
JFuzz: A Tool for Automated Java Unit Testing Hong Zhu

Technical Report CCT-AFM-2015-01 1 February 7, 2015

JFuzz: A Tool for Automated Java Unit Testing based on Data Mutation and
Metamorphic Testing Methods

Hong Zhu

Applied Formal Method Research Group
Department of Computing and Communication Technologies

Oxford Brookes University
Oxford OX33 1HX, UK

E-mail: hzhu@brookes.ac.uk

Abstract—Automated test framework plays a significant
role in test driven software development methodologies.
The XUnit family of testing tools has been widely used in
the industry. However, they are weak in test case
generation and general test result checking. In this paper
we propose a new kind of test automation framework by
integrating data mutation testing and metamorphic testing
methods. A simple tool for unit testing of Java class called
JFuzz is presented in the paper. Its uses are illustrated by
an example.
Keywords: Test Automation Framework, Test Tools, Unit
test, Data mutation testing, Metamorphic testing, Fuzz
testing, Test driven development

1 Introduction
In the past decade, XUnit automated test frameworks has
been widely adapted by the industry and plays a significant
role in test driven software development methodology [1, 2,
3]. However, XUnit frameworks provide no support to the
generation of test data. It relies completely on the tester to
design cases. Moreover, it also relies on tester to write
assert statements to check the correctness of test
executions. Consequently, it is observed that, in practice, it
is normally that test data are hard coded constants and
assertions are only applicable to these constants [4]. Such
test cases are so weak that can hardly be considered as a
specification of the software. In this paper, we propose a
software unit testing tool that aims at improving the
automation of unit testing and thus providing a stronger
support to test driven software development.

The paper is organized as follows. Section 2 overviews
the data mutation testing and metamorphic testing methods,
which are the methodological foundation of the proposed
testing tool. Section 3 presents the tool JFuzz. Section 4
illustrate the use of the tool JFuzz by an example. Section 5
concludes the paper by a comparison of the tool with XUnit
framework and discusses future works.

2 Underlying Testing Methods
JFuzz is developed based on two testing methods data
mutation and metamorphic testing, and integrating them
into a unified framework. In this section, we briefly
overview the testing methods underlying the proposed
testing tool.

2.1 Data Mutation Testing
Data mutation is a test case generation method proposed in
[5]. The basic idea is that given a set of test cases, which
are called seeds, new test cases are generated by modifying
the seeds via the applications of a set of operators, which
are called data mutation operators, or simply mutation
operators. When the modification of the test data is at
random, it also called fuzz testing [6, 7], which has been
widely used by the industry, for example, in Microsoft [8,
9], IBM [10], Apple [11], etc.

Similar to program mutation operators, a data mutation
operator may be applicable on many different parts of the
input data, if the input data are structurally complicated,
such as a graph, a trajectory of system parameters, an XML
document, a piece of code, etc. In this case, the applicable
location of the test data can be considered as an additional
parameter of the data mutation operator. Consequently,
from a small number of seed test cases, a large number of
test cases can be generated by applying a small number of
data mutation operators as demonstrated in [5]. Formally,
data mutation operators can be defined as follows.

Definition 1. (Data Mutation Operators)

Let P be the program under test and D be its input domain
with a input validity condition V(x). A K-ary data mutation
operator F with parameters in a set L is a mapping from DK
× P to D, such that if inputs x1, x2, …, xK are valid inputs
(i.e. V(xi)=True for i=1,2,…, K) implies that F(x1, x2, …, xK,
l) is also a valid input (i.e. V(F(x1, x2, …, xK, l))), where
𝑙 ∈ 𝐿 , K≥1. �

Informally, V(x) means that x is an valid input to
program P. A K-ary data mutation operator takes K valid
input data and generates another valid input data according
to the value of a parameter l.

Figure 1 shows the process of data mutation testing [5].
The following example is taken from [5] to illustrate

how data mutation testing works, and it will be used later to
explain how the proposed new testing method and the uses
of tool JFuzz.

Example 1.

