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Abstract

Being autonomous, proactive and adaptive, an agent-based system may demonstrate emergent behaviours,
which are neither designed by the developers nor expected by the users of the system. Whether or not such
emergent behaviours are advantageous, methods for the specification of agent behaviours must be developed to
enable software engineers to analyse agent-based systems before they are implemented. This paper presents a
formal specification language SLABS for agent-based systems. It is a model-based specification language
defined based on the notion of agents as encapsulations of data, operations and behaviours. The behaviour of an
agent is defined by a set of rules that describe the action/reaction of the agent in certain environment scenarios.
The style and expressiveness of the language is demonstrated by examples like ants, persona assistant and
speech-act style of agent communications.
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1. Introduction

Agent technology has long been predicted to be the next mainstream computing paradigm, see, for example, [1,
2, 3]. It is perceived to be a viable solution for large-scale industrial and commercial applications. However,
researches on agent-based systems have been mainly an Al endeavour so far. The mgjority of extant agent
applications are developed in an ad hoc fashion without proper analysis and specification of system's
requirements, and without systematic verification and validation of the properties of the implemented system.
For a long time, software engineers and computer scientists alike have learned from many incidents that the
behaviours of a system should be understood and documented before the system is put in operation, even before
a serious implementation effort is made. One of such incidents that is related to autonomous software agents in
particular is the crash of Air France's Airbus 320 at an air show in June 1988 [4, 5]. Airbus 320 was the first fly-
by-wire passenger aircraft in the world. In other words, it was controlled by an autonomous agent. The incident
was caused by a conflict between the human pilot's instruction and the autonomous control by the software.
While the pilot intended to fly over the airport in the air show, the fly-by-wire control software seems to have
instructed the aircraft to land, which was believed to be the cause of the accident. More than a dozen of years

has passed and autonomous agents have gained much wider applications see e.g. [6], but open questions remain
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about how to specify autonomous agents' behaviour and how to verify and prove their properties so that such
tragedy can be prevented. Being autonomous, proactive and adaptive, an agent-based system can be very
complicated, and sometimes may demonstrate emergent behaviours, which are neither designed by the
developers nor expected by the users of the system. The new features of agent-based systems demand new
methods for the specification of agent behaviours and for the verification and validation of their properties to
enable software engineers to develop reliable and trustworthy agent-based systems. It has been recognised that
the lack of rigour is one of the major factors hampering the wide-scale adoption of agent technology [7].

The past few years have seen increasing research interests in agent-oriented software devel opment methodology.
Existing work can be classified into three main groups. The first is towards the theoretical foundations for
specifying and modelling agent-based systems. Work in this direction includes the development of logic as the
foundation for the specification and proof of agents properties, which is dominated by researches on temporal
and multi-modal logic of agents. The work on modal logic of knowledge can be dated to Hintikka's work
published in 1962 [8] and Kripke's work in 1963 [9]. Recent work on the logic of knowledge includes Fagin,
Halpern, Moses, Vardi, and their colleagues study of knowledge in the context of distributed systems [10, 11,
12, 13]. In the Al community, much work has been focused on modelling agents rational behaviour by
introducing modalities for belief, desire and intention. Among the most well-known are Rao and Georgeff's
modal logic framework of BDI agents [14], Singh's study of the modal operators [15], Chainbi, Jmaiel and
Abdelmajid's language L, based on linear time logic [16], and Wooldridge's work on use of such logic in the
specification of and reasoning about rational agents [17]. Game theory has also found its position in the
formalisation of agent models, e.g. [18]. A great humber of formal models of agents have been proposed and
investigated in the literature, see e.g. [19, 20]. Most of them are based on an internal mental state model of
agents, such as the BDI model, but with subtle differences, yet some are based on a model of the external social
behaviours of collaborative agents, e.g. [21]. It is till far away from reaching a unified model of agents. As
pointed out by Michael Fisher [22], a specification method based on a specific model of agents may result in the
existence of certain agent theory and systems that do not match the concept in the specification formalism.
Moreover, tempora logics, particularly when combined with modalities for belief, desire, etc., can be very
complex. This makes reasoning about agent specification difficult.

The second group of researches is on the development process and development methods for engineering agent-
based systems. A number of proposals have been advanced in the literature, which include Kinny, Georgeff and
Rao's Agent modelling techniques for systems of BDI agents [23], Moulin et a.'s MASB [24, 25], and
Wooldridge, Jennings and Kinny's methodology for agent-oriented analysis and design [26], and many others,
see [27] for a survey. These works mostly focused on diagrammatic notations that support the analysis and
design of multi-agent systems in software engineering processes. Some of the notations extend object-oriented
methods and notations such as UML. Some introduce new models for agents and corresponding new
diagrammatic notations as well. How such diagrammatic notations are related to the logic and formal models of
agents remains as an open problem.

The third group consists of the researches on the language facilities and features that support the formal
specification and verification of agent-based systems in a software engineering context, although there is little
such work reported in the literature. Brazier, Dunin-Keplicz, Jennings, and Treur et al.'swork on DESIRE [7] is

perhaps the most well known in this direction. Another example of this type is Conrad, Saake and Turker's
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specification language ETL [28]. The use of existing formal specification languages, such as Z, has also been
explored to specify agent architecture [29] and concepts related to agents [30]. Despite the large number of
publications on agents in the literature, there islittle research on language facilities that support the devel opment
of large-scale complicated multi-agent systems. It is impractical to use a logic notation directly in the
specification and reasoning about large-scale multi-agent systems, because such a specification will be a lengthy
and complicated logic formula that consists of mathematical notations and symbols. The modularity achieved in
agent-based systems by decomposing the functions and tasks of a system into a number of agents are completely
lost in such alogic formula. In particular, there are few language facilities to explicitly specify the environment
of agents and agent-based systems although it is widely recognised that an important characteristic of agentsis
that they are entities situated (embedded) in a particular environment [31]. What is most important is the lack of
facilities that can clearly state how agents behaviours are related to the environment. This paper searches for
such language facilities that support the specification of agent-based systems in the context of software
engineering.

The main contribution of the paper is a set of language facilities for formal specification of agent-based systems.
Of course, it would not be possible to define the formal semantics of a model-based specification language
without a model. In order to avoid the drawbacks of using a specific model of agents as discussed above, a
simple but widely applicable model of agents and agent-based systems was proposed in [32]. This model can be
considered as weak agency according to [20]. It is further developed and formally defined in this paper. The set
of language facilities proposed in the paper includes a modular structure suitable for the formal specification of
multi-agent systems, a scenario description mechanism for defining agents behaviour in the context of
environment situations, and a notion of caste as a collection of agents that have same behaviour and structural
characteristics. These facilities are integrated together into aformal specification language called SLABS, which
stands for Specification Language for Agent-Based Systems. This language is also independent of any particular
agent theory, and independent of any particular agent communication languages or protocols. Its semantics are
formally defined using the model.

The paper is organised as follows. Section 2 reviews the informal model of agent-based systems proposed in [32]
and further discusses the rationale underlying the model. Section 3 presents a formal model of multi-agent
systems. Section 4 describes the syntax and semantics of the SLABS language. Section 5 illustrates the style and
expressiveness of SLABS specifications. It gives three examples of formal specifications of different types of
agent-based systems, which include ants, a persona assistant and speech-act communication in agent society.

