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Abstract—Automated test framework plays a significant 
role in test driven software development methodologies. 
The XUnit family of testing tools has been widely used in 
the industry. However, they are weak in test case 
generation and general test result checking. In this paper 
we propose a new kind of test automation framework by 
integrating data mutation testing and metamorphic testing 
methods. A simple tool for unit testing of Java class called 
JFuzz is presented in the paper. Its uses are illustrated by 
an example.  
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1 Introduction 
In the past decade, XUnit automated test frameworks has 
been widely adapted by the industry and plays a significant 
role in test driven software development methodology [1, 2, 
3]. However, XUnit frameworks provide no support to the 
generation of test data. It relies completely on the tester to 
design cases. Moreover, it also relies on tester to write 
assert statements to check the correctness of test 
executions. Consequently, it is observed that, in practice, it 
is normally that test data are hard coded constants and 
assertions are only applicable to these constants [4]. Such 
test cases are so weak that can hardly be considered as a 
specification of the software. In this paper, we propose a 
software unit testing tool that aims at improving the 
automation of unit testing and thus providing a stronger 
support to test driven software development.  

The paper is organized as follows. Section 2 overviews 
the data mutation testing and metamorphic testing methods, 
which are the methodological foundation of the proposed 
testing tool. Section 3 presents the tool JFuzz. Section 4 
illustrate the use of the tool JFuzz by an example. Section 5 
concludes the paper by a comparison of the tool with XUnit 
framework and discusses future works.  

2 Underlying Testing Methods 
JFuzz is developed based on two testing methods data 
mutation and metamorphic testing, and integrating them 
into a unified framework. In this section, we briefly 
overview the testing methods underlying the proposed 
testing tool. 

2.1 Data Mutation Testing 
Data mutation is a test case generation method proposed in 
[5]. The basic idea is that given a set of test cases, which 
are called seeds, new test cases are generated by modifying 
the seeds via the applications of a set of operators, which 
are called data mutation operators, or simply mutation 
operators. When the modification of the test data is at 
random, it also called fuzz testing [6, 7], which has been 
widely used by the industry, for example, in Microsoft [8, 
9], IBM [10], Apple [11], etc.  

Similar to program mutation operators, a data mutation 
operator may be applicable on many different parts of the 
input data, if the input data are structurally complicated, 
such as a graph, a trajectory of system parameters, an XML 
document, a piece of code, etc. In this case, the applicable 
location of the test data can be considered as an additional 
parameter of the data mutation operator. Consequently, 
from a small number of seed test cases, a large number of 
test cases can be generated by applying a small number of 
data mutation operators as demonstrated in [5]. Formally, 
data mutation operators can be defined as follows.  

Definition 1. (Data Mutation Operators)  

Let P be the program under test and D be its input domain 
with a input validity condition V(x). A K-ary data mutation 
operator F with parameters in a set L is a mapping from DK 
× P to D, such that if inputs x1, x2, …, xK are valid inputs 
(i.e. V(xi)=True for i=1,2,…, K) implies that F(x1, x2, …, xK, 
l) is also a valid input (i.e. V(F(x1, x2, …, xK, l))), where 
𝑙 ∈ 𝐿 , K≥1. � 

Informally, V(x) means that x is an valid input to 
program P. A K-ary data mutation operator takes K valid 
input data and generates another valid input data according 
to the value of a parameter l.  

Figure 1 shows the process of data mutation testing [5].  
The following example is taken from [5] to illustrate 

how data mutation testing works, and it will be used later to 
explain how the proposed new testing method and the uses 
of tool JFuzz. 

Example 1.  

Consider a Triangle Classification program whose input 
consists of three natural numbers x, y, and z as the lengths 
of the sides of a triangle. Its function is to classify the 
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triangle into equilateral (all sides the same length), or 
isosceles (two the same), or scalene (none the same), or to 
determine that the input does not represent an actual 
triangle when the summary of two parameters is not greater 
than the third.  

The following are the seed test cases.  
• Test case t1:  Input: (x=5, y=5, z=5), Expected output: 

Equilateral. 
• Test case t2: Input: (x=5, y=5, z=7), Expected output: 

Isosceles. 
• Test case t3: Input: (x=5, y=7, z=9), Expected output: 

Scalene. 
• Test case t4: Input: (x=3, y=5, z=9), Expected output: 

Not a triangle. 

The following are the data mutation operators defined 
for the Triangle Classification program [5].  

