

Caste: A Step Beyond Object Orientation

Hong Zhu and David Lightfoot

Department of Computing, Oxford Brookes University
Oxford, OX33 1HX, United Kingdom

hzhu@brookes.ac.uk dlightfoot@brookes.ac.uk

Abstract. The concepts of object and class have limitations in many situations,
such as where inheritance does not offer natural solutions and design patterns
have to be applied at a cost to polymorphism, extendibility and software reus-
ability. Proposals have been advanced to generalize the concepts of object and
class, such as in Active Oberon. We adapt the concept of agents to software
engineering, propose a new concept called caste − a sort of ‘dynamic class’ of
agents, and examine how it helps solve common problems in object orientation.

1 Introduction

Agent technology has mainly been seen as an aspect of artificial intelligence, though
it is increasingly seen as a viable approach to large-scale industrial and commercial
applications [1]. In our work we disregard the more evidently anthropomorphic
aspects of agent (intention, desire, belief, etc.) and concentrate on those aspects that
pertain to software engineering.

The concept of an autonomous agent with its own encapsulated data and proce-
dures can be seen as an extension of the object of OO programming. One of the main
features of agents lacking from object-orientation is the encapsulation of process with
the state and operations, and the explicit description of environment. The language
Active Oberon (Zonnon) [2, 3, 4] includes a means of encapsulating a process as an
object body. Another weakness of object orientation is the static nature of class
structure. In this paper, we investigate how the concept of class can be naturally gen-
eralized by a new concept called caste, which is roughly a ‘dynamic class’ of agents.

2 Limitations of class structure

The concepts of class and inheritance are central to object orientation. The inheritance
hierarchy of classes enables polymorphism and extendibility in object-oriented
programs, and hence helps improve software reusability. However, single inheritance
imposes a tree-like hierarchy on classes that may not match reality well. Multiple
inheritance, or the generalized definitions of Active Oberon, reduce this restriction.
However, a further restriction is that an object must at all times belong to one and the
same class. This can pose difficulties if the relationship between an object and its

class needs to be more dynamic. For example, a personnel information management
system of a university may preclude a student from being enrolled both as an under-
graduate and as a postgraduate, but it is quite common at our university for a staff
member to be simultaneously a student. If the lifetime of the system is long enough
then it will need to model the change of status, for example, when an undergraduate
successfully graduates and wishes to continue as a postgraduate. This cannot be
naturally modeled by inheritance relations between classes.

The use of an appropriate ‘design pattern’ [5, 6] helps overcome these difficulties,
but at a cost to polymorphism and extendibility. Such difficult design problems
inspire us to search for programming-language facilities that can lead to natural
solutions while retaining the advantages of object orientation.

3 Agent and caste

We define agents as active and persistent computational entities that encapsulate data,
operations and a behavior protocol and are situated in their designated environments
[7]. Here, data represents an agent’s state. Operations are the actions that an agent can
take. Behavior protocols are rules that determine how the agent changes its states and
performs actions in the context of its environment. Each agent has its designated envi-
ronment, which explicitly specifies a subset of the other agents in the system whose
behaviors and states will affect the agent’s behavior. By encapsulation, we mean that
an agent’s state can only be changed by the agent itself, and an agent decides its state
changes and actions according to its own behavior protocol. As argued in [7, 8],
objects are a degenerate form of agents. The structure of an agent is as follows.
• Agent name is the identity of the agent, which can be created as a member of

several castes.
• Environment description indicates a set of agents whose visible actions and states

are visible to the agent. As in the formal specification language SLABS [7], an
environment description can be in one of the following forms. (1) Agent-name:
which means that the agent of the name is in its environment; (2) All: Caste-name,
which means that all the agents in the caste are in its environment; (3) Variable:
Caste, which means that a specific agent in the caste is in its environment, but the
agent may change from time to time. Notice that, environment description differs
from the import/export facility in that it describes what kind of agents in the system
it will interact with at run-time, which cannot be determined at compilation time. It
is one of the most important features of agents that distinguish them from objects,
including active objects. The environment of an agent changes when other agents
join or quit a caste, if the caste is specified as a part of the agent’s environment.
An agent also changes its environment by joining a caste or quitting from a caste,
or changing the values of its environment variables.

• Variable declarations define the state space of the agent. It can be divided into two
parts. The visible part consists of a set of public variables whose values are visible,
but cannot be changed by other computational entities in the environment. The
internal state consists of a set of private variables and defines the structure of the
internal state of the agent, which is not visible by other entities in the environment.

• Action declarations are in the form of a set of procedure declarations, which
defines a set of operations on the internal state and forms the atomic actions that
the agent can take. Each action has a name and may have parameters. An action
can be one of two types. When executed, a visible action generates an event that is
visible by other agents. Internal actions can only change the internal state, but
generate no externally visible event when executed.

• Body is an executable code that forms the agent’s
behavior protocol. As mentioned above, agents are
active computational entities. Their dynamic behav-
iors can be described by the pseudo-code in Fig. 1.
Usually, the body code of an agent perceives the

visible actions and states of the agents in its environment, and decides on what action
to take according to the situation in the environment and its internal state. An agent
can (1) take a visible or internal action; (2) change its visible or internal state; (3) join
into a caste or quit from a caste. An agent’s action is not driven by ‘method calls’
from the outside. This distinguishes agents from active objects.