Section 6 is the conclusion of the paper, which discusses future work.
2. Multi-agent systems

SLABS is a model-based formal specification language for agent-based systems. This section gives the
preliminary notions of multi-agent systems underlying the forma model defined in the next section.

2.1. The notion of agents

Agency is the most important notion in agent-oriented and agent-based computing, though what agenthood
exactly means is a matter of controversy. People tend to characterise agents as computation systems that have
certain properties, see e.g. [33, 34]. Among many such properties are the following.

(a) Autonomous; the capability of performing autonomous actions.
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(b) Pro-activity: the capability of exhibiting opportunistic and goal-directed behaviour and taking initiative
where appropriate.
(c) Responsiveness: the capability of perceiving the environment and responding in a timely fashion to the
changes that occur init.
(d) Social: the capability of interacting with other artificial agents and humans when appropriate in order to
complete their own problem solving and to help others with their activities.
These properties have been used to explain the differences between objects and agents. For example, when an
object is told that its trousers are on fire (when it receives such a message), it will jump into ariver to put the
fire out (if it is the method defined for such a message) no matter whether the message is true or false. In
contrast, when an agent is told that his trousers are on fire, he would first check if the message were true to
determine if he should change his belief if the agent does not believe his trousers are on fire before receiving the
message. Consequently, he may do nothing if the message is false. By doing so, the agent demonstrates an
autonomous behaviour. A typical Al point of view of the differences between object-oriented programming and
agent-oriented programming can be found in Shoham's work on agent-oriented programming, where agents are
considered as a specialisation of objects. Table 1 below is from Shoham [35].

Table 1. Al view of OOP and AOP

OO0P AOP
Basic unit Object Agent
Parameter;deflnlng the state Unconstrained Bellef's,' (_:ommltr_nents,
of basic unit capabilities, choices, ...

Message passingand | Message passing and

Pr ocess of computation response methods response methods

Inform, request, offer,

Types of message Unconstrained promise, decline, ...

Constrains on methods None Honesty, consistency, ...

The same view of the relationship between agents and objects can be found in a number of publications, for
example, Figure 1 is from [30]. According to this view, one would expect that object-oriented programming
languages of full strength should be perfectly suitable for programming agents and agent-based systems.
However, this contradicts the observations that there are serious difficulties in programming agent-based

systemsin Java[36].
Autonomous
Agents

Agents

Environment

Figure 1. The entity hierarchy asin[30]
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In [32], it was argued that agents are a generalisation of objects. In fact, when use computation terminology to
define the Al terms such as beliefs, capabilities, and so on, the following table can be obtained from the above.
Table 2. Computational view of OOP and AOP

OOP AOP
Basic unit Object Agent
Parameter s defining ) First order data, second order entity (such
the state of basic unit First order data as functions, logic clauses, etc.)
Process of Message passing and | Perceiving the environment and reacting
computation response methods (such as event capture, event-driven)
Typesof Method call Unconstrained
message
Constrainson
methods none none

As shown in Table 2, the parameters of an object's state are not unconstrained, but rather strictly restricted to be
first order data, which in object-oriented programming languages are also objects. However, the parameters of
an agent's state can be beliefs, intentions, plans and goals, etc., which, mathematically speaking, are higher order
entities. Of course, an agent can also have first order data as parameters of its states. An agent's process of
computation can be much more complicated than an object's process. It is not just receiving messages and then
calling the corresponding methods. Instead, it can aso perceive the changes in the environment (even the
situation of no changes in the environment for a given period of time) and take actions according to its internal
state. Message passing is just one method by which the changes in the environment can attract an agent's
attention. Nevertheless, an agent can discard an incoming message without any response. Messages with
illocutionary forces are only one of many methods that agents communicate with each other, although it is an
important method. The importance of agent communication via such messages is that the content of the message
can be in higher order. For example, a message can ask an agent to do something, where 'do something' is an
action. So in agent-oriented programming, the types of messages are not restricted in comparison with objects.
Finally, it is impractical to set a constraint on an agent's methods to be honest and consistent. Of course, it will
be nice to set such constraints so that there would be no problem with the security of mobile agents. In summary,
agents are extensions of objects, rather than specialisations. Consequently, agent-oriented languages must be
developed for both specifying and programming agent-based systems.

In [32], a constructive definition of agents was proposed. Agents are defined as encapsulations of data,
operations and behaviour. The data of an agent represents the internal state of the agent, which can be divided
into two parts: a visible part and an invisible part. The visible part of the state is visible from outside of the
agent, such asthe facial expressionsin Mag's persona assistants [45]. Theinvisible part of the state isinternal to
the agent, such as the desires, beliefs, and intentions of the agents in a BDI model. The operations are the
conceptualy atomic actions that an agent is capable of. Such an action can be visible from the outside, or
invisible as an internal event. Behaviour is a collection of sequences of state changes and operations that can be
performed by the agent in the context of its environment. As Jennings [31] pointed out, autonomous means that

agents 'have control both over their internal state and over their own behaviour'. The encapsulation of data,
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operation and behaviour means that each agent has its own rules that govern its behaviour. Such rules have to be
explicitly specified for each agent rather than defined by the language using a set of default rules. In this paper,
objects are considered as having no control over their behaviour because an object has to execute a method
whenever it receives a message that calls the method. In other words, the language defines the behaviour of all
objects by the default rule of 'if receive a message, then execute the corresponding method'. However, objects
behaviour can be considered as a degenerate case of agents, if such a simple and uniform pattern of behaviour
can be explicitly specified as a rule of behaviour. There is no reason why the possibility that an agent adopts
such behaviour should be ruled out.
The above discussion can be summarised by the following pseudo-equation that characterises the notion of
agent.
Agent = <Data, Operations, Behaviour>gqyironment 1

2.2. Thenotion of Castes
In object-oriented languages, a class is considered as the set of objects of common structure and function.
Objects are instances of classes. Similarly, the notion of caste is defined here as a set of agents with the same
structural and behavioural characteristics, where the term caste is used to distinguish from classes in object-
oriented languages. Agents are therefore instances of castes. If an agent is specified as an instance of a caste, it
has the structure and behaviour characteristics of the caste. However, in addition to those inherited structure and
behaviour, an agent can also have additiona behaviour and structure descriptions of its own. Agents of the same
caste may play the same role in an agent-based system, especially in a society of agents. An example of
behaviour characteristics is that an agent follows a specific communication protocol to communicate with other
agents. Therefore, such a communication protocol can be specified by defining a caste with the protocol as
behaviour characteristic.
In asimilar way to classes, inheritance relationships can be defined between castes. A caste is defined as a sub-
caste of existing castes by indicating the super-castes. A sub-caste inherits the structure and behaviour
descriptions from its super-castes. It may aso have some additional actions and obey some additional behaviour
rules if they are specified in the sub-caste declaration. Some of the parameters of the super-castes may also be
instantiated in a sub-caste. As it will be shown in section 5, the caste and inheritance facilities provide a
powerful vehicle to describe the normality of a society of agents. Multiple inheritances are alowed to enable an
agent to belong to more than one society and play more than one rolein the system at the sametime. The notion
of castes can also be expressed in the form of a pseudo-equation as follows.