• IVP: Increase the value of a parameter by 1; 
• DVP: Decrease the value of a parameter by 1; 
• SPL: Set the value of a parameter to a very large 

number, say 1000000; 
• SPZ: Set the value of a parameter to 0; 
• SPN: Set the value of a parameter to a negative 

number, say -2;  
• WXY: Swap the values of parameters x and y; 
• WXZ: Swap the values of parameters x and z;  
• WYZ: Swap the values of parameters y and z;  
• RPL: Rotate the values of parameters towards left; 
• RPR: Rotate the values of parameters towards right.  

 � 
As a part of data mutation testing methodology, a few 

metrics are defined in [5] to provide guidance for the 
adequate performance of testing, among which the most 
important ones include: 

• Seed usage: the percentage of seeds used to generate 
mutant test data. A low seed usage indicates that the set 
of mutation operators is weak and more mutation 
operators should be defined.  

• Mutation operator usage: the percentage of mutation 
operators used in the generation of mutant test data. A 
low mutation operator usage indicates that the set of 
seeds is weak and more seeds are needed.  

• Data mutation score: The percentage of dead mutant 
test data over the non-equivalent mutants, where is 
mutant test data is dead if it produces an output that is 
different from the output of the program on the seed. A 
low mutation score indicates that more seeds and more 
mutation operators are needed.  
Data mutation testing as a test data generation 

technique a practical and efficient testing method, 
especially useful for generating test cases for structurally 
complicated test data. However, an open problem of data 
mutation testing method is how to enable automatic 
checking of test results. A solution that we propose here is 
to integrate data mutation testing with metamorphic testing.  

2.2 Metamorphic Testing 
Metamorphic testing was proposed in [12]. It is a test oracle 
technique and also used to generate test cases. However, it 
only partially ensures correctness. Here, a test oracle is 
capable of partially ensuring correctness means that if the 
program fails the test according to the oracle implies that 
the program is not correct on the test case. However, if the 
program passes the testing according to the oracle, it does 
not imply the program is correct on the test cases.  

The basic idea of metamorphic testing is to use 
metamorphic relations as the criteria of program 
correctness. The notion of metamorphic relation can be 
defined as follows.  

Definition 2. (Metamorphic Relations) 

Let program P under test is a function on input domain D 
and produces output in codomain C. Let K be a natural 
number that K≥2. A K-ary metamorphic relation M is a 
relation on DK×CK such that program P is correct on input 
x1, x2, …, xK in D implies that  
𝑀 𝑥!, . . , 𝑥! ,𝑃 𝑥! ,… ,𝑃 𝑥!  holds, where 𝑃 𝑥  is 
program P’s output on input x. � 

The following example is taken from [13]. It is used to 
illustrate how metamorphic testing works, and later we also 
use it to explain how our proposed method works. 

Example 2. A typical example of metamorphic relation for 
a program that computes Sin(x) function is that  

𝑥! + 𝑥! = 𝜋 ⇒ 𝑆𝑖𝑛 𝑥! = 𝑆𝑖𝑛(𝑥!)  � 
The metamorphic testing process consists of three 

steps: 

(1) Definition of metamorphic relations that the program 
should satisfy.  

(2) Generation of a test suite tsM for each K-ary 
metamorphic relation M, where each test case tc in the 

 
Figure 1. Process of Data Mutation Testing [5] 
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test suite tsM consists of K input data x1, …, xK that 
satisfy the applicability condition R of M.  

(3) Execution of program P on each test suite tsM and 
check if the program is correct on each test case with 
regard to the metamorphic relation M, i.e. to check if 
𝑀(𝑥!, . . , 𝑥! ,𝑃 𝑥! ,… ,𝑃(𝑥!)) is true.  

Empirical studies show that metamorphic can achieve 
high fault detection ability [14]. However, there is a lack of 
systematic method to develop metamorphic relations, and 
in lack of generally applicable tools to support 
metamorphic testing.  

In the next subsection, we propose a new approach, 
called mutational metamorphic testing, to develop 
metamorphic relations by integrating it with data mutation 
testing. 