Consider a Triangle Classification program whose input
consists of three natural numbers x, y, and z as the lengths
of the sides of a triangle. Its function is to classify the

JFuzz: A Tool for Automated Java Unit Testing Hong Zhu

Technical Report CCT-AFM-2015-01 2 February 7, 2015

triangle into equilateral (all sides the same length), or
isosceles (two the same), or scalene (none the same), or to
determine that the input does not represent an actual
triangle when the summary of two parameters is not greater
than the third.

The following are the seed test cases.
• Test case t1: Input: (x=5, y=5, z=5), Expected output:

Equilateral.
• Test case t2: Input: (x=5, y=5, z=7), Expected output:

Isosceles.
• Test case t3: Input: (x=5, y=7, z=9), Expected output:

Scalene.
• Test case t4: Input: (x=3, y=5, z=9), Expected output:

Not a triangle.

The following are the data mutation operators defined
for the Triangle Classification program [5].

• IVP: Increase the value of a parameter by 1;
• DVP: Decrease the value of a parameter by 1;
• SPL: Set the value of a parameter to a very large

number, say 1000000;
• SPZ: Set the value of a parameter to 0;
• SPN: Set the value of a parameter to a negative

number, say -2;
• WXY: Swap the values of parameters x and y;
• WXZ: Swap the values of parameters x and z;
• WYZ: Swap the values of parameters y and z;
• RPL: Rotate the values of parameters towards left;
• RPR: Rotate the values of parameters towards right.

 �
As a part of data mutation testing methodology, a few

metrics are defined in [5] to provide guidance for the
adequate performance of testing, among which the most
important ones include:

• Seed usage: the percentage of seeds used to generate
mutant test data. A low seed usage indicates that the set
of mutation operators is weak and more mutation
operators should be defined.

• Mutation operator usage: the percentage of mutation
operators used in the generation of mutant test data. A
low mutation operator usage indicates that the set of
seeds is weak and more seeds are needed.

• Data mutation score: The percentage of dead mutant
test data over the non-equivalent mutants, where is
mutant test data is dead if it produces an output that is
different from the output of the program on the seed. A
low mutation score indicates that more seeds and more
mutation operators are needed.
Data mutation testing as a test data generation

technique a practical and efficient testing method,
especially useful for generating test cases for structurally
complicated test data. However, an open problem of data
mutation testing method is how to enable automatic
checking of test results. A solution that we propose here is
to integrate data mutation testing with metamorphic testing.

2.2 Metamorphic Testing
Metamorphic testing was proposed in [12]. It is a test oracle
technique and also used to generate test cases. However, it
only partially ensures correctness. Here, a test oracle is
capable of partially ensuring correctness means that if the
program fails the test according to the oracle implies that
the program is not correct on the test case. However, if the
program passes the testing according to the oracle, it does
not imply the program is correct on the test cases.

The basic idea of metamorphic testing is to use
metamorphic relations as the criteria of program
correctness. The notion of metamorphic relation can be
defined as follows.

Definition 2. (Metamorphic Relations)

Let program P under test is a function on input domain D
and produces output in codomain C. Let K be a natural
number that K≥2. A K-ary metamorphic relation M is a
relation on DK×CK such that program P is correct on input
x1, x2, …, xK in D implies that
𝑀 𝑥!, . . , 𝑥! ,𝑃 𝑥! ,… ,𝑃 𝑥! holds, where 𝑃 𝑥 is
program P’s output on input x. �

The following example is taken from [13]. It is used to
illustrate how metamorphic testing works, and later we also
use it to explain how our proposed method works.

Example 2. A typical example of metamorphic relation for
a program that computes Sin(x) function is that

𝑥! + 𝑥! = 𝜋 ⇒ 𝑆𝑖𝑛 𝑥! = 𝑆𝑖𝑛(𝑥!) �
The metamorphic testing process consists of three

steps:

(1) Definition of metamorphic relations that the program
should satisfy.

(2) Generation of a test suite tsM for each K-ary
metamorphic relation M, where each test case tc in the

Figure 1. Process of Data Mutation Testing [5]

JFuzz: A Tool for Automated Java Unit Testing Hong Zhu

Technical Report CCT-AFM-2015-01 3 February 7, 2015

test suite tsM consists of K input data x1, …, xK that
satisfy the applicability condition R of M.