Castes = { agents| structure characteristics & behaviour characteristics} 2
2.3. Environments and multi-agent systems
It is widely recognised that the power of agent-based systems can be best demonstrated in a dynamic
environment [6, 37] because an agent can adapt its behaviour into the environment to achieve its designed
purpose. Characteristics of agents can also be defined in terms of their relationship with the environment. For
example, agents are considered as 'clearly identifiable problem solving entities with well-defined boundaries and
interfaces. They are 'situated (embedded) in a particular environment -- they receive inputs related to the state of
their environment through sensors and they act on the environment through effectors' [31, 33]. Obviousdly, there
are two key differences between objects and agents with respect to their relationships with the environment.

Firstly, agents are active in the sense they observe their environment and they are always prepared to take
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actions to effect the environment. In contrast, objects are passive, they are driven by the messages sent by the
objects in the environment. Because of this, agents are sometimes considered as active objects. Secondly, agents
selectively observe a part of the environment that they are interested in, while objects are open to all abjects in
the environment. In fact, an object executes a method no matter who sends the message. It cannot even identify
the sender of the message. These highlight the differences in the degrees of encapsulation in objects and agents.
Encapsulation means to draw a boundary between the entity and its environment and protect the entity by
controlling the accesses across the boundary. In object-oriented languages, the boundary enhances the access to
the object’'s state via method calls so that the integrity of the objects state can be ensured. However, such a
boundary is weak because al entities in the environment of an object can send a message to the object and
hence call the method. The object cannot even tell where the message came from. In other words, an object's
boundary is open to the environment. In contrast, an agent should be able to selectively respond to the actions
and changes of certain entities in the environment rather than to everything. In agent-oriented systems, the
encapsulation of behaviour means that each agent has its own subset of entities in the environment that can
influence its behaviour. Such a subset of entities must be specified explicitly, rather than defined by the
language uniformly. Again, it is easy to see that objects can be considered as special cases of agents in
degenerate form when the subset of influential entities contains al entities in the environment.
Therefore, the specification of an agent-based system must also specify how the environment affects the
behaviour of the agent. To do so, one must first answer the question what is the environment of an agent. A
simple answer to this question is that in a multi-agent system, the environment of an agent consists of a number
of agents and a number of objects. However, as discussed above, an object is a degenerate form of agent. The
behaviour of an object is simply to respond to every message sent to the object by executing the corresponding
method. Based on this understanding of the relationship, our second design decision is to specify a multi-agent
system as a set of agents, nothing but agents. In other words, agent is the only type of computation unit in an
agent-oriented system. This can be represented in the form of pseudo-eguations as follows.
Multi-agent system MAS = { Agent,} o 3

Environment(Agent, MAS) 0 MAS—{Agent} 4
2.4. Communications between agents
Communication plays a crucia role in multi-agent systems. Agents must communicate with each other to
collaborate, negotiate, and to compete with each other as well. The discussion so far has not explicitly addressed
the communication issues of multi-agent systems. However, dividing an agent's states and actions into visible
and invisible parts has already given agents the capability of communicating with each other. Human beings
communicate with each other by taking actions. People speak, shout, sing, laugh, cry, and write to communicate,
even make gesture or other body languages movements. All these means of communication are 'visible' actions.
People also utilise visible states to communicate. For example, the colour of traffic lights indicates whether a
pedestrian should cross the road. One may show a smiling face to indicate he/she is happy and a sad face to
indicate that he/she is unhappy. These means of communication are based on visible states. However, taking a
visible action or assigning values to visible state variables is only half of the communication process. The agent
at the receiver side of the communication must observe the visible actions and /or read the values of the visible
state in order to catch the signal sent out by the sender. The model proposed above already assigned agents the

ability of communication, since agents as senders can take visible actions and change their visible states and
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agents as receivers can observe the visible actions and the visible states. The details of the protocols and
meanings of such actions and state values should be |eft for software engineers to specify rather than pre-defined
by the model or the language. The SLABS language based on this model is capable of specifying agent
communication languages and protocols. An example of SLABS specification of a ssmple communication
protocol can be found in [38]. Section 5.3 also gives an example of SLABS specification that is related to the
communication and collaboration between agents.

The above discussion can be summarised by the following pseudo-equations.

Communication from agent A to B = A.Action + B.Observation (5)

3. A formal model of multi-agent systems

This section defines a formal model of multi-agent systems based on the informal model presented in the
previous section. It is used as the semantic domain to define the semantics of the SLABS language in section 4.3.
3.1. Statesand Actions

A multi-agent system consists of a finite set of agents {A;, A, ...A.}. These agents belong to a hierarchy of
castes C,, C,, ...C. A binary relation <, called the inheritance relation, is defined on the castes. The inheritance
relation is required to be a partial ordering on castes. Let A C denote that agent A belongsto caste C. Itisaso
required that for all agents A and castes C and C/,

AOQ] C<C'= AOC". (6)

Each agent A has its own state space, which is anon-empty set S, . Each state consists of two disjoint parts, the
externally visible part and the internal part. The external part is visible to all agents in the system, while the
internal part is not visible to any other agentsin the system. Therefore, S, =S; xS, , where S} and S, are the
externally visible part and the internal part of the state space, respectively. An agent is capable of taking an
action with various parameters at any particular time when it decides to do so. The set of actionsis a finite non-

empty set, denoted by %, . An action can also be either externally visible or internal (hence externally invisible).
It is assumed that an agent cannot take two actions at the same time. Thus, =, = 2% [X |, where =% n 2 = [
and Z, isthe subset of externally visible actions and 3, is the subset of internal actions.

3.2. Runand Time
Agents behave in real-time concurrently and autonomously. To capture the real-time features, an agent's

behaviour is modelled by a set of sequences of events indexed by the time when the events happen. A runr of a

multi-agent system is a mapping from time T to the set rJ S, XZ, . The behaviour of a multi-agent system is

defined to be a set R of possible runs. Instead of defining a fixed set of time moments, the set of time moments

are characterised by a collection of properties.

Definition 1.

Let T be anon-empty subset of real numbers. T is said to be atime index set, or simply the time, if
1) Bounded in the past, i.e. 0,0 0ot T(t, t); (7
2) Unbounded in the future, i.e. OrOR.OT.(t>); (8)
3) Uniformity, i.e. Oty b, OT. (>t = ta+ -1, 0T). 9
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0

The following lemma states that a time index set T can be characterised by two real numbers: the start time t,
and the time resolution p, where 0=0.

Lemma 1.

For all subsets T of real numbers that satisfy properties of Eqg. (7)~(9), we have that either T={t, | t, =ty +
np, n=0, 1, 2, ... } for some positive real number p, or T={r | rORand r = to}. In the former case, the time index
set T is called discrete, and in the latter case, T is called continuous.

Proof.

Let o(T) =inf {t-s| s, tOT Ot>s}. By using properties of Eq. (7)~(9), it iseasy to prove that when o >0, T=(t, |
th=th+np,n=0,1, 2, ..}. When o=0, T={r |rORand r = tg}. [

Thereal number o(T) defined above in the proof is called the resolution of the timeindex set T.