2.3 Mutational Metamorphic Testing 
We first define the notion of mutational metamorphic 
relation as follows. 

Definition 3. (Mutational Metamorphic Relations) 

Let P be the program under test, D and C be its input 
domain and output codomain, respectively. Let f be a K-ary 
data mutation operator on D with applicability condition 
𝑉(𝑥!,… , 𝑥!) and location parameter L. A K-ary mutational 
metamorphic relation derived from the data mutation 
operator f is a relation R on C(K+1) such that the program P 
is correct on inputs 𝑥!,… , 𝑥!!! ∈ 𝐷 and f is applicable on 
𝑥!,… , 𝑥! imply that 𝑅 𝑃 𝑥! ,… ,𝑃(𝑥!!!   ), where 
∃𝑙 ∈ 𝐿. (𝑥!!! = 𝑓(𝑥!,… , 𝑥! , 𝑙)). � 

In other words, a mutational metamorphic relation can 
be represented in the following form: 
𝑉(𝑥!,… , 𝑥!) ⇒ 𝑅 𝑃 𝑥! ,… ,𝑃(𝑥!    ,𝑃(𝑓(𝑥!,… , 𝑥! , 𝑙))) 

Example 3. For example, consider the program that 
computes the Sin(x) function. We define a data mutation 
operator f(x) on the input domain of real numbers  as 
follows. 

 𝑓 𝑥 = 𝜋 − 𝑥. 
Since this data mutation operator has no applicability 
constraints and has no location parameter, a mutational 
metamorphic relation derived from the above mutation 
operator is that  
 𝑃 𝑥 = 𝑃(𝑓 𝑥 ).  

� 
In mutational metamorphic testing, a test case for a 

mutational metamorphic relation R derived from a K-ary 
data mutation operator f consists of K valid input data 
𝑥!,… , 𝑥!. The testing process consists of the following 
steps.  

(1) Generating a set of test cases that comprise of valid 
inputs to the program as seeds. 

(2) For each seed test case ts=(𝑥!,… , 𝑥!), finding 
parameters 𝑙 ∈ 𝐿 that are applicable to the test case, 
and applying data mutation operator f on the test case 
ts with each applicable parameter l to generate test data 
𝑥!!!.   That is, 𝑥!!! = 𝑓 𝑥!,… , 𝑥! , 𝑙 .  

(3) Executing program P on all test data 𝑥!,… , 𝑥!!!,   and 
record the outputs 𝑃 𝑥! ,… ,𝑃 𝑥! ,𝑃 𝑥!!! .  

(4) Checking whether the correctness condition below is 
satisfied or not:  

𝑅 𝑃 𝑥! ,… ,𝑃 𝑥! ,𝑃 𝑥!!! . 
If not, a bug in the program is detected.  

Note that, a data mutation operator may use a random 
value to change the seed. In this case, the data mutation 
operator is a fuzz operator. Therefore, the testing method 
proposed here is a generalization of fuzz testing. Moreover, 
when the applicability condition of the data mutation 
operator is trivial, i.e. constantly True for all input data, the 
seed test cases can be generated at random, too. The 
difference is that mutational metamorphic testing uses a 
metamorphic relation to check test correctness.  

Example 4. Consider the data mutation operators defined 
in [5], and also in Example 1. We now define the 
mutational metamorphic relation for each of the above data 
mutation operators.  
 𝑃 𝑡 =   𝐸𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 
  ⇒ 𝑃 𝐼𝑉𝑃 𝑡 = 𝐼𝑠𝑜𝑠𝑐𝑒𝑙𝑒𝑠   ∨ 𝑃 𝐼𝑉𝑃 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒  
 𝑃 𝑡 =   𝑆𝑐𝑎𝑙𝑒𝑛𝑒 ⇒ 𝑃 𝐼𝑉𝑃 𝑡 ≠ 𝐸𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙  
 𝑃 𝑡 =   𝐸𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 
  ⇒ 𝑃 𝐷𝑉𝑃 𝑡 = 𝐼𝑠𝑜𝑠𝑐𝑒𝑙𝑒𝑠   ∨ 𝑃 𝐷𝑉𝑃 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 
 𝑃 𝑡 =   𝑆𝑐𝑎𝑙𝑒𝑛𝑒 ⇒ 𝑃 𝐷𝑉𝑃 𝑡 ≠ 𝐸𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙    
 𝑃 𝑆𝑃𝐿 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 
 𝑃 𝑆𝑃𝑍 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 
 𝑃 𝑆𝑃𝑁 𝑡 = 𝑛𝑜𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 
 𝑃 𝑡 = 𝑃(𝑊𝑋𝑌(𝑡)) 
 𝑃 𝑡 = 𝑃(𝑊𝑋𝑍(𝑡)) 
 𝑃 𝑡 = 𝑃(𝑊𝑈𝑍(𝑡)) 
 𝑃 𝑡 = 𝑃(𝑅𝑃𝐿(𝑡)) 
 𝑃 𝑡 = 𝑃(𝑅𝑃𝑅(𝑡)) � 

3 JFuzz: A Test Automation Framework 
In this section we present the test automation framework 
JFuzz, which is a simple tool developed for support 
mutational metamorphic testing.  