(3) Execution of program P on each test suite tsM and
check if the program is correct on each test case with
regard to the metamorphic relation M, i.e. to check if
𝑀(𝑥!, . . , 𝑥! ,𝑃 𝑥! ,… ,𝑃(𝑥!)) is true.

Empirical studies show that metamorphic can achieve
high fault detection ability [14]. However, there is a lack of
systematic method to develop metamorphic relations, and
in lack of generally applicable tools to support
metamorphic testing.

In the next subsection, we propose a new approach,
called mutational metamorphic testing, to develop
metamorphic relations by integrating it with data mutation
testing.

2.3 Mutational Metamorphic Testing
We first define the notion of mutational metamorphic
relation as follows.

Definition 3. (Mutational Metamorphic Relations)

Let P be the program under test, D and C be its input
domain and output codomain, respectively. Let f be a K-ary
data mutation operator on D with applicability condition
𝑉(𝑥!,… , 𝑥!) and location parameter L. A K-ary mutational
metamorphic relation derived from the data mutation
operator f is a relation R on C(K+1) such that the program P
is correct on inputs 𝑥!,… , 𝑥!!! ∈ 𝐷 and f is applicable on
𝑥!,… , 𝑥! imply that 𝑅 𝑃 𝑥! ,… ,𝑃(𝑥!!!), where
∃𝑙 ∈ 𝐿. (𝑥!!! = 𝑓(𝑥!,… , 𝑥! , 𝑙)). �

In other words, a mutational metamorphic relation can
be represented in the following form:
𝑉(𝑥!,… , 𝑥!) ⇒ 𝑅 𝑃 𝑥! ,… ,𝑃(𝑥! ,𝑃(𝑓(𝑥!,… , 𝑥! , 𝑙)))

Example 3. For example, consider the program that
computes the Sin(x) function. We define a data mutation
operator f(x) on the input domain of real numbers as
follows.

 𝑓 𝑥 = 𝜋 − 𝑥.
Since this data mutation operator has no applicability
constraints and has no location parameter, a mutational
metamorphic relation derived from the above mutation
operator is that
 𝑃 𝑥 = 𝑃(𝑓 𝑥).

�
In mutational metamorphic testing, a test case for a

mutational metamorphic relation R derived from a K-ary
data mutation operator f consists of K valid input data
𝑥!,… , 𝑥!. The testing process consists of the following
steps.

(1) Generating a set of test cases that comprise of valid
inputs to the program as seeds.

(2) For each seed test case ts=(𝑥!,… , 𝑥!), finding
parameters 𝑙 ∈ 𝐿 that are applicable to the test case,
and applying data mutation operator f on the test case
ts with each applicable parameter l to generate test data
𝑥!!!. That is, 𝑥!!! = 𝑓 𝑥!,… , 𝑥! , 𝑙 .

(3) Executing program P on all test data 𝑥!,… , 𝑥!!!, and
record the outputs 𝑃 𝑥! ,… ,𝑃 𝑥! ,𝑃 𝑥!!! .

(4) Checking whether the correctness condition below is
satisfied or not:

𝑅 𝑃 𝑥! ,… ,𝑃 𝑥! ,𝑃 𝑥!!! .
If not, a bug in the program is detected.

Note that, a data mutation operator may use a random
value to change the seed. In this case, the data mutation
operator is a fuzz operator. Therefore, the testing method
proposed here is a generalization of fuzz testing. Moreover,
when the applicability condition of the data mutation
operator is trivial, i.e. constantly True for all input data, the
seed test cases can be generated at random, too. The
difference is that mutational metamorphic testing uses a
metamorphic relation to check test correctness.