On the other hand, it is easy to see that any discrete time index set of the form T={t, |t.=to + np,n=0, 1, 2, ... }
satisfies the properties of Eq. (7)~(9). Any subset T={r | rOR and r > tg} of real numbers also satisfies the
propertiesof Eq. (7)~(9). Therefore, the model defined below applies to both discrete time index and continuous
time index. Without loss of generality, subsequently, it is assumed that to = 0.

For any given runr of the system, amapping hfromTto S, x%, iscalled the run of agent A in the context of r,

if 0O T.h(§ r,(t), where r,(t) isthe part of r(t) in S,xX, . Let rp denote the run of agent A in the context

of r, and Ry ={ra | r LR} denote the behaviour of agent A in the system.

3.3. Assumptions

In the construction of the model, it is assumed that a multi-agent system has the following properties.

=  |nstantaneous actions

It is assumed that actions are instantaneous, i.e. they take no time to complete. This means, actions taken at
different times are considered as different events even if they are the same action. Notice that, an event that
takes a period of time to complete can be modelled by two actions: one for the start of the event and one for the
finish of the event.

=  Slent moments

It is assumed that an agent can take no action at atime moment t. In such a case, the agent is silent at time t. For
the sake of convenience, silence is treated as a special action and denoted by the symbol 7. Therefore, it is
assumed that for all agents A, 7(X .

= Separatebility

It is also assumed that the actions taken by an agent are separable, i.e. for al runsr, and all agents A, there exists

aread number >0 suchthat ry(t)Z27=0% T X # £=r7(X)=1), where r{(t) denotes the action

taken by agent A at time moment t in the run r. Consequently, an agent can take at most a countable number of
non-silent actionsin its lifetime.

= |nitial time and sleeping state

An agent can join the system at atime, say tinia, later than the system's start time. The agent A is sleeping before
time moment tiniea. A special symbol [ S, is used to indicate such a state of an agent. Of coursg, it is required

that if an agent is sleeping, it will take no action but silence, i.e. Of T.(rs(®0 =rf(t)=7), where
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r°(t) denotes agent A's state at time moment t in the run r. The initial time t;,,,0f an agent Ainarunr can be
formally defined asthe time moment tOT that r2(t) 2000 &' &t t=r () =0).

3.4. Agent'sview of the environment
The global state of the system at any particular time moment belongs to the set |_J S, xZ, . Each agent can

view other agents' externally visible states and actions, but it may only selectively observe some of the agents
external states and actions. These agents constitute the environment of the agent. The environment of an agent A

is denoted by Env, O{A,A,,...,A} . Therefore, an agent A can only view a part of the state of the system,

which belongs to the set Sy xy . A given agent A's view of the system is defined as a mapping Viewa

XUOEN,

from global state |_J S, xZ, to ﬂ Sy x5 asfollows:
1= XUEVN,

Vi, ({55,615 56 (5050600) = ({565, (5,01 )) (10
where Env, :{Aqu""’Ak} , i, =v implies that § =s,, ¢ =¢, if ¢, (X} ,and ¢ =7 if ¢, (X} . An

agent's behaviour is influenced by its view of the system's state. Because an agent's view is only a part of the
system's globa state, two different global states become equivaent from its view. The following formally
defines the relation.

0x, ¥ |j$,gz a (X=py = Viewa(X)=Viewa(y)). (11)

Itiseasy to seethat the binary relation =, isan equivalencerelation.

3.5. Execution history

Although an agent may not be able to distinguish two global states, the history of the run leading to states may
be different. An intelligent agent may decide to take different actions according to the history rather than only
depending on the visible global state. Let t be any given time moment. The history of arunr up to t, written as

rit, is amapping that is the restriction of r to the subset {xs t|xDT} of T. The history of arun uptotin the

view of an agent A, denoted by Viewx(r | t), is the mapping from the subset {x < t|x DT} of time momentsto its
views of the system's statesin the run r. It can be defined as follows.
View, (r 1 t)(u)= View,(r(u)) , foral uOT and u<t. (12)
Similarly, Viewx(r) is defined to denote an agent A's view of arun r, and View,(rg) to denote agent A's view of
agent B's behaviour in a run r. Notice that, the symbol View, is now overloaded. The equivalence relation
defined on the state space can be extended to histories and runs as follows.
rL=,r = View,(r,)=View,(r,) (13)
(ntt)=, (! t)e View,(r,l t)= View,(r,l t) (19)
Let A be any given agent in a multi-agent system. Let ¢y, ..., C,, ... 0X, —={7} be the sequence of non-silent
actions taken by agent Ainarunr and ty, ty, ..., t,, ...OT are the time moments when the actions are taken place,

ie ry(t)=c forali=12, .. n, .. Atatime moment tOT, c,is caled agent A's current action, and c,.; the
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next action, if t, <t <t,,,. The expression Current(ra! t)=<t,, S,, C,> denotes that agent A's current action is c,

which was taken at time t, and its state was s,. Similarly, the expression Next(ra! t)=<tn.1, Sh+1, Cne1> denotes that
the next action taken by agent Ainarunr a time moment t is ¢y, a the time moment t,.; with state s,.;. The
expression Events(ral t)=<<ty, 5, ¢;>, ..., <tn, S», Cn>> denotes the sequence of events taken by agent A in the run

r up to time moment t.
4. TheSLABSIlanguage

This section defines the syntax and semantics of the SLABS language. The meta-language to define the syntax
is EBNF, which is given in Table 3. In a syntax definition, the meta-symbols are in bold font such as ::=.

Terminals arein italic font such as Var. Non-terminals are in normal font such as agent-description.

Table 3. The meta-symbolsin EBNF

Name Symbol Means
Definition = A ::= B meansthat A isdefined asB.
Concatenation AB meansthat A isfollowed by B.
Optional [1] [A] meansthat A is optional.
Choice | A| B means either A or B.
Repetition { 1} { A} meansthat A may appear any timesincluding zero times

or more times.

Repetition with {1} { A/ B } means a sequence of A separated by B, where the

Separator number of A's can be zero or more. For example, AB AB A.
Positive { ¥ { A} meansthat A may appear at least once.

repetition

Parenthesis () They are used to change preference.

4.1. Agentsand Castes
The specification of a multi-agent system consists of a set of specifications of agents and castes.

System ::= {Agent-description | caste-description}*
There is a most general caste, called AGENT, such that all castes in SLABS are sub-castes of AGENT. The
main body of a caste specification in SLABS contains a description of the structure of its states and actions, a
description of its behaviour, and a description of its environment. The syntax of caste descriptions is given
below in EBNF. It can aso be equivalently represented in a graphic form similar to the schemain Z [39].

caste-description ::=
Caste name [ <= { caste-name [ ( instantiation) ]/, }*; ]
[ environment-description ; ]

[ structure-description ; ]
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[ behavior-description ; ]

end name

— Name <= castes (instantiation)

Visible state-variables and actions

Invisible state-variables and actions

Environment
description
I

Behaviour-specification

Figure 2. Graphic form of caste specification

The clause 'Caste New_Caste <= Caste;, Caste,, ..., Caste,' specifies that the defined caste New_Caste is a sub-
caste of Caste;, Caste,, ..., Caste,. That is, the defined caste inherits the structure, behaviour and environment
descriptions of existing castes Caste;,, Caste,, ..., Caste,, When no inherited caste is given in a caste
specification, it is by default a sub-caste of the predefined caste AGENT.
The SLABS language enables software engineers to explicitly specify the environment of an agent as a subset of
the agents in the system that may influence its behaviour. The syntax for the description of environments is
given below.