3.1 The Architecture of JFuzz 
JFuzz is a test automation framework. The inputs to JFuzz 
are two Java classes: the class under test (CUT) and a test 
specification class (TSC), which contains attributes that 
represent for the seed test cases, methods that are the data 
mutation operators and methods that are mutational 
metamorphic relations. The test specification class extends 

 
 
 
 
 
 
 
 
 

 

Figure 2. Architecture of JFuzz Test Automation Framework.  

Class Under 
Test (CUT) 

Test Spec Class 
(TSC) 

Test Engine 

Test Report 

Java 
Compiler 

Annotation 
Definitions 

Metamorphic 
Relation Class 

Test Result 
Class 



JFuzz: A Tool for Automated Java Unit Testing  Hong Zhu 

Technical Report CCT-AFM-2015-01 4 February 7, 2015 

or imports the CUT so that it can access the attributes and 
methods to be tested. It is compiled before input to the 
JFuzz tool. 

 As shown in Figure 2, JFuzz consists of the following 
components. 

• Annotation Definitions: These Java classes defines a 
set of annotations that testers use to annotate the 
attributes and methods in their Java test code. Three 
annotations are defined: (a) @Seed to mark an attribute 
as a seed test case; (b) @MakeSeed to mark a method 
that assigns values to the seeds; (c) @Mutation to mark 
a method as creation of mutations to the seeds and 
invocation of the methods under test and to check the 
metamorphic relation.  

• Test Result Class: It defines a set of attributes to record 
the statistical data of a test, whose values are updated 
automatically by the Metamorphic Relation Class.  

• Metamorphic Relation Class: It defines a method 
called Assertion. The Assertion method has two 
parameters: a Boolean value and a String. When the 
Boolean value is True, the numbers of total mutants 
and passed mutants are increased by one. When the 
Boolean value is false, the numbers of total mutants 
and failed mutants are increased, and the string is 
output to the test report or print on the screen. An 
invocation of Assertion method implements the 
mutational metamorphic relation. If the assertion is not 
satisfied, an error in the CUT is recorded and reported 
to the tester automatically.  

• Test execution engine: It performs testing on the CUT 
according to the TSC and reports the result of testing.  

It is worth noting that JFuzz does not directly uses the 
class under test, instead it only executes the methods in test 
specification class, and through the test specification class 
to execute the CUT.  

3.2 Test Specification Classes 
A JFuzz test specification class is an ordinary Java class 
with annotations on the attributes and methods. The 
annotations used by the test engine are defined in the 
Annotation definition classes. The following is an example 
of using these annotations in a test specification class. 

Example 5. (Test Specification Class for Testing Sine)  

Figure 4 is an example of the test specification class, which 
specifies a random testing of the Sin(x) function provided 
in the Java Math package with a mutational metamorphic 
relation as the test oracle.   

In the example, the attribute “public double x” is 
annotated by “@Seed”. This means x is an attribute that 
stores a seed test case. In general, there may be multiple 
seeds as we will see in the examples in Section 4. 

The method public void GenerateRandomValue is 
annotated by an annotation “@MakeSeed”. This means 
GenerateRandomValue is a method that creates seeds, or more 
precisely, it assigned values to the seeds. It is used when 
the seeds are not constants as in this example. In this 
example, a random value is assigned to the variable x.  

The method public void mutationOp(double seed) is 
annotated by an annotation “@mutation”, which is a method 
to be applied to the seed test cases one by one to generate 
mutant test cases. The seed test case is the parameter of the 
method. It should contain code that invokes a method or 
methods in the CUT on the seed and the mutant test cases, 
and then to call the Assertion method provided by the tool 
to check the relations between the seed(s) and the 
mutant(s). In this example, the mutant is a double value 
equals to 𝜋 − 𝑥. The assertion states that 𝑆𝑖𝑛 𝜋 − 𝑥 −
𝑆𝑖𝑛(𝑥) < 10!. (*) In general, there may be a number of 
methods annotated with “@mutation” as we will see in the 
examples given in Section 4. � 

The following is a screen snapshot of the execution of 
the above test specification class in the Eclipse IDE.  