Example 4. Consider the data mutation operators defined
in [5], and also in Example 1. We now define the
mutational metamorphic relation for each of the above data
mutation operators.
 𝑃 𝑡 = 𝐸𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙
 ⇒ 𝑃 𝐼𝑉𝑃 𝑡 = 𝐼𝑠𝑜𝑠𝑐𝑒𝑙𝑒𝑠 ∨ 𝑃 𝐼𝑉𝑃 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒
 𝑃 𝑡 = 𝑆𝑐𝑎𝑙𝑒𝑛𝑒 ⇒ 𝑃 𝐼𝑉𝑃 𝑡 ≠ 𝐸𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙
 𝑃 𝑡 = 𝐸𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙
 ⇒ 𝑃 𝐷𝑉𝑃 𝑡 = 𝐼𝑠𝑜𝑠𝑐𝑒𝑙𝑒𝑠 ∨ 𝑃 𝐷𝑉𝑃 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒
 𝑃 𝑡 = 𝑆𝑐𝑎𝑙𝑒𝑛𝑒 ⇒ 𝑃 𝐷𝑉𝑃 𝑡 ≠ 𝐸𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙
 𝑃 𝑆𝑃𝐿 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒
 𝑃 𝑆𝑃𝑍 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒
 𝑃 𝑆𝑃𝑁 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒
 𝑃 𝑡 = 𝑃(𝑊𝑋𝑌(𝑡))
 𝑃 𝑡 = 𝑃(𝑊𝑋𝑍(𝑡))
 𝑃 𝑡 = 𝑃(𝑊𝑈𝑍(𝑡))
 𝑃 𝑡 = 𝑃(𝑅𝑃𝐿(𝑡))
 𝑃 𝑡 = 𝑃(𝑅𝑃𝑅(𝑡)) �

3 JFuzz: A Test Automation Framework
In this section we present the test automation framework
JFuzz, which is a simple tool developed for support
mutational metamorphic testing.

3.1 The Architecture of JFuzz
JFuzz is a test automation framework. The inputs to JFuzz
are two Java classes: the class under test (CUT) and a test
specification class (TSC), which contains attributes that
represent for the seed test cases, methods that are the data
mutation operators and methods that are mutational
metamorphic relations. The test specification class extends

Figure 2. Architecture of JFuzz Test Automation Framework.

Class Under
Test (CUT)

Test Spec Class
(TSC)

Test Engine

Test Report

Java
Compiler

Annotation
Definitions

Metamorphic
Relation Class

Test Result
Class

JFuzz: A Tool for Automated Java Unit Testing Hong Zhu

Technical Report CCT-AFM-2015-01 4 February 7, 2015

or imports the CUT so that it can access the attributes and
methods to be tested. It is compiled before input to the
JFuzz tool.

 As shown in Figure 2, JFuzz consists of the following
components.

• Annotation Definitions: These Java classes defines a
set of annotations that testers use to annotate the
attributes and methods in their Java test code. Three
annotations are defined: (a) @Seed to mark an attribute
as a seed test case; (b) @MakeSeed to mark a method
that assigns values to the seeds; (c) @Mutation to mark
a method as creation of mutations to the seeds and
invocation of the methods under test and to check the
metamorphic relation.

• Test Result Class: It defines a set of attributes to record
the statistical data of a test, whose values are updated
automatically by the Metamorphic Relation Class.

• Metamorphic Relation Class: It defines a method
called Assertion. The Assertion method has two
parameters: a Boolean value and a String. When the
Boolean value is True, the numbers of total mutants
and passed mutants are increased by one. When the
Boolean value is false, the numbers of total mutants
and failed mutants are increased, and the string is
output to the test report or print on the screen. An
invocation of Assertion method implements the
mutational metamorphic relation. If the assertion is not
satisfied, an error in the CUT is recorded and reported
to the tester automatically.

• Test execution engine: It performs testing on the CUT
according to the TSC and reports the result of testing.

It is worth noting that JFuzz does not directly uses the
class under test, instead it only executes the methods in test
specification class, and through the test specification class
to execute the CUT.

3.2 Test Specification Classes
A JFuzz test specification class is an ordinary Java class
with annotations on the attributes and methods. The
annotations used by the test engine are defined in the
Annotation definition classes. The following is an example
of using these annotations in a test specification class.

Example 5. (Test Specification Class for Testing Sine)

Figure 4 is an example of the test specification class, which
specifies a random testing of the Sin(x) function provided
in the Java Math package with a mutational metamorphic
relation as the test oracle.

In the example, the attribute “public double x” is
annotated by “@Seed”. This means x is an attribute that
stores a seed test case. In general, there may be multiple
seeds as we will see in the examples in Section 4.