Environment-description ::=

ENVIRONMENT { ( agent-name | All: caste-name | variable : caste-name )/, }*

where an agent name indicates a specific agent in the system. 'All' means that all the agents of the caste have
influence on its behaviour. As atemplate of agents, a caste may have parameters. The variables specified in the
form of “identifier: class-name” in the environment description are parameters. Such an identifier can be used as
an agent name in the behaviour description of the caste. When instantiated, it indicates an agent in the caste. The
instantiation clause gives the details about how the parameters are instantiated.

Instantiation ::= { variable := agent-name /, }*
In SLABS, the state space of an agent is described by a set of variables with keyword VAR. The set of actionsis
described by a set of identifiers with keyword ACTION. An action can have a number of parameters. An
asterisk before the identifier indicates invisible variables and actions.

structure-description ::= [ Var {[ *] identifier: type / ; }* ] [ Action { [*] action / ;}*]

action ::=identifier | identifier ({ [ parameter: ] type/, }*)
In a caste specification (and agent specification as well), the additional state variables and actions should have
no overlap with the state variables, action identifiers and parameter variables defined in the super-castes.
Moreover, the castes Caste;, Caste,, ..., Caste, that it inherits should have no common variables, no common
action identifiers, and no common parameters. However, they can overlap with agent names in the environment
descriptions.
In SLABS, every agent must be an instance of a caste. When caste name(s) are given in an agent specification,
the agent is an instance of the castes. If no caste name is given in an agent specification, the caste of the agent is
by default AGENT. If an agent is an instance of a caste, it must have al the structural, behaviour and
environment descriptions given in the caste's specification. Moreover, it may have additional structural,

behaviour and environment descriptions to extend its state space, to enhance its ability to take actions and to
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widen its view of the environment. The following gives the syntax of agent specifications in SLABS. It can also
be represented in a graphic form equivalently.
agent-description ::=
Agent name [ : { caste-name [ (instantiation) ]/, }*;]
[ environment-description ; ]
[ structure-description ; ]
[ behavior-description ]

end name

——Name: castes (Instantiation)
Visible state-variables and actions

Invisible state-variables and actions

Environment
description

Behaviour-specification

Figure 3. Graphic form of agent specification

If an agent is specified as an instance of a caste, al the parameters in the specification of the caste must be
instantiated in the specification of the agent.
4.2. Behaviour
As discussed in section 2, an agent's autonomy is its capability of controlling its internal state and action. An
agent changes its state and takes an action as a response to the situation in its environment rather than simply as
aresponse to arequest of its services. Various models of agents such as the BDI model have been proposed and
investigated to represent and reason about agent's autonomous behaviour, e.g. [14, 17]. The structure description
facility that SLABS provides is intended to specify such a structural mode of agents. However, a structural
model alone is insufficient to specify agent's autonomous behaviour. A facility is required to specify explicitly
how the structura model (such as the belief, desire and intention model) is related to actions and how
observations of the environment are related to the changes at internal states. Among many possible forms of
such a facility such as procedural specifications and temporal logic formulas, the author of this paper believes
that the most effective formisaset of transition rules.
(a) Rules
Based on the characteristics of agent's behaviour, it is recognised that arule should contain the following parts:
* Rule-name: which enables us to indicate which ruleis used in the reasoning of the system's behaviour;
» Scenario: which specifiesthe situation when aruleis applicable;
» Transition: which specifies the action or state change to take place when the ruleis applied;
» Probability distribution: the probability that the rule is applied when the scenario occurs,
» Pre-condition: the condition for the action to take place.
The syntax of aruleis given below.

Behaviour-rule ::=[ < rule-name >] pattern | [ prob ] —> event, [Scenario] [where pre-cond] ;
In a behaviour rule, the pattern on the left-hand-side of the —> symbol describes the pattern of the agent's
previous behaviour. The scenario describes the situation in the environment, which specifies the behaviours of

the agents in its environment. The where-clause is the pre-condition of the action to be taken by the agent. The
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event on the right-hand-side of —> symbol is the action to be taken when the scenario happens and if the pre-
condition is satisfied. The agent may have a non-deterministic behaviour. The expression prob in a behaviour
rule is an expression that defines the probability for the agent to take the specified action on the scenario.
SLABS aso alows specification of non-deterministic behaviour without giving the probability distribution. In
such cases, the probability expression is omitted. It means that the probability is greater than 0 and less than 1.
(b) Scenarios
The notion of scenario has been used in a number of areas in computing with different meanings. For example,
in UML, scenarios are described as the sequences of messages passing between the system and the objects that
represent the users. In the application of scenarios in testing software requirements [40], a scenario is described
as an activity list that represents a task of human computer interaction. Generally speaking, a scenario is a set of
situations that might occur in the operation of a system [41]. No matter how scenarios are described, their most
fundamental characteristic is to put events in the context of the history of behaviour. Here, in a multi-agent
system, a scenario isaset of typical combinations of the behaviours of related agents in the system.
The use of scenarios and use cases in requirements analysis and specification has been an important part of
object-oriented analysis; see for example, [42]. However, because an object must respond in a uniform way to
all messages that call a method, there is a huge gap between scenarios and requirements models. The object-
oriented paradigm is lack of a method to analyse the consistency between use cases (or scenarios) and
requirements models and a method to synthesise requirements models from use cases or scenarios, athough
such methods exist for structured analysis [41]. As extensions to OO methodology, the use of scenarios in agent
oriented analysis and design has been proposed by a number of researchers, for example [27, 43, 44].
In the design of SLABS, it was recognised that scenarios can be more directly used to describe agent behaviour.
The gap between scenarios and requirements models no longer exists in agent-based systems because the agent
itself controls its behaviour. Its responses can be different from scenario to scenario rather than have to be
uniform to all messages that call a method.
In SLABS, a basic form of scenario description is a set of patterns. Each pattern describes the behaviour of an
agent in the environment by a sequence of observable state changes and observable actions. A pattern is written
in the form of [py, pa, ..., Pn] Where n=0. Table 4 gives the meanings of the patterns.

pattern ::=[{ event || [ constraint]/ , }]

event ::= [ time-stamp : ] [ action] [ ! state-assertion ]

action ::= atomic-pattern [ * arithmetic-expression ]

atomic-pattern ::=$ | ~ | action-variable | action-identifier [ ( { arithmetic-expression/, }) ]

time-stamp ::= arithmetic-expression
where aconstraint isafirst order predicate.