Caste is a new concept and a language facility first introduced in SLABS [7]. It is a
natural evolution of the concepts of class in OO and data type in procedural languages.
Just as a class can be seen as a set of objects with the same pattern of data and
methods (procedures), a caste is a set of agents
with the same pattern of data, methods,
behaviors and environments. The concept of a
caste contrasts with the class, however, in that
an agent may join a caste or quit from it at
runtime whereas an object is all time an instance
of one class. This more general view overcomes
the above problem in object orientation. The
structure of a caste declaration is given in Fig. 2.

A formal definition of the semantics of castes can be found in [9]. Fig. 3 shows an
example of caste declaration, Persons. In Fig 4, castes Undergraduates, Postgradu-
ates, PhD_Students, and Faculties are declared as subcastes of Persons; some details
are omitted for the sake of space. An agent of caste Persons can join the caste
Undergraduates. By doing so, the agent obtains some additional state and environ-
ment variables defined in the caste
Undergraduates, i.e. the Personal_
Tutor and Student_ID. The agent can
then quit from the Undergraduates
and join the Postgraduates. Conse-
quently, the agent loses state variable
Student_ID and environment variable
Personal_ Tutor, and obtains addi-
tional state and environment vari-
ables MSc_Student_ID and Super-
visor. Subsequently, it can quit from
the caste and join PhD_ Students.
However, it can join Faculties
without quit from PhD_Students.

BEGIN
 Initialization;
 Loop Body-code Endloop;
END

Fig. 1 Agent’s behavior

CASTE name OF caste-names;
 ENV environment-descriptions;
 VAR variable-declarations;
 ACTION action-declarations;
 INITIAL (parameters): Statement;
BEGIN
 Statement (* body code *)
END name.
Fig. 2 Structure of castes

CASTE Persons;
 ENVIRONMENT All: Persons;
 VAR PUBLIC Surname, Name: STRING;
 PRIVATE Birthday:DATE;
 ACTION PUBLIC Speak(Sentence: STRING);
 INITIAL (SN, N: String, BD:DATE):
 BEGIN
 Surname := SN; Name := N;
 Birthday := BD;
 Speak(“Hello, World”);
 END;
BEGIN
 … JOIN(Undergraduates); …
END Persons.
Fig. 3 An example of caste

4 Conclusion

In this paper, we examined the concept
of agent and caste as a language facility
to extend object orientation. We are
aware of a variety of approaches to the
problem we addressed in this paper. We
believe that the approach proposed here
looks promising to overcome the
weakness of static object-class binding
in object orientation in a nice and
natural way.

We are working towards developing
a programming language using agents
and castes as a core language facility.
The intention is to retain the advantages
of object orientation and build on its
success while offering more powerful
and natural means of expression for
solutions to commonly occurring
problems in software design. We are
investigating the implementation of
such a language facility, for example,
through active objects.

References

[1]Wooldridge, M., Weiss, G., and Ciancarini, P., eds. Agent-Oriented Software Engineering II.
LNCS, Vol. 2222, 2002: Springer.

[2] Gutknecht, J., Active Oberon for .net, White Paper, June 5, 2001. Available at URL:
http://www.bluebottle.ethz.ch/oberon.net/ActiveOberonNetWhitePaper.pdf

[3] Reali, P., Active Oberon Language Report, March 14, 2002. Available at URL:
http://bluebottle.ethz.ch/languagereport/ActiveReport.pdf

[4] Gutknecht, J., Zueff, E., Zonnon Language Experiment, or How to Implement a Non-
Conventional Object Model for .NET, Available at URL:
http://www.bluebottle.ethz.ch/Zonnon/papers/OOPSLA_Extended_Abstract.pdf

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns,: Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995.

[6] Grand, M., Patterns in Java, Vol. 1: A Catalog of Reusable Design Patterns Illustrated with
UML, Wiley, 1998.

[7] Zhu, H., SLABS: A Formal Specification Language for Agent-Based Systems. International
Journal of Software Engineering and Knowledge Engineering, 2001. 11(5): pp. 529~558.

[8] Zhu, H. The role of caste in formal specification of MAS. in Proc. of PRIMA’2001, Taipei,
Taiwan, 2001, Springer, LNCS 2132, pp.1~15.

[9] Zhu, H., Representation of Role Models in Castes, Technical Report DoC-TR-03-02, Dept
of Computing, Oxford Brookes Univ., UK, 2003. (Submitted to MATES’03)

CASTE Undergraduates of Persons;
 ENVIRONMENT Personal_Tutor: Faculty;
 VAR PUBLIC Student_ID: Integer;
 INITIAL (PT: Faculty):
 BEGIN Personal_Tutor := PT; END;
BEGIN
 … QUIT(Undergraduates);
 JOIN(Postgraduates); …
END Undergraduates;
CASTE Postgraduates of Persons;
 ENVIRONMENT Supervisor: Faculties;
 VAR PUBLIC MSc_Student_ID: Integer;
 INITIAL …;
BEGIN
 … QUIT(Postgraduates);
 JOIN(PhD_Students); …
END Postgraduates;
CASTE PhD_Students of Persons;
 …
BEGIN … JOIN(Faculty); ….
END PhD_Students;
CASTE Faculties of Persons;
 …
END Faculties;

Fig. 4 Examples of subcastes