The method public void GenerateRandomValue is
annotated by an annotation “@MakeSeed”. This means
GenerateRandomValue is a method that creates seeds, or more
precisely, it assigned values to the seeds. It is used when
the seeds are not constants as in this example. In this
example, a random value is assigned to the variable x.

The method public void mutationOp(double seed) is
annotated by an annotation “@mutation”, which is a method
to be applied to the seed test cases one by one to generate
mutant test cases. The seed test case is the parameter of the
method. It should contain code that invokes a method or
methods in the CUT on the seed and the mutant test cases,
and then to call the Assertion method provided by the tool
to check the relations between the seed(s) and the
mutant(s). In this example, the mutant is a double value
equals to 𝜋 − 𝑥. The assertion states that 𝑆𝑖𝑛 𝜋 − 𝑥 −
𝑆𝑖𝑛(𝑥) < 10!. (*) In general, there may be a number of
methods annotated with “@mutation” as we will see in the
examples given in Section 4. �

The following is a screen snapshot of the execution of
the above test specification class in the Eclipse IDE.

3.3 Test Execution Engine
The test execution engine of JFuzz is implemented in Java
using its reflection and meta-data facilities. Figure 5 gives is
the algorithm of the test execution engine.

* Note that, being floating point numbers, 𝑆𝑖𝑛 𝜋 − 𝑥 = 𝑆𝑖𝑛(𝑥) may not
hold due to round-up error even if the calculation is correct.

import java.util.Random;
public class SinXTest extends Metamorphic {
 Random randomGenerator = new Random();
 @Seed
 public double x;
 @MakeSeed
 public void GenerateRandomValue(){
 x = randomGenerator.nextDouble();
 };
 @Mutation
 public void mutationOp(double seed){
 double mutant = Math.PI - seed;
 Assertion((Math.abs(Math.sin(seed) –
 Math.sin(mutant)) <= 0.0000000001),
 "Metamorphic Rule: Sin(x) = Sin(pi - x).");
 }
}

Figure 4. An Example of JFuzz Test Specification Class

Figure 3. A screen snapshot of executing JFuzz in Eclipse

JFuzz: A Tool for Automated Java Unit Testing Hong Zhu

Technical Report CCT-AFM-2015-01 5 February 7, 2015

4 Examples
In this section, we give two examples of JFuzz test
specification classes to demonstrate the style of testing that
JFuzz supports.

Example 6. (Bulk Testing of the Sin(x) function)

In this test specification, we generate 1000 random
numbers of Double between 0 and 1. These numbers are
stored in an array xs of double. Their values are generated
by the method public void GenerateRandomValue(), which
is annotated as @MakeSeed.

import java.util.Random;
public class SinXBulkTest extends Metamorphic {
 Random randomGenerator = new Random();
 @Seed
 public double[] xs;
 @MakeSeed
 public void GenerateRandomValue(){
 xs = new double[1000];
 for (int i=0; i<1000;i++){
 xs[i]=randomGenerator.nextDouble();
 }
 };

The method public void mutationOp(double[] seed)
below is annotated with the @Mutation. It is invoked when
execute this test specification with the array xs as the actual
parameter.
 @Mutation
 public void mutationOp(double[] seed){
 int num = seed.length;
 double[] mutant = new double[num];
 for (int i=0; i<num; i++){
 mutant[i]= Math.PI - seed[i];
 Assertion((Math.abs(Math.sin(seed[i]) –
 Math.sin(mutant[i])) <= 0.0000000001),
 "Metamorphic Rule: Sin(x) = Sin(pi - x).");
 };
 }
}

Executing this test specification with JFuzz means to
perform 1000 random testing on the Sin(x) function and
check the mutational metamorphic relation given in
Example 3 with a tolerance of error less than 109 between
floating point values. ☐

The following example is based on the data mutation
testing of triangle classification program.