Table 4. Meanings of the patterns

Pattern M eaning
$ The wild card, it matches with all actions
0 The silence event
Action variable It matches an action
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Pk A sequence of k events that match pattern P

Action (a;, a5, ...a) | An action that takes place with parameters match (a, ay, ...a)

! Predicate The state of the agent satisfies the predicate

[P1y--s Pl The previous sequence of events match the patterns py, ..., pn

In addition to the pattern of individual agents behaviour, SLABS aso provides facilities to describe global
situations of the whole system. The syntax of scenariosis given below.
Scenario ::=
Agent-Name : pattern
| arithmetic-relation
| Ofarithmeticexp ] Agent-Var [J Caste-Name : Pattern
| O Agent-Var [0 Caste-Name: Pattern
| Scenario & Scenario
| Scenario [J Scenario
| ~ Scenario
where an arithmetic relation can contain an expression in the form of gAgent-var(iCaste.Pattern, which is an
expression whose value is the number of agents in the caste whose behaviour matches the pattern.
arithmetic-relation ::= expression relational-op expression
expression ::= atomic-expression | ( expression ) | expression numerical-op expression
atomic-expression ::= numerical-constants | numerical-variable | . Agent-var[JCaste.Pattern
relational-op =< |>|<|=|=|#
numerical-op ::=+ |- | /| *

The semantics of scenario descriptions are givenin Table 5.

Table 5. Semantics of scenario descriptions

Scenario Meaning

A:P The situation when agent A's behaviour matches pattern P

OXOC: P | The situation when the behaviours of all agentsin caste C match pattern P

0. xoc p The situation when there exists at least m agents in caste C whose behaviour matches
() ' pattern P where the default value of the optional expression mis1

UuXOC: P | The number of agents in caste C whose behaviour matches pattern P

S &S The situation when both scenario S; and scenario S, are true

S, 0S, The situation when either scenario S, or scenario S, or both are true

- S The situation when scenario Sis not true

The following are some examples of scenarios.
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(1) OpOParties: taooo: [nominate-president(Bush)] || tzooo=(March/2000).

It describes the situation that at least one agent in the caste called Parties took the action nominate-president(Bush)
at the time of March 2000.

(2) (uxO Voter: [ vote(Bush) ] > x Voter: [vote(Gore)])

It describes the situation that there are more agents in the caste Voter who took the action of vote(Bush) than those
in the caste who took the action of vote(Gore).

4.3. Formal semantics

Given an agent specification, it is easy to see how the structural description corresponds to the visible state
space, invisible state space, visible actions and invisible actions in the formal model given in section 3. It isalso
easy to see how the environment of an agent defined in the formal model can be uniquely determined by any
given specification in SLABS. These correspondence relationships constitute the static semantics of the SLABS
language. For the sake of space, the formal definition of these correspondences between the syntax and the
formal model is omitted. The following defines the dynamic semantics of the language.

(a) Pattern matching

Let p be apattern. The expressionB:r, | t | p denotes that from agent B's viewpoint the behaviour of an agent
Ainarunr matches the pattern p at time moment t. The relationship |= can be defined inductively as follows.
Definition 2.

An agent A's behaviour in a run r matches a pattern p at time moment t from an agent B's point of view,

writtenB:r, | t| p, if there is an assignment a such that B:r, | t|, p, which is inductively defined as

follows.

= Biralt|=,[9$], for al agents A, B and al runsr and time momentst;

" Biralt|=,[7], if Viewg(ral )(t) = 7,

= Biralt =4[ x], if Current(Viewg(ralt)) = a(x);

= Biralt |54 te C(e, &, ...&) ! pred(s) || Constraint], if Current(Viewg(ralt)) = <t, S C(a(ey),
a(e),...,a(e,))>, Ssatisfies the predicate a(pred(s)), a(t)=t., and a(Constraint) istrue.

= Biralt |54 [pK], if Events(Viewg(ral t))=<...., <ty, S, &>, <tp, S, >, ..., <t, S,, ¢,>>, where v = a(k), and
forali=12,..,v,Biralti =4[ p];

= Biralt |54 [Pw P2, - Py, if Bvents(Viewg(ral t))=<..., <ti, s, ¢;>, <tp, S, &>, ..., <t,, S, ¢,>>, and for al
i=1,2,...,V,Biralti F [ P ]- N

Informally, B:ralt [=, p means that agent A's behaviour in arun r matches a pattern p at time moment t from an

agent B's point of view under assignment a. An assignment a for a set X of variables is a mapping that assigns

valuesto variablesin X.

(b) Scenario satisfaction

Let Sc be a scenario. The expression A:r | t | S denotes that from agent A's point of view, the scenario Sc

occurs at timemomenttinarunr.

Definition 3.

From an agent A's point of view, a scenario Sc occurs at time moment t in arunr, iff A:r | t| Sc, which is

inductively defined as follows.
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= ArltEBipe Airgl tf p; (15)
= ArltEF& 0SS, Ain H S andAin H S (16)
= ArltfF-Se A:rl t§ Sisnottrue; a7
= ArltFOK G(x:Sey  A:ir, | &, foralagentsxinG ; (18)
= ArrltEDO G(x:Sy  Ain, %| S, forsomeagentxinG . (29)
0

(c) Rules

Let R be the set of runs in a forma model of an agent-based system. To define the semantics of rules, the
following first defines a probabilistic space.
For each scenario Sc, agent A, and constraint Cn, which is a predicate Cn(r, t) — {tt, ff} ontherunr up to time

moment t, define RO(Sc, A, Cn) as asubset of historiesH={r!t | rOR, tOT} such that
RO(Sc, A, Cn)y={r i t|rOR,tOT7,A:r L tF S ,Cn(r,t) } (20)

Let H™ be the set that contains H and all the subsets in the form of RO(Sc, A, Cn) and closed under set
complement, finite intersections and countable unions. Therefore, H™ congtitutes a o—field. A probabilistic
space can then be constructed over the o—field H™ by associating a probabilistic distribution over H™. Let
Pr(RO(Sc, A, Cn)) be the probability that the scenario Sc with constraint Cn occurs from agent A's point of view.
Notice that agent A's behaviour matches a pattern p can be expressed equivalently as a scenario (A:p)a. The
ordered pair <R, Pr> is called the probabilistic model of the agent-based system.
Definition 4.
Let Ra="p |(exp) — e if Sc where Cn' be arule for agent A, where Scis a scenario and Cn isaconstraint. It is said
that in a probabilistic agent-based system <R, Pr> the agent A's behaviours satisfy the rule R, and write <R, Pr>:
A= Ry, if

Pr(RO(A:ptte, A, True) | RO(SC” (A:p), A, Cn) ) = exp, (21)
where p#e = [Py, Pz, -, P, €], if p=[p1, P2, +s Pr]. [

5. Examples

This section gives three examples to illustrate SLABS' style and expressiveness. These examples demonstrate
that various types of agent-based systems can be formal specified in the SLABS language and the formal model
of agent-based systems. The readers are referred to, for example, [29, 30] for forma specification of agent-
based systems in other existing specification languages.

5.1. Ants

The multi-agent system of ants is a typical example of a reactive agent system that may demonstrate emergent
behaviours. In this system, food is scattered in the field, and ants try to find food and to move the food back to
their home. When an ant walks across the field, its hormone spreads on the path in the field. The density of ant's

hormone decreases as time ticks away. The food in the field decreases when taken by the ants.
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——  Field

VAR Hormone: NxN - N; Food: NxN - N;

[$] |- Hormone'(n,m) = Hormone(n,m)-1, if ~OxOAnNts:[!position=(n,m)] ;
[$] |- Hormone'(n,m) = Hormone(n,m)+100, if (XOAnts:[!position=(n,m)]
[$] |- Food'(n,m)=Food(n,m)-k, if (Tk]xOAnts;[Take Food ! position=(n,m)]

Figure 4. Specification of the field in the ants system
An ant can move around in the field searching for food. In such a search mode, the ant's movement is rather
random. Once it has found some food, it takes a bite and carries it back home by tracing the hormone it left
behind its path. Once back home with food, the ant comes back with other ants to the location to get more food.
In the specification of ants, each ant can be in one of three mental states, which are search, way _back and
way_out. Here, way_back is the state when an ant has found some food in the field and is carrying some food
back home. An ant isin the state of way_out when it goes to the field to get food after an ant comes home with

food. The following gives a specification of the Ants.

