pp.
443-450.

[42] X. He, A formal definition of hierarchical predicate transition nets,
Lecture Notes in Computer Science 1091 (1996) 212-229.

[43] H. Zhu, Validating algebraic class testing in final algebra, ISSTA
2002, Technical Report CMS-TR-02-02, School of Computing and
Mathematical Sciences, Oxford Brookes University, UK, April 2002.

[44] A. Gopal, T. Budd, Program testing by specification mutation,
Technical Report TR 83-17, University of Arizona, November
1983.

[45] M.R. Woodward, Erros in algebraic specifications and an experimen-
tal mutation testing tool, SEJ July (1993) 211-224.

[46] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of communicat-
ing sequential processes, Journal of the ACM 31 (1984) 560—-569.