Example 7. (Testing Triangle Classification Program)

In Example 1, there are four seed test cases. Thus, we have
the following attributes declarations that are annotated as
seeds and their values assigned to by the makeSeed method.
public class TriangleTest1 extends Metamorphic {
 @Seed
 public triangle t1;

 @Seed
 public triangle t2;

 @Seed
 public triangle t3;

 @Seed
 public triangle t4;

 @MakeSeed
 public void makeSeed(){
 t1 = new triangle(5,5,5);
 t2 = new triangle(5,5,7);
 t3 = new triangle(5,7,9);
 t4 = new triangle(3,5,9);
 }

There are a number of mutation operators. Each
mutation operator is implemented by a Java method. Here
we only give the implementations of IPV and the WXY
operators. The other mutation operators are very similar.

@Mutation
public void IPX(triangle seed){
 System.out.println("---- Mutation IPX on <"
 + seed.x + "," + seed.y + "," + seed.z +">");
 triangle mutant = new triangle(1,1,1);
 mutant.x=seed.x+1;
 mutant.y=seed.y;
 mutant.z=seed.z;
 mutant.Classify();
 if (seed.TriangleType == triangleType.equilaterial){
 Assertion((
 (mutant.TriangleType == triangleType.isoscelene)
 ||(mutant.TriangleType==triangleType.noneTriangle)),
 "Metamorphic Rule for IPX:

 (seed.TriangleType == equilaterial) =>
 ((mutant.TriangleType == isoscelene) or
 (mutant.TriangleType == noneTriangle)");

 };
 if (seed.TriangleType == triangleType.scalene){
 Assertion((
 (mutant.TriangleType != triangleType.equilaterial)),
 "Metamorphic Rule for IPX:
 (seed.TriangleType == scalene) =>
 ((mutant.TriangleType != equilaterial)");
 };
}

In the above method, the metamorphic relations for
IPD are implemented as two if-statements with two
invocations of the Assertion method.

The mutation and metamorphic relation for WXY is
given below as another method annotated with @Mutation.

@Mutation
public void WXY(triangle seed){
 System.out.println("---- Mutation WXY on <"

Algorithm: Test Execution Engine
 Input:
 Class: ts; // Test specification class
 Output:
 tr: Test Result Report;
 Begin
 //1. Initialization;
 Field[] fs = all Fields declared in ts;;
 Method[] ms = all methods declared in ts;
 Create an instance object of the test spec class ts;
 //2. Make seeds;
 for all Methods m in ms do{
 if (m is annotated with “MakeSeed”) {
 invoke object tsi’s method m;
 } };
 //3. Make mutants and perform testing
 for all Fields f in fs {
 if (f is annotated with “Seed”) {
 for all Method m in ms {
 if (m is annotated with “Mutation”) {
 invoke object tsi’s method m with f as parameter;
 } } } };
 //4. Output test result
 Output(tr, tsi’s total number of mutants);
 Output(tr, tsi’s number of passed mutants);
 Output(tr, tsi’s number of failed mutants);
End

Figure 5. Algorithm of the Test Engine

JFuzz: A Tool for Automated Java Unit Testing Hong Zhu

Technical Report CCT-AFM-2015-01 6 February 7, 2015

 + seed.x + "," + seed.y + "," + seed.z +">");
 triangle mutant = new triangle(1,1,1);
 mutant.x=seed.y;
 mutant.y=seed.x;
 mutant.z=seed.z;
 mutant.Classify();
 Assertion((seed.TriangleType == mutant.TriangleType),
 "Metamorphic Rule for WXY:
 mutant.TriangleType == seed.TriangleType");
}

When this test specification class is executed with
JFuzz, each of the mutation method is invoked on each of
the four seed test cases, and the results are checked for
whether the mutational metamorphic relations were
satisfied. A total of 36 mutants were created.

☐

5 Conclusion
In this paper we proposed the mutational metamorphic
testing method, which integrates data mutation testing and
metamorphic testing methods. The basic idea is to use the
data mutation operators as the foundation to derive and
express metamorphic relations. It overcomes the shortfalls
of these testing methods and retains the advantages of both
methods. In particular, it enables test cases to be generated
more easily and efficiently and also to enable checking the
correctness of test results easily. A nice consequence of the
integration is that when a metamorphic relation is
universally applicable to all input data, there is no need to
have seed test cases. Instead, test cases can be generated at
random as we demonstrated in this paper. In that case,
mutational metamorphic testing work like fuzz testing,
hence the name of the testing tool JFuzz presented in this
paper. In contrast, a testing tool that support the general
metamorphic testing method has to rely on constraint solver
to generate test cases that satisfy the input constraints; see
for example, [15].