— Ants

VAR Position: NxN;
ACTION Move(Direction); Take Food; Save Food;

VAR State: { search, way_back, way_out} ;

| Field; al: Ants |

[Move(u) ! State=search] |(0.5) - Move(u)!(position' = New(position, u)),
if field: [!Food(position)<g];
[Move(u) ! State=search] |(0.5) -~ Move(v)!(position' = New(position, v)),
if field:[! Food(position)<g]; where uzv
[$] |- Take Food!State = Way_back, if field: [!Food(position)=€];
[!State = Way_back & position # home] |- Move(u),
where u=arg Min',opirecion fi€ld: Hormone(New(position, u));
['State = Way_back & position = home] |- Save Food! State = Way_out;
[$] |(0.8) - ! State=Way_out, if (XOAnNts.[Save Food]
['State=Way_out] |- Move(u), where u=arg Max,rpirecion field:Hormone(New(position, u));

Figure 5. Specification of the Ants caste
In the above specification, Home, Direction and the function New(position, u) are defined as follows using a

notation borrowed from Z for specifying global conceptsin aformal specification.

Home (0, 0)
Direction [{ east, west, north, south}
New: NxNx Direction — NxN

New((n, m), east ) (n+1, m);
New((n, m), west ) (n=1, m), if n> 0;
New((n, m), north) = (n, m+1);
New((n, m), south ) (n, m=1),if m> 0.

Figure 6. Specification of global conceptsin the ants systems
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5.2. The Maxims system

Maes Maxims system [45] is a personal assistant agent for handling emails. The system consists of Eudora and
the user as the environment of the Maxims agent.

Eudora contains a number of mail folders and can perform a number of operations on emails. The operations
include reading a mail in the inbox, deleting a mail from the mail box, archiving a mail in a folder, sending a
mail to a number of addresses, and forwarding a mail to a number of addresses. For the sake of simplicity, it is
assumed that there is only one mailbox named as inbox in the following specification of the software. The
behaviour of Eudora is a typical object's behaviour. That is, whoever sends a command to Eudora, it will
perform the corresponding operation. This behaviour is explicitly specified in the following SLABS
specification through two facilities. Firstly, in the specification of its environment, it is made clear that all agents
in the environment have influences on its behaviour. Secondly, in the specification of the behaviour rules, it is

clearly specified that the only condition for Eudora to take an action is that some agent sends a command to ask

it to do so.
——  Eudora
VAR Inbox: list(Mail) ; Folders: string — list(Mail);
ACTION Read(Mail); Delete(Mail); Archive(Mail, Folder);
Send(Mail, list(address)); Forward(Mail, list(address));

EI: Agent
<Read> [ !mailOInbox] |- Read(mail), if DuOAgent:]Command(Eudora, Read(mail))];
<Delete> [ !maildInbox] |- Delete(mail) ! mailCInbox,

if CLOAgent:]Command(Eudora, Delete(mail))];
<Archive> [ ImailOInbox] |- Archive(mail, folder) 'mailJlnbox & mailOfolder,

if CLOAgent: [Command(Eudora, Archive(mail, folder))];
<Send> [ !mailOInbox] |- Send(mail, list(address)),

if CLOAgent:{Command(Eudora, Send(mail, list(address)))];
<Forward> [ 'maildInbox] |- Forward(mail, list(address)),

if CLOAgent:{Command(Eudora, Forward(mail, list(address)))];

Figure 7. Specification of Eudorain Mag's Maxim system
A user's behaviour is non-deterministic. The specification given below only shows the possible actions a user
may take. There are two types of such actions. One is to command an agent to take an action; the other isto
grant a permission of taking a suggested action. Notice that, the rules that specify the user's behaviour have an
unknown probabilistic distribution.

User
ACTION Command(Agent, Action) (* Command the agent to take an action *)
Grant(Agent, Action) (* Grant the agent to take a suggested action *)

Edora, Maxim

<Grant suggestion>  [$] |- Grant(Maxim, action); if Maxim: [Suggest(user, action)]
<Not grant suggestion>[$] | -~ Command(Eudora, another-action);

if Maxim: [Suggest(user, action)]

where (another-action # action)
<Act-as-Predicted> [$] |- action, if Maxim: [Predict(user, action)]
<Act-not-Predicted> [$] |- action, if Maxim: [Predict(user, another-action)]

where (another-action # action)
<Set do-it level> [$] |- Command(Maxim, set-do-it(r)); where (O<r<1)
<Settell-melevel>  [$] |~ Command(Maxim, set-tell-me(r)); where (O<r<1)

Figure 8. Specification of the User in Mag's maxim system
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Maxims observes the user's actions and the state of Eudora. When amail is delivered to Eudora's Inbox, Maxim
finds out the best match in the set of emails that user has handled and the action that the user has taken in the
situation. It, then, makes a suggestion or a prediction of user's actions. It also communicates with the user
through facial expressions. Once the user grants a suggestion, Maxims commands Eudora to perform the action.
These are specified by a set of rules. The <Command> rule states that maxims can command Eudora to take an
operation on behalf of the user if its confidence level is greater than or equa to the do-it threshold. The
<Suggest> rule states that it makes a suggestion if the confidence level is higher than tell-me threshold but lower
than do-it. The <Predict> rule states that it predicts the user's action if the confidence level is lower than tell-me.
There are also rules in the specification of Maxims that specify its reaction to the user's responses to the agent's
suggestions and predictions. For the sake of space, the definition of the function Best-match: (Mail x List(Mail x
Action)) — (Action x Confidence-level) is omitted.

——  Maxims

VAR Facia-expression: { Working, Suggestion, Unsure, Gratified, Pleased, Surprised, Confused}
Action Command(Agent, Action); Suggest(Agent, Action); Predict(Agent, Action);

VAR Tél-me-levd, do-it-level : Real

EJser, Eudora

<Suggest> [$] |- Suggest(user, action) ! Facial-expression = Suggestion,
if Eudora: ['mailCInbox] & user: [X[n]"K],
where (action, confidence) = Best-match(mail, { X[n]"k| n=1,..,k})
& tell-me-level < confidence < do-it-level
<Predict> [$] |- Predict(user, action) ! Facial-expression = Unsure,
if Eudora: ['mailOInbox] & user: [X[n]"K],
where (action, confidence) = Best-match(mail, { X[n]"k| n=1,..,k})
& confidence < tell-me-level
<Work> [$] |- action! Facial-expression = Working, if Eudora: ['mail0Inbox] & user: [X[n]"K],
where (action, confidence)= Best-match(mail, { X[n]*k| n=1,..,k})
& do-it-level-level < confidence
<Set tell-me-level> [$] |- ! tell-me-level =, if user: [Command(Self, set-tell-me(r))]
<Set do-it-level> [$] |- ! do-it-level =, if user: [Command(Self, set-do-it(r))]
<Gratified> [Suggest(user, action)] |- action ! Facial-expression = Gratified,
if user:[Grant(sdlf, action)];
<Surprised>  [Suggest(user, action)]| - ! Facial-expression = Surprised, if user:[another-action],
where another-action # action
<Pleased> [Predict(user, action)] |- ! Facial-expression = Pleased, if user:[action];
<Confused> [Predict(user, action)] |- ! Facial-expression = Confused, if user:[another-action],
where another-action # action
<Command> [Suggest(user, action] |- action! Facial-expression = Working,
if user:[Grant(self, action)]