3.3 Test Execution Engine 
The test execution engine of JFuzz is implemented in Java 
using its reflection and meta-data facilities. Figure 5 gives is 
the algorithm of the test execution engine.  

                                                             
* Note that, being floating point numbers, 𝑆𝑖𝑛 𝜋 − 𝑥 = 𝑆𝑖𝑛(𝑥) may not 
hold due to round-up error even if the calculation is correct.  

import java.util.Random; 
public class SinXTest extends Metamorphic { 
 Random randomGenerator = new Random(); 
 @Seed 
 public double x;  
 @MakeSeed 
 public void GenerateRandomValue(){ 
  x = randomGenerator.nextDouble(); 
 }; 
 @Mutation 
 public void mutationOp(double seed){ 
  double mutant = Math.PI - seed; 
  Assertion((Math.abs(Math.sin(seed) –  
                 Math.sin(mutant)) <= 0.0000000001),  
   "Metamorphic Rule: Sin(x) = Sin(pi - x)."); 
 } 
} 

Figure 4. An Example of JFuzz Test Specification Class 

 
Figure 3. A screen snapshot of executing JFuzz in Eclipse 
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4 Examples  
In this section, we give two examples of JFuzz test 
specification classes to demonstrate the style of testing that 
JFuzz supports.  

Example 6. (Bulk Testing of the Sin(x) function) 

In this test specification, we generate 1000 random 
numbers of Double between 0 and 1. These numbers are 
stored in an array xs of double. Their values are generated 
by the method public void GenerateRandomValue(), which 
is annotated as @MakeSeed.  

 
import java.util.Random; 
public class SinXBulkTest extends Metamorphic { 
 Random randomGenerator = new Random(); 
 @Seed 
 public double[] xs;  
 @MakeSeed 
 public void GenerateRandomValue(){ 
  xs = new double[1000]; 
  for (int i=0; i<1000;i++){ 
   xs[i]=randomGenerator.nextDouble(); 
  } 
 }; 
  

The method public void mutationOp(double[] seed) 
below is annotated with the @Mutation. It is invoked when 
execute this test specification with the array xs as the actual 
parameter.  
 @Mutation 
 public void mutationOp(double[] seed){ 
  int num = seed.length; 
  double[] mutant = new double[num]; 
  for (int i=0; i<num; i++){ 
   mutant[i]= Math.PI - seed[i]; 
   Assertion((Math.abs(Math.sin(seed[i]) –  
    Math.sin(mutant[i])) <= 0.0000000001),  
  "Metamorphic Rule: Sin(x) = Sin(pi - x)."); 
  }; 
 } 
} 

Executing this test specification with JFuzz means to 
perform 1000 random testing on the Sin(x) function and 
check the mutational metamorphic relation given in 
Example 3 with a tolerance of error less than 109 between 
floating point values.   ☐ 

The following example is based on the data mutation 
testing of triangle classification program.  

Example 7. (Testing Triangle Classification Program) 

In Example 1, there are four seed test cases. Thus, we have 
the following attributes declarations that are annotated as 
seeds and their values assigned to by the makeSeed method.   
public class TriangleTest1 extends Metamorphic { 
 @Seed 
 public triangle t1; 
 
 @Seed 
 public triangle t2; 
 
 @Seed 
 public triangle t3; 
  
 @Seed 
 public triangle t4; 
  
 @MakeSeed 
 public void makeSeed(){ 
  t1 = new triangle(5,5,5); 
  t2 = new triangle(5,5,7); 
  t3 = new triangle(5,7,9); 
  t4 = new triangle(3,5,9); 
 } 
  

There are a number of mutation operators. Each 
mutation operator is implemented by a Java method. Here 
we only give the implementations of IPV and the WXY 
operators. The other mutation operators are very similar.  

 
@Mutation 
public void IPX(triangle seed){ 
 System.out.println("---- Mutation IPX on <" 
   + seed.x + "," + seed.y + "," + seed.z +">" ); 
  triangle mutant = new triangle(1,1,1); 
  mutant.x=seed.x+1; 
  mutant.y=seed.y; 
  mutant.z=seed.z; 
  mutant.Classify(); 
  if (seed.TriangleType == triangleType.equilaterial){ 
   Assertion(( 
   (mutant.TriangleType == triangleType.isoscelene)  
   ||(mutant.TriangleType==triangleType.noneTriangle)), 
   "Metamorphic Rule for IPX:  

  (seed.TriangleType == equilaterial) =>  
 ((mutant.TriangleType == isoscelene) or  
  (mutant.TriangleType == noneTriangle)"); 

  }; 
  if (seed.TriangleType == triangleType.scalene){ 
   Assertion(( 
   (mutant.TriangleType != triangleType.equilaterial)), 
   "Metamorphic Rule for IPX:  
    (seed.TriangleType == scalene) => 
     ((mutant.TriangleType != equilaterial)"); 
  }; 
} 
  

In the above method, the metamorphic relations for 
IPD are implemented as two if-statements with two 
invocations of the Assertion method.  