There are a number of testing tools that supports fuzz
testing by generating various types of random data; see, for
example, [16]. However, fuzz testing tools does not support
test oracles. It only detects faults when the system under
test crashes. Mutational metamorphic testing proposed in
this paper is much more powerful and effective than fuzz
testing tools because it is capable to detect errors more
subtle than system crash.

The proposed testing method and tool JFuzz aim to
improve unit testing in agile development processes. In
comparison with existing test automation frameworks in the
xUnit architecture [3, 4], JFuzz provides a stronger support
to test case generation and test result checking. Most
importantly, the testing method encourages programmers
and testers to think not only about known constant test
cases and to specify them as the seeds, but also to think
about how the input data can be varied and the
consequences of the changes in the input data on the
program’s output and to specify them as mutation operators
and the mutational metamorphic relations. Therefore, the
test specification is more general and resilient to code
changes in the evolution process of agile development. IN
other words, test specification is closer to the real
specification of the software than xUnit style test code.

References

[1] Kent Beck, Extreme Programming Explained:
[2] Kent Beck, Test-Driven Development by Example,

Addison-Wesley, 2003.
[3] Paul Hamill, Unit Test Frameworks, O’Reilly, 2005.
[4] Gerard Meszaros, xUnit Test Patterns: Refactoring

Test Code, Addison-Wesley, 2007.
[5] Lijun Shan and Hong Zhu, Generating Structurally

Complex Test Cases by Data Mutation: A Case Study
of Testing an Automated Modelling Tool. The
Computer Journal, Vol. 52, No. 5, pp571-588, Aug.
2009.

[6] Michael Sutton, Adam Greene, Pedram Amini,
Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley, 2007.

[7] Ari Takanen and Jared D. Demott, Fuzzing for
Software Security Testing and Quality Assurance,
Artech House, 2008.

[8] John Neystadt, Automated Penetration Testing with
White-Box Fuzzing, Microsoft Corporation, Feb.,
2008. (Available Online at:
https://msdn.microsoft.com/en-us/library/cc162782.aspx.
Last Access: 7 Feb. 2015.)

[9] Patrice Godefroid, Adam Kiezun and Michael Y.
Levin, Grammar-based Whitebox Fuzzing, Proc. of
PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.

[10] Elliotte Rusty Harold, Fuzz testing: Attack your
programs before someone else does, IBM
DeveloperWorks, 26 Sept. 2006. (Available Online at:
http://www.ibm.com/developerworks/library/j-
fuzztest/index.html. Last Access: 7 Feb. 2015).

[11] Andy Hertzfeld, The original Macintosh: Monkey
Lives, Folklore.org, 22 Feb. 1999. (Available Online at
http://www.folklore.org/StoryView.py?story=Monkey
_Lives.txt. Last access: 7 Feb 2015)

[12] T. Y. Chen, S. C. Cheung, and S. M. Yiu,
Metamorphic Testing: A New Approach for
Generating Next Test Cases, Technical Report
HKsUST-CS98-01, Dept. of Computer Science, Hong
Kong Univ. of Science and Technology, 1998.

[13] T. Y Chen, T. H., Tse and Zhiquan Zhou, Fault-based
Testing Without the Need of Oracles, Information and
Software Technology, Vol. 45, No. 1, pp1-5, 2003.

[14] Huai Liu, Fei-Ching Kuo, Dave Towey, Tsong Yueh
Chen, How Effectively Does Metamorphic Testing
Alleviate the Oracle Problem? IEEE Transactions on
Software Engineering, Vol. 40, No. 1, pp4-22, Jan.,
2014.

[15] Arnaud Gotlieb and Bernard Botella, Automated
Metamorphic Testing, Proc. of COMPSAC 2003,
pp34-40, IEEE, 3-6 Nov., 2003.

[16] Patrice Godefroid, Michael Y. Levin, and David
Molnar, Automated Whitebox Fuzz Testing, Proc. of
NDSS 2008, 8 - 11 Feb., 2008.