Figure 9. Specification of the behaviour of Mag's Maxim system

Maxims' autonomous behaviour is reflected in the specification in SLABS. Firstly, it selectively observes the
environment. It observes the state of Eudora to determine if there is a mail in its Inbox. It also observes the
action taken by the user to learn from the user's behaviour. Secondly, as discussed above, its behaviour is not
simply determined by the event, but also the history of the user's behaviour. It can even take actions without the
user's command. Of course, an agent may also have a part of behaviour that simply obeys the user's command.
The maxims agent obeys the user's commands on setting tell-me and do-it thresholds. The rules <Set do-it-
level> and <Set tell-me-level> specify such behaviour.

5.3. Speech-act and collaborative behaviour

In a multi-agent system, agents communicate to each other and collaborate with each other. To illustrate
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SLABS' capability of specification of such behaviour, the following example describes the differences between
illocutionary forces in communications as their effects on agent behaviour. Asin [46, 47], illocutionary forces

are classified into 7 types.

‘ Force [ assertive, directive, commissive, permissive, prohibitive, declarative, expressive}

Figure 10. lllocutionary forces

A caste of agents, called social-agents, is defined, which can communicate with each other. Informally, the action

Communicate(X, Y, Z) is to send a message Y to agent X with illocutionary force Z, where the message Y is an

Social-agents
|| ACTION Communicate(Agent, Action, Force)

action.

Figure 11. Specification of social-agents
The meaning of the communication depends on the illocutionary force, which is understood by all the agents in
the society. An approach to the formal specification of the meaning of an illocutionary force is to define a set of
rules for how agents should interpret such communications. However, in a human society, people play different
roles. The same sentence may have different effects depending on who says it to whom. For example, a
commander can give an order to a soldier and expect the soldier to perform the action as ordered. However, if
the same message is communicated in the opposite direction from the soldier to the commander, it would not be
socially acceptable and one would not expect any action to be taken. Therefore, instead of giving a set of
behaviour rules for all agents to interpret the meanings of illocutionary forces in the same way, this example
adds one more twist to show how to specify the situation in which different agents can interpret them differently
according to their roles in the system. The situation specified in the example is a work place, where the agents
are divided into two groups: the workers who perform various tasks and the managers who assign tasks to

workers. Here, the details about how a manager makes management decisions are left open.

Managers <= Social-agents
"=

| All: Workers |
Il

Figure 12. Specification of Manager agents as sub-caste of Social-agents
There are two basic requirements of aworker agent. One is to follow the orders of its manager; and the other is
to report to its manager when it finishes a task. The <Obey-Order> rule in the caste Workers specifies that a
worker agent must take the order from its manager agent Boss (which is a parameter of the caste) and perform
the action as the boss ordered. The <Report> rule specifies that after aworker agent finishes ajob, it must report
to its boss. Every worker agent must satisfy these rules, but a manager agent does not need to. Here, the

situation is simplified so that managers themselves are not organised in a hierarchical structure.
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||= Workers <= Social-agents

| Boss: Managers |

<Obey-Order> [$] |- action, if Boss;[Communicate(X, action, directive)];
where (X = Self or X = All)

<Report> [action ! state] |- Communicate(Boss, action ! state, declarative);
where (action # Communicate(Boss, X, Y))

Figure 13. Specification of Workers' behaviour
The persondlity of an agent can aso be described by rules governing its behaviour. For example, a naughty
apprentice would take any chance to play (i.e. take actions that are neither ordered nor approved by the boss,
even prohibited by the boss, when the boss is busy in communication with other workers and does not give him
an order for awhile). However, as a worker, an apprentice will still obey the orders of the boss. Such behaviour
is specified in the caste Apprentices.

Apprentices <= Workers
||=

Lé;oss: Managers
| |

<Freetime> [$] - action; if Boss: [Communicate(X,, Mp, Fr)*5] =15},
where On0{ 1.5} . (X,zSdlf & XZAll & F.zdirective)

Figure 14. Specification of Apprentices’ behaviour

In contrast, an experienced worker will not only follow the rules but also do more than what is ordered.

Experienced <= Workers

Boss: Managers

<Active> [$] |- Communicate(Boss, action, commisive);
if Boss: [Communicate(X, action, expressive)],
where (X = Self or X = All)
<Keep promises> [Communicate(X, action, commisive), $*k ] |- action; where k < oo;
<Followsrules> [$] |- anyaction; if Boss:[Communicate(X, action, prohibitive), $°k]
where anyaction # action & (X= Self or X=All)
& $# Communicate(X, action, permissive)

Figure 15. Specification of Experienced Workers' behaviour
The <Active> rule specifies that if the boss asked everybody or the worker in particular if there is any volunteer
to take an action, the worker would do that. The <Keep promises> rule specifies that if the agent promised to do
something, he will eventually take the action. The <Follows rules> rule specifies that the agent will never take

an action that the boss prohibited him or everybody to do, unless the boss subsequently permitted him to do so.

6. Conclusion

This paper presented a language SLABS for the formal specification of multi-agent systems. It integrates a
number of novel language facilities that intended to support the development of agent-based systems, especialy
for the specification of such systems. The example systems and features of agent-based systems specified in
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SLABS show that the SLABS language and the agent model underlying the language have the following

features.

(1) The language facilities that SLABS provided are powerful to specify agent-based systems in various agent
models and theories. Examples are given in this paper for the specification of reactive systems, personal
assistants, and agent societies.

(2) The language is capable of specifying many different aspects of agent-based systems, which include
communication protocol, collaborative and autonomous behaviour, probabilistic and non-deterministic
behaviour, etc.

(3) Specifications of agent-based systems are organised in a modular structure, caled castes, that naturally
represents the structure and behaviour characteristics of agents in encapsulated units. Each unit represents
one type of agents, whose the dependence on the environment is explicitly specified. This not only makes
the specification of agents more readable, reusable, and maintainable, but also enables the implementation
of a caste to be realised relatively independently based on the information contained in the caste
specification.

(4) The model of multi-agent system underlying SLABS is constructive and has a computational interpretation.
It clarifies the relationship between object orientation and agent orientation. It is also general enough to
cover the agent models and theoriesin the literature that we know so far.

A direction for further research is alogic and formal proof system to support the verification and refinement of

specifications in SLABS. The author believes that SLABS modular structure should be supportive to the

maintenance of formal verification and refinement processes. Another direction for future work is to relate the

language facilities to the methodol ogies for agent-oriented software devel opment.
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