The mutation and metamorphic relation for WXY is 
given below as another method annotated with @Mutation.   
  
@Mutation 
public void WXY(triangle seed){ 
 System.out.println("---- Mutation WXY on <" 

Algorithm: Test Execution Engine 
 Input:  
  Class: ts; // Test specification class 
 Output:  
  tr: Test Result Report; 
 Begin 
  //1. Initialization;  
  Field[] fs = all Fields declared in ts;; 
  Method[] ms = all methods declared in ts;   
  Create an instance object of the test spec class ts;  
  //2. Make seeds; 
  for all Methods m in ms do{ 
       if (m is annotated with “MakeSeed”) { 
           invoke object tsi’s method m; 
  } }; 
  //3. Make mutants and perform testing 
  for all Fields f in fs { 
   if (f is annotated with “Seed”) { 
    for all Method m in ms { 
         if (m is annotated with “Mutation”) { 
             invoke object tsi’s method m with f as parameter; 
  } } } };  
  //4. Output test result 
  Output(tr, tsi’s total number of mutants); 
  Output(tr, tsi’s number of passed mutants); 
  Output(tr, tsi’s number of failed mutants);  
End 

Figure 5. Algorithm of the Test Engine 
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   + seed.x + "," + seed.y + "," + seed.z +">" ); 
 triangle mutant = new triangle(1,1,1); 
 mutant.x=seed.y; 
 mutant.y=seed.x; 
 mutant.z=seed.z; 
 mutant.Classify(); 
 Assertion((seed.TriangleType == mutant.TriangleType), 
  "Metamorphic Rule for WXY:  
   mutant.TriangleType == seed.TriangleType"); 
} 

When this test specification class is executed with 
JFuzz, each of the mutation method is invoked on each of 
the four seed test cases, and the results are checked for 
whether the mutational metamorphic relations were 
satisfied. A total of 36 mutants were created.  

☐ 

5 Conclusion  
In this paper we proposed the mutational metamorphic 
testing method, which integrates data mutation testing and 
metamorphic testing methods. The basic idea is to use the 
data mutation operators as the foundation to derive and 
express metamorphic relations. It overcomes the shortfalls 
of these testing methods and retains the advantages of both 
methods. In particular, it enables test cases to be generated 
more easily and efficiently and also to enable checking the 
correctness of test results easily. A nice consequence of the 
integration is that when a metamorphic relation is 
universally applicable to all input data, there is no need to 
have seed test cases. Instead, test cases can be generated at 
random as we demonstrated in this paper. In that case, 
mutational metamorphic testing work like fuzz testing, 
hence the name of the testing tool JFuzz presented in this 
paper. In contrast, a testing tool that support the general 
metamorphic testing method has to rely on constraint solver 
to generate test cases that satisfy the input constraints; see 
for example, [15].  

There are a number of testing tools that supports fuzz 
testing by generating various types of random data; see, for 
example, [16]. However, fuzz testing tools does not support 
test oracles. It only detects faults when the system under 
test crashes. Mutational metamorphic testing proposed in 
this paper is much more powerful and effective than fuzz 
testing tools because it is capable to detect errors more 
subtle than system crash.  

The proposed testing method and tool JFuzz aim to 
improve unit testing in agile development processes. In 
comparison with existing test automation frameworks in the 
xUnit architecture [3, 4], JFuzz provides a stronger support 
to test case generation and test result checking. Most 
importantly, the testing method encourages programmers 
and testers to think not only about known constant test 
cases and to specify them as the seeds, but also to think 
about how the input data can be varied and the 
consequences of the changes in the input data on the 
program’s output and to specify them as mutation operators 
and the mutational metamorphic relations. Therefore, the 
test specification is more general and resilient to code 
changes in the evolution process of agile development. IN 
other words, test specification is closer to the real 
specification of the software than xUnit style test code.  
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